
STRAIGHT LINES IN THREE-DIMENSIONAL SPACE ANDTHE ULTRAHYPERBOLIC EQUATION Chrastinov�a V.Brno University of Tehnology, Veve�r�� 331/95, 602 00 Brno,Czeh Republi.Department of Mathematis, Faulty of Civil Engineering,e-mail: hrastinova.v�fe.vutbr.zAbstrat. The straight lines in three-dimensional vetor spae realize the shortest distane forvarious metris. This property is reformulated in terms of the inverse problem of the alulus of variationsand losely related to the ultrahyperboli equation with four independent variables. The interrelation isuseful in both diretions. For instane, polynomial solutions of the ultrahyperboli equation provide allpolynomial metris with extremals the straight lines and onversely, a slight generalization of the Hilbertmetris leads to rather nontrivial (multi-valued or fousing) solutions of the ultrahyperboli equation. Ingeneral, the artile lari�es some well-known ahievements onerning the 4th Hilbert Problem.IntrodutionThe history of our topi goes bak to the famous Hilbert Problems [1℄, namely to the4th Problem onerning the determination of all metris in the open subsets of Pn thathave the straight lines as the shortest urves and the study of the relevant geometries. Inthis strong version, it is still far from a omplete solution [2℄. With additional smoothnessassumptions, a lose onnetion to the inverse problem of the alulus of variations (I P)and the prominent role of the ultrahyperboli equation (U H ) was soon indiated [3℄.Let us reall that I P onsists in determination of the variational integral if theextremals are given in advane. In two dimensions, for the integral R f(x; y; v)dx (v = y0),the solution is rather easy [4℄. Espeially in the partiular ase of extremal straightlines the formula fvv = U(v; y � vx) with arbitrary U resolves the problem. Thisresult was adapted to three dimensions [3℄ with the following result. The variationalintegral R f(x; y; z; v; w)dx (v = y0; w = z0) has the straight lines for extremals if and onlyif fvv = U; fvw = V; fww = W are funtions of the variables� = v; � = y � vx;  = w; Æ = z � wx:One an hek the ompatibility onditionsU = V�; V =W�; UÆ = V�; UÆ =W�and they imply the U H equation �2(�)=��� = �2(�)=���Æ for all funtions (�) = U; Vand W: Then the funtion f an be reonstruted from U; V;W by double quadrature.Subsequently other solutions of I P were disussed. In the ingenious artile [5℄, thethree-dimensional subase was thoroughly analysed in full generality. However, in thepartiular ase of extremal straight lines the path from U H (formula (8.22)) to thekernel funtion f (pages 82-84) is not quite easy. The reent general solution [6℄ of I Prests on non-elementary tools, the variational biomplex, and the straight lines are notseparately mentioned.In this artile we follow the geometrial approah [7℄ based on the systematialappliation of the Poinar�e-Cartan (PC ) forms [8℄ with intentional use of quite



36 Chrastinov�a V.elementary methods of algorithmial nature. Our result is as follows: for the variationalintegral R f(x; y; z; v; w)dx (v = y0; w = z0) with extremals the straight lines, everyfuntion �f = f(; y; z; v; w) ( = onst) satis�es U H �2 �f=�y�w = �2 �f=�z�v andonversely, every solution �f = �f(y; z; v; w) of this U H permits to reonstrut the kernelfuntion f of the variational integral (whih redues to �f if x =  is kept �xed for a givenonstant ) by a quadrature.On this oasion, a few examples are presented. The polynomial ase related tothe Bessel funtions, a far going generalizations of the Hilbert projetive metris [9℄on Riemannian surfaes with the multivalued and fousing solutions of U H ; and�nally the proof of analytiity of the elliptial Hilbert metris employing very advanedresults [10, 11℄.We will establish a lose relationship between the familiar property of the straightlines y = Ax + B; z = Cx + D in the spae R3 with oordinates x; y; z; i.e., that theyrepresent the shortest urves for ertain metris, and the solutions �f = �f(y; z; v; w) of theultrahyperboli equation �2 �f=�y�w = �2 �f=�z�v.In order to employ the ommon tools of di�erential alulus, we shall deal withmetris � suh that the limitlim"!0 1"�((x; y; z); (x+ u"; y + v"; z + w")) = F (x; y; z; u; v; w) (1)is a smooth (in�nitely-di�erentiable) funtion whenever juj+ jvj+ jwj 6= 0. In geometrialterms, F is the rate of hange of the distane at the point (x; y; z) 2 R3 as one moves inthe diretion (u; v; w). Equation (1) reads�((x; y; z); (x+ u"; y + v"; z + w")) = (F (x; y; z; u; v; w) + o("))"and it follows that the length of a smooth urve(x(t); y(t); z(t)) 2 R3 (a � t � b; jx0(t)j+ jy0(t)j+ jz0(t)j 6= 0) (2)is represented by a Riemannian integral as follows. The sum of the distanes between theneighbouring points of a partitionxi = x(ti); yi = y(ti); zi = z(ti); a < � � � < ti < ti+1 < � � � < bof the urve approximates the Riemannian integral sum and has a limit as the norm ofthe partition tends to zero:limX �((xi; yi; zi); (xi+1; yi+1; zi+1)) = bZa F (x(t); y(t); z(t); x0(t); y0(t); z0(t))dt:We speak of a generalized length L = bZa Fdt of the urve (2) and our aim is to deal withmetris � suh that the straight lines realize the shortest urves onneting two given(su�iently lose) points.The generalized length L is independent of the parametrization of the urve (2) whihmay ause some tehnial di�ulties, however, on every su�iently short segment of the¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010



Straight Lines in Three-Dimensional Spae and the Ultrahyperboli Equation 37urve one an hoose one of the oordinates x; y; z for a new parameter. We shall mostlyuse the parameter x assuming x0(t) 6= 0 in (2). Then the urves under onsideration aregiven by the equations y = y(x); z = z(x) and the generalized length is represented bythe integralL = bZa f(x; y(x); z(x); y0(x); z0(x))dx; f(x; y; z; v; w) = F (x; y; z; 1; v; w): (3)With this adaptation, the methods of the lassial alulus of variations an beomfortably applied.It is well-known that the urves of the minimal length onneting two given pointssatisfy the Euler-Lagrange (E L ) systemfy(� � � ) = ddxfv(� � � ); fz(� � � ) = ddxfw(� � � ); where (� � � ) = (x; y; z; y0; z0):Reall that the solutions of E L system are alled extremals. We wish to determinefuntions f suh that the straight lines are just the extremals. Reall that E L systemrepresents only the neessary onditions and the loal minimum property of the straightlines is ensured if moreover the familiar Legendre ondition holds true, we shall howeverfous our interest just on the E L system.With these preparations, our task an be explained in quite simple terms.The E L system readsfy = fvx + fvyy 0 + fvzz 0 + fvvy 00 + fvwz 00;fz = fwx + fwyy 0 + fwzz 0 + fwvy 00 + fwwz 00:It follows that all straight lines y = vx + B; z = wx + D with the variableparameters A = v, C = w are extremals (solutions of the E L system) if and only ifthe identities fy(�) = fvx(�) + fvy(�)v + fvz(�)w;fz(�) = fwx(�) + fwy(�)v + fwz(�)w;where (�) = (x; y; z; v; w) hold true. They provide a system of the seond order partialdi�erential equations for the funtion f = f(x; y; z; v; w) and we will also use thealternative transriptionfy = Xfv; fz = Xfw �X = ��x + v ��y + w ��z� (4)of these equations in future. One an then observe thatfyw = fvxw + fvywv + fvzww + fvz;fzv = fwxv + fwyvv + fwy + fwzvw;whene the ultrahyperboli equation fyw = fzv follows. The oordinate x appears as a mereparameter, so it is of interest to onsider the equation�fyw = �fzv ( �f = �f(y; z; v; w) = f(; y; z; v; w)) (5)¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



38 Chrastinov�a V.with  an arbitrary onstant. We shall see that the equation (5) for the funtion�f = �f(y; z; v; w) of four variables is in ertain sense equivalent to the system (4). Morepreisely: a solution �f of (5) together with the hoie of a onstant  permits us toreonstrut the original funtion f = f(x; y; z; v; w) satisfying (4).In this artile a funtion f = f(x; y; z; v; w) is alled resolving if (4) is sa�s�ed, i.e., ifall straight lines are extremals. We will determine all resolving funtions f by using thesolutions �f of (5). The onverse setting will also be quite interesting; ertain resolvingfuntions f will be obtained by diret geometrial onstrution whih provides rathernontrivial solutions �f of the ultrahyperboli equation (5).PrerequisitiesOur reasonings will be arried out in an open subset of the spae R5 with oordinatesdenoted x; y; z; v; w: We also use the alternative oordinatesx; � = v; � = y � vx;  = w; Æ = z � wx:The oordinates v; w orrespond to the derivatives, therefore we onsider straight linesgiven by the equationsy = Ax +B; z = Cx +D; v = A; w = C (A;B;C;D are onstants) (6)and, in terms of the alternative oordinates the equations (6) read:� = A; � = B;  = C; Æ = D (A;B;C;D are onstants): (7)For a given funtion g = g(x; y; z; v; w) learlydg = Xgdx + gy(dy � vdx) + gz(dz � wdx) + gvdv + dgwdw == Xgdx+ gyd� + gzdÆ + (gv + xgy)d� + (gw + xgz)d: (8)The funtions �; �; ; Æ are redued to �� = v; �� = y�v; � = w; � = z�w if they areonsidered on the hyperplane x =  (a onstant). In general, a funtion g = g(x; y; z; v; w)is redued to �g = g(; y; z; v; w) = �g(y; z; v; w): In the alternative oordinates, a funtionh = h(x; �; �; ; Æ) is redued to�h = h(; ��; ��; �; �Æ) = h(; v; y � v; w; z � w)and this redution will be again denoted �h = �h(y; z; v; w) when regarded as a funtion ofthe original oordinates.Conversely, every funtion h = h(�; �; ; Æ) independent of x (better: expressible interms of �; �; ; Æ) an be restored from its restrition �h(y; z; v; w) expressed in terms ofthe original oordinates sineh(�; �; ; Æ) = �h(� + �; Æ + ; �; ):Indeed, the restrition of the funtion is �h( �� + ��; �Æ + �; ��; �) = �h(y; z; v; w); use theformulae for ��; ��; �; �Æ given above.Analogous proedure an be applied to di�erential forms. A di�erential form  anbe redued to the form denoted � and onversely, every di�erential form  expressibleonly in terms the funtions �; �; ; Æ (without the use of x) an be restored from theredution � expressed in terms of y; z; v; w if the funtions � + �; Æ + ; �;  are¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010



Straight Lines in Three-Dimensional Spae and the Ultrahyperboli Equation 39substituted for y; z; v; w, respetively. One an verify that the di�erential is preserved:d�h = dh; d � = d : We omit the simple diret proof (alternatively: redutions andrestorations are speial pull-baks).De�nition. For every funtion f = f(x; y; z; v; w) we introdue the Poinar�e-Cartan(PC ) form �' = fdx + fv(dy � vdx) + fw(dz � wdx): (9)The exterior di�erential � = d �' has the obvious properties d� = 0 (� is a losed form)and � �= 0 (mod dx; dy; dz)): If f is a resolving funtion, we speak of a resolving PCform. These resolving PC forms will be alternatively haraterized in the followinglemmas.Diret Lemma. If �' is a resolving PC form, then � = d �' an be expressed interms of the funtions �; �; ; Æ (without the use of the oordinate x and the di�erentialdx).Proof. Obviously dy � vdx = d� + xd�; dz � wdx = dÆ + xd; dv = d�; dw = d;therefore� = df ^ dx + dfv ^ (d� + xd�) + dfw ^ (dÆ + xd)� (fvd� + fwd) ^ dx:Using (8) for g = f; fv; fw; if follows that� = ((fy�Xfv)(d�+xd�)+ (fz�Xfw)(dÆ+xd))^dx+ f��d�^d�+ � � �+ f Æd ^dÆwith ertain oe�ients f��; � � � ; f Æ (they need not be expliitly stated). By virtue of (4),we obtain � = f��d� ^ d� + � � �+ f Æd ^ dÆ;where the oe�ients an be expressed in terms of the alternative oordinates x; �; �; ; Æ:However, they are in fat independent of x as follows from the identity d� = 0: �Converse Lemma. Let 	 be a losed 2-form satisfying 	 �= 0 (mod dx; dy; dz):If 	 is expressible only in terms of �; �; ; Æ then there (loally) exists a resolving PCform �' suh that d �' = 	:Proof. By virtue of the Poinar�e lemma, 	 = d for an appropriate form = Kdx+ Ldy +Rdz +Mdv +Ndw:The ongruene 	 = d �= 0 implies Mw = Nv and there exists g = g(x; y; z; v; w) suhthat gv =M; gw = N: Clearly d( � dg) = 	 where the orreted form � dg = Udx+ V dy +Wdz (U = K � gx; V = L� gy; W = R� gz)¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



40 Chrastinov�a V.has no terms in dv; dw: We will see that  � dg is idential to the sought resolving PCform �': Obviously  � dg = fdx + V (dy � V dx) +W (dz � wdx)where f = U + vV + wW;whene	 = d( � dg) = df ^ dx + dV ^ (d� + xd�) + dW ^ (dÆ + xd)� (V d� +Wd) ^ dx:Using (8), one an verify that	 = ((fy �XV )(d� + xd�) + (fz �XW )(dÆ + xd)++(fv � V )d� + (fw �W )d) ^ dx+ � � �where all the produts d� ^ d�; � � � ; d ^ dÆ are negleted. Sine 	 is expressible interms of �; �; ; Æ, we onlude that fv = V; fw = W; hene 	 is indeed a PC form.Moreover fy = XV = Xfv; fz = XW = Xfw; therefore �' is resolving. The proof is done.�Cruial Lemma. Let 	 be a 2-form expressible only in terms of �; �; ; Æ: Thenthe ongruene 	 �= 0 (mod dx; dy; dz) holds true if and only if the redution �	 to some(equivalently: to any) hyperplane x =  is of the speial kind�	 = (Mdv + Ldw) ^ dy + (Ldv +Ndw) ^ dz: (10)Proof. Assuming (10), we obtain	 = (Md� + Ld) ^ d(� + �) + (Ld� +Nd) ^ (dÆ + )by restoration. Then the desired ongruene an be diretly veri�ed.In order to prove the onverse, we use the formula	 = f��d� ^ d� + � � � + f Æd ^ dÆ == f��dv ^ d(y � vx) + � � �+ f Ædw ^ d(z � wx) �=�= (f� � x (f�Æ + f�) + x2f�Æ)du ^ dv (mod dx; dy; dz):Assuming the ongruene 	 �= 0, it follows that f� = f�Æ + f� = f�Æ = 0; hene theredution is �	 = �f��d�� ^ d�� + � � � + �f Æd� ^ d�Æ == ( �f��dv + �f�Ædw) ^ dy + ( �f�Ædv + �f Ædw) ^ dzafter some alulations. This is exatly (10).(Alternative proof. Clearly X� = � � � = XÆ = 0; hene LXd� = � � � = LXdÆ = 0and therefore LX	 = 0 where LX denotes the Lie derivative. Let us denote� = dx ^ dy ^ dz ^	: Then
LX� = dx ^ (dv ^ dz + dy ^ dw) ^ 	;

L
2X� = 2dx ^ dv ^ dw ^ 	;

L
3X� = 0:¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010



Straight Lines in Three-Dimensional Spae and the Ultrahyperboli Equation 41The form� satis�es a third order linear di�erential equation, therefore� is determinedif the initial values �x= = dx ^ dy ^ dz ^ �	;
LX�x= = dx ^ (dv ^ dz + dy ^ dw) ^ �	;

L
2X�x= = dx ^ dv ^ dw ^ �	;at the point x =  are given. In partiular � = 0 identially if and only if the initial valuesare all vanishing, however, this is true just for the forms �	 of the speial kind (10). Finally,the identity � = 0 is a mere transription of the ongruene 	 �= 0 (mod dx; dy; dz) andtherefore the last ongruene is equivalent to (10). The alternative proof is not elementary.However, it may be applied even to the general I P where the given extremals need notbe the straight lines [7℄. As for the other Lemmas, there need not be any hange.) �Final resultsLet us overview our ahievements and add some remarks.By virtue of the Converse Lemma (better: the proof), if  is suh a 1-form thatthe di�erential 	 = d is expressible in terms of �; �; ; Æ and moreover satis�es	 �= 0 (mod dx; dy; dz), then  � dg �= 0 (mod dx; dy; dz) for an appropriate funtion gand for every orretion dg, the result �' =  � dg is a resolving PC form. The DiretLemma ensures that every resolving PC form an be obtained in this manner (triviality:put  = �', dg = 0).In order to determine all resolving PC forms �', we have to searh for allforms  = Kdx + Ldy + Rdz + Mdv + Ndw with the above two properties of thedi�erential 	 = d . The �rst property will be guaranteed if  is hosen as a restorationof a form � = �Ldy + �Rdz + �Mdv + �Ndw; the seond property by the use of the CruialLemma (namely �	 = d � must be of the form (10)). In fat it is su�ient to deal with theredutions of the speial kind� = �Ldy + �Rdz = V (y; z; v; w)dy +W (y; z; v; w)dz: (11)Indeed, let us suppose that we searh for a resolving PC form �' (not yet expliitlyknown). Clearly ��' �= 0 (mod dy; dz) for the redution and so we may put � = ��' whihis just of the form (11) (with V;W as yet unknown). Let  be the restoration of theform (11). Then 	 = d is the restoration of�	 = d � = d ��' = �� (� = d �');hene 	 = � (restorations are uniquely determined) whih means d = d �' and �' =  �dgfor appropriate orretion dg therefore we do not lose any possible resolving PC form �'.Altogether, in order to obtain an arbitrary resolvingPC form �'; it is su�ient to startwith the restorations  of the speial di�erential form (11). So let us hoose a di�erentialform (11). Then the restoration  , hene the di�erential	 = d an be expressed in termsof �; �; ; Æ; the �rst requirement is satis�ed. The ongruene 	 �= 0 (moddx; dy; dz); thatis, the seond requirement is ensured if the redution is of the form (10). However learly�	 = d � = (Wy � Vz)dy ^ dz + (Vvdv + Vwdw) ^ dy + (Wvdv +Wwdw) ^ dz¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



42 Chrastinov�a V.and we have the onditions Wy = Vz; Wv = Vw for the oe�ients in (11). Now we reallthe U H equation (5). If �f is a solution, the funtions V = �fv;W = �fw learly satisfythe onditions and the onverse also holds true. We are done.Our ahievements an be summarized as follows.Main Theorem. We start with an arbitrary form� = �fv(y; z; v; w)dy + �fw(y; z; v; w)dz (12)where �f = �f(y; z; v; w) is a solution of (5). Then the restoration = �fv(� � � )d(� + �) + �fw(� � � )d(Æ + ) == �fv(� � � )(dy � vdx) + �fw(� � � )(dz � wdx) + (� x)( �fv(� � � )dv + �fw(� � � )dw) (13)where (� � � ) = (� + �; Æ + ; �; ) = (y + (� x)v; z + (� x)w; v; w) (14)needs the orretion �dg(x; y; z; v; w) suh thatgv = (� x) �fv(� � � ); gw = (� x) �fw(� � � ) (15)in order to obtain the resolving PC form�' =  � dg = �Xgdx + ( �fv(� � � )� gy)(dy � vdx) + ( �fw(� � � )� gz)(dz � wdx) (16)whene f = �Xg is the desired resolving funtion.Equations (15) for the unknown funtion g an be resolved by the line integrals inthe two-dimensional subspaes x = x0; y = y0; z = z0 (with oordinates v; w) of the total�ve-dimensional spae with the oordinates x; y; z; v; w: For instaneg(x0; y0; z0; v; w) = g0 + (� x) 1Z0 ( �fv(� � � )(v � v0) + �fw(� � � )(w � w0))dt (17)where x0; y0; z0; v0 + t(v � v0); w0 + t(w� w0) is substituted for x; y; z; v; w (respetively)into the arguments (14). The integral is taken along the straight line segment with theendpoints (v0; w0) and (v; w): Arbitrary smooth funtions of the parameters x0; y0; z0 anbe in priniple hosen for g0; v0; w0; however, one an also assume v0; w0 are onstantswithout any loss of generality.If we are not interested in PC forms but only in the orresponding resolvingfuntion f = �Xg; the formulaf(x0; y0; z0; v; w) = �( ��x0 + v ��y0 + w ��z0 )g0(x0; y0; z0)++(v � v0) 1Z0 �fv(� � � )dt+ (w � w0) 1Z0 �fw(� � � )dt��(� v0)((v � v0)2 1Z0 �fvy(� � � )(1� t)dt+ 2(v � v0)(w � w0) 1Z0 �fvz(� � � )(1� t)dt+¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010



Straight Lines in Three-Dimensional Spae and the Ultrahyperboli Equation 43+(w � w0)2 1Z0 �fwz(� � � )(1� t)dt (18)diretly follows from (17). For onveniene, we reall the arguments (� � � ) =(y0 + (� x0)(v0 + t(v� v0)); z0 + (� x0)(w0 + t(w�w0)); v0 + t(v� v0); w0 + t(w�w0))appearing in the integrands (17) and (18).A few appliationsFirst Example.We shall deal with the resolving funtions f whih are polynomials.For this aim, it is su�ient to determine all solutions �f of the equation (5) that arehomogeneous polynomialsPn =XP aibjkdln yaizbjvkwdl (ai + bj + k + dl = n) (19)of given degree n. The equation (5) is satis�ed if and only if all the equalities�n�yai�zbj�vk�wdl Pn = �n�yai�1�zbj+1�vk+1�wdl�1Pnbetween n-th order derivatives are valid whenever ai; dl � 1: However�n�yai�zbj�vk�wdl Pn = ai! bj! k! dl!P aibjkdlnand so we have the onditionsai! bj! k! dl!P aibjkdln = (ai � 1)! (bj + 1)! (k + 1)! (dl � 1)!P ai�1; bj+1; k+1; dl�1nfor the oe�ients. The produts yw and zv play a signi�ant role here whih is not learlyexpressed. Let us therefore rearrange (19) as followsPn =X yAizBjvCkwDlPAiBjCkDl2m (Ai +Bj + Ck +Dl + 2m = n) (20)where the homogeneous polynomialsPAiBjCkDl2m =XPAiBjCkDl rs2m (yw)r(zv)s (r + s = m)involve all fators yw and zv, i.e, we suppose AiDl = BjCk = 0 in the sum (20). Afterthis arrangement, we have the onditions(Ai + r)!(Bj + s)!(Ck + s)!(Dl + r)!PAiBjCkDl rs2m == (Ai + r � 1)!(Bj + s+ 1)!(Ck + s+ 1)!(Dl + r � 1)!PAiBjCkDl;r�1;s+12m (21)whenever r � 1: They an be expliitly resolved:PAiBjCkDl2m = onstXr;s (yw)r(zv)s(Ai + r)!(Dl + r)!(Bj + s)!(Ck + s)! (r + s = m) (22)where onst = CAiBjCkDl : Substituting (22) into (20), we obtain all polynomialsolutions �f = Pn of the ultrahyperboli equation (5).¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



44 Chrastinov�a V.A ertain relationship to Bessel funtions is worth mentioning. For the partiularase Ai = � � � = Dl = 0 this is simple sine1Xr=0 (yw�)rr!2 1Xs=0 (zv�)ss!2 = 1Xr=0 P0:::02m �m (23)whih reads I0(2(yw�)1=2)I0(2(zv�)1=2) = PP0:::02m �m: As the general ase is onerned,reall that Ai; Bj; Ck; Dl are natural numbers suh that either Ai; Dl or Bj; Ck arevanishing. Assume Ai = Ck = 0: Then the obvious identity1Xr=0 (yw�)rr!(Dl + r)! 1Xs=0 (zv�)s(Bj + s)!s! =XP0Bj0Dl2m �mreads IDl(2(yw�)1=2)IBj (2(zv�)1=2) = (2(yw�))Dl(2(zv�))Bj XP0Bj0Dl2m �mwhere I�(z) = (z=2)�P(z=2)2k=(k!�(�+k+1)) are the Bessel funtions. We have obtainedthe generating funtions for the ultrahyperboli polynomials.The generating funtions are useful if one alulates the resolving funtions f: Wemention only the partiular ase when Ai = Bj = Ck = Dl = 0 here. Then, applying (17)with the funtions �f = PP0:::02m �m and hoosing g0 = v0 = w0 =  = 0 for simpliity, weobtain the result f(x; y; z; v; w;�) == ( ��x + v ��y + w ��z ) 1Xi;j;r;s(�x)i+j yr�izs�jvs+iwr+ji!(r � i)!j!(s� j)!r!s! r + sr + s+ i + j �r+s(sum over i; j; s; r � 0 and moreover r � i; s � j; r + s + i + j > 0). The oe�ientof �m on the right-hand side is the resolving funtion whih orresponds to the partiularsolution �f = P0:::02m of the ultrahyperboli equation (5).By using the �general solution� �f = 1Z�1 �(t; y � vt; z � wt)dt of U H with the hoie� = g(t)(y � tv)p(z � tw)q (p; q;= 0; 1; � � � )where g(t) is an arbitrary funtion with a ompat support, we obtain the abovepolynomial solutions as well. However, this is in fat a misleading strategy: the proofs ofthe most interesting geometrial results to follow rest on quite other priniples.Seond Example. Together with the primary oordinates x; y; z; v; w we shall usethe alternative oordinates x; �; �; ; Æ: Then the straight lines (6) have the alternativeequations (7). Let � = �(�; �; ; Æ)be a given funtion. In virtue of (7), � may be regardedas a funtion on the family of straight lines. We will determine all resolving funtionsof the form f = F (x; �; �; ; Æ) = h(x; �): One an verify that onditions (4) for ourresolving funtion read 2F� = F�x � xF�x; 2FÆ = Fx � xFÆx (24)¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010



Straight Lines in Three-Dimensional Spae and the Ultrahyperboli Equation 45in the alternative oordinates. Continuing in this way we obtain the system of di�erentialequations 2��h� = (�� � x��)h�x; 2�Æ = (� � x�Æ)h�xfor the funtions h; � where the variables an be separated as���� = ��Æ = 2H + x �H = h�xh� � : (25)We have omitted the exeptional (and quite simple) ases when some of thefuntions ��; �Æ; h�; H vanish. It follows that �(2=H + x)=�x = 0 wheneH = � 2x� p(�) ; h� = q(�)(x� p(�))2 ; h = Z q(�)(x� p(�))2d� + r(x)where p(�); q(�); r(x) are arbitrary funtions. With this funtion h; onditions (25) redueto the system �� = p(�)��; � = p(�)�Æ: (26)The solution is given by the impliit equation� =M(� + p(�)�; Æ + p(�)) (27)and we have the result.If a funtion � = �(�; �; ; Æ) satis�es the impliit equation (27) and p(�); q(�); r(x)are arbitrary, then h(x; �) = Z q(�)(x� p(�))2d� + r(x) (28)is a resolving funtion. The funtion r(x) is immaterial here and may be omitted.Without muh loss of generality, we may assume p(�) = �: Then (27) simpli�es as� =M(� + ��; Æ + ��): (29)In terms of the primary oordinates, we have the equation~x =M(y � (x� ~x)v; z � (x� ~x)w) (~x = �(v; y � vx; w; z � wx)) (30)and a nie geometrial interpretation is as follows.
XXXXXXXXXXXXz (1; v; w)à~P = (~x; ~y; ~z)̀aP = (x; y; z)~x =M(~y; ~z) y � ~y = (x� ~x)vz � ~z = (x� ~x)w

Let a smooth surfae x =M(y; z) in the spae R3 with the oordinates x; y; z be given,the domain of M being a ertain open subset of R2 : Given x; y; z; v; w; we onsider the¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



46 Chrastinov�a V.point ~P = (~x; ~y; ~z) of intersetion of the straight line y�~y = (x�~x)v; z�~z = (x�~x)w withthis surfae; then the intersetion point ~P is determined just by the impliit equation (30).Smooth dependene of the intersetion ~P on the variables x; y; z; v; w is ensured if theinequality �(~x�M)�~x = 1�My(~y; ~z)v �Mz(~y; ~z)w 6= 0 (31)holds true (i.e., if the line transversally intersets the surfae).Assuming p(�) = �, the formula (28) also greatly simpli�es and leads to a huge familyof resolving funtions. We shall however deal only with the simplest possible ase q(�) = 1,hene h(x; �) = Z d�(x� �)2 = 1x� �(�; �; ; Æ) = 1x� ~x(x; y; z; v; w) (32)from now on.Let us reall the U H equation (5). In general, if f = �f(y; z; v; w) is a solution then� �2�y�w � �2�z�v� k( �f) = k00( �f)( �fy �fw � �fz �fv)for any funtion k. In partiular, let us hoose the funtion (32), hene �f = 1=(x � ~x)where x is regarded as a mere parameter. Then �fy �fw = �fz �fv identially. (Diretveri�ation: the formulae~xy = My� ; ~xz = Mz� ; ~xv = �(x� ~x)My� ; ~xw = �(x� ~x)Mz�with � = 1� vMy�wMz easily follow from (30).) So we have the result: every omposedfuntion k(1=(x � ~x)) is a solution of U H (if x =  is kept �xed) and therefore everyomposed funtion of the form K(~x) and in partiular ~x itself is a solution of U H .Aording to the geometrial meaning of the funtion ~x = ~x(x; y; z; v; w) whih is the x-oordinate of the intersetion point ~P , we have very lear insight into a huge the familyof (generalized) solutions of U H with the singularities at the exeptional �fousingpoints�where the inequality (31) is not satis�ed.By employing the latter result, one an obtain a ertain ounterpart of the formula (18)by applying (17) with the hoie �f = K(~x(; y; z; v; w)). Clearlyg = (� x) 1Z0 K 0(~x(; : : :))(~xv(; : : :)(v � v0) + ~xw(; : : :)(w � w0))dt:In the ase v0 = w0 = 0 we may substitute~xvv + ~xww = (� ~x)�Myv �Mzw� = (� ~x)�� 1�and therefore the �nal resultg = (� x) 1Z0 K 0(~x(; : : :))(� ~x(; : : :))�� 1� dt¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010



Straight Lines in Three-Dimensional Spae and the Ultrahyperboli Equation 47with the arguments (� � � ) = (y0 + (� x0)tv; z + (� x0)tw; tv; tw) looks fairly good.Third Example. We shall deal with the omplex�valued funtions f = f1 + if2of the ommon real variables (either of the original ones x; y; z; v; w or thealternative x; �; �; ; Æ). Suh a funtion is alled resolving if (4) is satis�ed (with fsubstituted for f) and this is true if and only if the omponents f1; f2 are resolvingfuntions in the ommon sense. Nontrivial results an be nevertheless obtained if onedeals with the generalized length R fdx. We wish to obtain real values after appropriateadaptations.Reall that every (real) straight line is determined by the real onstants � = A; � = B; = C; Æ = D in terms of the alternative oordinates �; �; ; Æ and the equations of thestraight line are as before y = Ax +B; z = Cx+Din terms of the original oordinates. However we will hoose a omplex point ~P = (~x; ~y; ~z)on the real straight line (hene ~y = A~x+B; ~z = C~x+D): It is learly determined by the(arbitrary) hoie of a omplex-valued funtion ~x = �(�; �; ; Æ) of real variables �; �; ; Æ:Theorem. Assuming Im � 6= 0; then the funtion f = 1=(x� �) is resolving if and onlyif � is a holomorphi funtion suh that (exept for some degenerate ases) a ertainimpliit equation � =M(�+ ��; Æ+ �) is satis�ed, whereM =M(y; z) is a holomorphifuntion.One an observe that we again deal with the point of intersetion ~P = (~x; ~y; ~z)where ~x = �; with the omplex surfae ~x =M(~y; ~z):Proof is a mere slight adaptation of the above reasonings. Let usdenote f = F(x; �; �; ; Æ) in terms of the alternative oordinates. Then f is resolvingif (24) is satis�ed for the (omplex-valued) funtion F instead of the previous F: Inpartiular, assuming F = 1=(x � �); we obtain the requirement (26) with p(�) = � andthe new, omplex-valued funtion � (instead of the previous real �). However, � = �1+ i�2and separation of the real and imaginary omponents provides the systems�1��1�� � �2��2�� = ��1�� ; �1��2�� + �2��1�� = ��2�� ; (33)�1��1�Æ � �2��2�Æ = ��1� ; �1��2�Æ + �2��1�Æ = ��2� : (34)Both (33) and (34) are elliptial systems (see below) if �2 6= 0; therefore any lassialsolution �1; �2 is in reality an analytial funtion of the variables �; �; ; Æ (whih maybe therefore extended to omplex variables). Then equations (26) ensure the existeneof ertain nontrivial identity M(�; � + ��; Æ + �) = 0 where M is appropriate analytifuntion. The proof is done.Note to the elliptiity. We mention the partiular ase of the quasilinearsystem PAjik��i=�yk = Bj (i; j = 1; : : : ; m; k = 1; : : : ; n) with the holomorphioe�ients Ajik; Bj: The system is alled elliptial if det(PAjiktk) 6= 0 for all real¾Òàâðiéñüêèé âiñíèê ií�îðìàòèêè òà ìàòåìàòèêè¿, �1' 2010



48 Chrastinov�a V.nonvanishing vetors (t1; : : : ; tn): In our partiular ase, i.e., for the system (33), we havedenoted y1 = �; y2 = � (n = m = 2) and thenXA11ktk =XA22ktk = �1t2 � t1;XA21ktk = �XA12ktk = �2t2whene det(PAjiktk) = (�1t2 � t1)2 + (�2t2)2 6= 0 if �2 6= 0 and (t1; t2) 6= (0; 0):Passing to the example proper, one an see that the distanes (lengths of the segmentsalong a �xed straight line where � = onst) are given by the omplex-valued and multi-valued logarithmZ fdx = Z dxx� � = Ln(x� �) = ln jx� �j+ iArg(x� �):It is desirable to introdue the real-valued omponentsRe Z fdx = 12 Z � 1x� �1 � i�2 + 1x� �1 + i�2� dx = Z x� �1jx� �j2dx = ln jx� �j;ImZ fdx = 12i Z � 1x� �1 � i�2 � 1x� �1 + i�2� dx = Z �2jx� �j2dx = Arg(x� �):Both are rather interesting. For instane, if one takes the imaginary spherex2 + y2 + z2 = �1 for the surfae ~x =M(~y; ~z); the resolving funtionsRe f = ((y � vx)v + (z � wx)w)=(1 + x2 + y2 + z2);Im f = (1 + v2 + w2 + ((y � vz)2 + (z � wx)2 � (vz + wy)2)=(1 + x2 + y2 + z2)appear. The latter one provides the distane in the non-Eulidean elliptial geometry.One an observe that(in ontrast to the hyperboli ase) the distanes are de�ned ontotal lines and for the omponent Im f also at the points of in�nity.Aknowledgements. This researh has been onduted at the Department ofMathematis as a part of the researh projet CEZ MSM 2611 00009.Referenes1. Hilbert, D. Mathematishe Probleme, Vortrag gehalten auf dem internationalen MathematikerCongress, Paris 1900.2. Mathematial developments arising from Hilbert problems, Pro. Symp. in Pure and Appl. Math.AMS, Vol XXVII, 1976.3. Hamel, G. �Uber die Geometrien, in denen die Geraden die K�urzesten sind, Mathematishe AnnalenLVII, 1903.4. Darboux, G. Le�ons sur la th�eorie g�en�erale des surfaes III, Paris 1894.5. Douglas, J. Solution of the inverse problem of the alulus of variations, Transations AMS 50, 1941.6. Anderson, I., Thompson, G. The inverse problem of the alulus of variations for ordinary di�erentialequations, Memoires AMS 473, 1992.7. Chrastina, J. Solution of the inverse problem of the alulus of variations, Mathematia Bohemia119, 1994.8. Cartan, E. Le�ons sur les invariant integrals, Hermann 1922.9. Busemann, H., Kelly, P.J. Projetive geometry and projetive metris, Aademi Press 1953.¾Òàâðè÷åñêèé âåñòíèê èí�îðìàòèêè è ìàòåìàòèêè¿, �1' 2010
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