ХІМІЯ CHEMISTRY

https://doi.org/10.15407/dopovidi2021.02.100 УДК 546.185

Н.Ю. Струтинська¹, А.В. Співак¹, В.М. Баумер², М.С. Слободяник¹

¹ Київський національний університет ім. Тараса Шевченка ² НТК "Інститут монокристалів" НАН України, Харків E-mail: Strutynska_N@bigmir.net

Синтез і будова складних фосфатів $Na_{3,5}M_{0,5}^{II}Fe_{1,5}(PO_4)_3$ ($M^{II} - Mg$, Ni), одержаних в умовах кристалізації багатокомпонентних розчин-розплавів

Представлено членом-кореспондентом НАН України М.С. Слободяником

Досліджено формування складних фосфатів у системі $Na_2O-P_2O_5-Fe_2O_3-M^{II}O(M^{II}-Co, Mg, Ni)$ в умовах кристалізації багатокомпонентних розчин-розплавів у розрізах мольних співвідношень: Na/P = 1,3, Fe/P = 0,3, $Fe/M^{II} = 2$, у температурному інтервалі 1000-650 °C та одержано монокристали $Na_{3,5}M^{II}_{0,5}Fe_{1,5}(PO_4)_3$ $(M^{II} - Mg, Co, Ni)$ розмірами до 5 мм. В IЧ-спектрах синтезованих складних фосфатів $Na_{3,5}M^{II}_{0,5}Fe_{1,5}(PO_4)_3$ $(M^{II} - Mg, Co, Ni)$ коливальні моди в частотних діапазонах 900–1200 см⁻¹ (суперпозиція симетричних і асиметричних валентних коливань PO_4 -тетраедрів) та 400–600 см⁻¹ (відповідні деформаційні коливання) підтверджують присутність ортофосфатного типу аніона в їх складі. Розраховані параметри комірок синтезованих фосфатів (тригональна сингонія, просторова група R-3c) знаходяться в межах значень $(a, b) = 8,68 \div 8,80$ Å i $c = 21,47 \div 21,58$ Å та залежать від розмірів двовалентного металу.

В основі кристалічних каркасів фосфатів Na_{3.5}M^{II}_{0.5}Fe_{1.5}(PO₄)₃ (M^{II} – Mg, Ni) є фрагмент [(M^{II}/Fe)₂ (PO₄)₃], побудований з двох змішаних (M^{II}/Fe)O₆-поліедрів і трьох PO₄-тетраедрів, а катіони натрію частково заселяють два типи позицій, що розміщені в порожнинах каркаса. Присутність вакансій у катіонній підґратці складних фосфатів зі структурою типу NASICON у подальшому будуть впливати на іонпровідні властивості твердих електролітів.

Ключові слова: складні фосфати, кристалізація розчин-розплавів, монокристал, порошкова рентгенографія, ІЧ-спектроскопія.

На сьогодні значний інтерес до складних фосфатів лужних і полівалентних металів зі структурою NZP (NaZr₂(PO₄)₃, NASICON — Na superionic conductor) зумовлений наявністю в них комплексу фізико-хімічних властивостей, що передбачають їх застосування як твердих електролітів і електродних матеріалів для натрій- та літій-іонних батарей [1—6].

Цитування: Струтинська Н.Ю., Співак А.В., Баумер В.М., Слободяник М.С. Синтез і будова складних фосфатів Na_{3,5} $M_{0,5}^{II}$ Fe_{1,5}(PO₄)₃ (M^{II} – Mg, Ni), одержаних в умовах кристалізації багатокомпонентних розчин-розплавів. Допов. Нац. акад. наук Укр. 2021. № 2. С. 100—107. https://doi.org/10.15407/dopovidi 2021.02.100

Загальною кристалографічною формулою сполук, що належать до класу NASICON, є ABB¹(PO₄)₃, де A — катіони лужних металів, B та B¹ — перехідні метали, X — P, S. Значну кількість досліджень присвячено фосфатним сполукам на основі Ti^{IV}, Fe^{III}, Sc^{III} та їх заміщеним аналогам, що характеризуються високою термічною і хімічною стійкістю. Відомі також і складні фосфати зі структурою NZP на основі пар дво- та тривалентних металів Na₄ $M^{II}M^{III}(PO_4)_3$, для яких симетрія каркаса залежить від природи різновалентних металів. Переважна більшість цих сполук і твердих розчинів на їх основі належить до просторової групи R3c [7–10], каркаси яких побудовані з будівельних блоків [$(M^{II}/M^{III})_2(PO_4)_3$], що формують змішані (M^{II}/M^{III})O₆-поліедри та PO₄-тетраедри. Однак у випадку фосфатів Na₄ M^{II} Al(PO₄)₃ (M^{II} — Mg, Mn) виявлено їх належність до просторової групи R3₂ [11]. У структурах цих сполук формується два типи будівельних блоків — [Al₂(PO₄)₃] і [$M^{II}_2(PO_4)_3$], які чергуються вздовж осі *c*. Особливістю їх будови є наявність трьох типів позиції для атомів натрію: одна знаходиться між двома блоками [Al₂(PO₄)₃] і [$M^{II}_2(PO_4)_3$], ще дві — у порожнинах каркаса [11].

На шляху розробки ефективних матеріалів на основі фаз зі структурою NZP необхідним є пошук умов утворення сполук заданого складу та будови, що в подальшому буде безпосередньо впливати на властивості майбутнього матеріалу.

У роботі наведено та обговорено результати дослідження кристалізації багатокомпонентних розчин-розплавів системи Na₂O–P₂O₅–Fe₂O₃– $M^{\rm II}$ O ($M^{\rm II}$ – Co, Mg, Ni) за значень мольних співвідношень: Na/P = 1,3, Fe/P = 0,3, Fe/M^{II} = 2, у температурному інтервалі 1000–650 °C. Синтезовані фосфати охарактеризовано методами оптичної мікроскопії, порошкової рентгенографії та IЧ-спектроскопії, а особливості будови Na_{3,5} $M^{\rm II}_{0,5}$ Fe_{1,5}(PO₄)₃ ($M^{\rm II}$ – Mg, Ni) досліджено методом рентгеноструктурного аналізу монокристалів.

Експериментальна частина. Кристалізацію багатокомпонентних розчин-розплавів системи Na₂O-P₂O₅-Fe₂O₃- M^{II} O (M^{II} - Co, Mg, Ni) досліджували за значень мольних співвідношень: Na/P = 1,3, Fe/P = 0,3, Fe/ M^{II} = 2, у температурному інтервалі 1000-650 °C. Як вихідні компоненти використані: NaPO₃, Na₂CO₃, Fe₂O₃, MgO, CoO, NiO (усі речовини кваліфікації "ч.д.а" або "х.ч."). Розраховані кількості вихідних компонентів ретельно перетирали в агатовій ступці, гомогенізували у платинових тиглях при температурі 1000 °C. Розплави витримували в ізотермічних умовах протягом 1 год для розчинення оксидів та досягнення гомогенізації. Після цього температуру понижували до 650 °C зі швидкістю 25 °/год. На стадії різкої зміни в'язкості розплавів, що встановлювали періодичним відбором проби розплаву, охолодження припиняли. Утворені кристали відмивали від залишків плаву гарячою дистильованою водою, висушували при температурі 80 °C і аналізували.

Фазовий склад синтезованих фосфатів досліджували методом порошкової рентгенографії (дифрактометр Shimadzu XRD-6000 з графітовим монохроматором; метод 20 безперервного сканування зі швидкістю 1°/хв; $2\theta = 5,0.90,0^{\circ}$). Для аналізу типу аніона використано ІЧ-спектроскопію (прилад PerkinElmer Spectrum BX для зразків, запресованих у таблетки з KBr у діапазоні 400–4000 см⁻¹).

Рентгеноструктурні дослідження одержаних монокристалів $Na_{3,5}M_{0,5}^{II}Fe_{1,5}(PO_4)_3 (M^{II} - Mg, Ni)$ проводили на автоматичному дифрактометрі "XCalibur-3" (Oxford Diffraction Ltd.) з використанням Мо K_{α} -випромінювання ($\lambda = 0,7107344 \cdot 10^{-1}$ нм, графітовий монохроматор), обладнаного CCD-детектором ("Sapphire-3"), методом ω -сканування. Дані

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2021. № 2

Рис. 1. Фотографії монокристалів, синтезованих у розчин-розплавах системи $Na_2O-P_2O_5-Fe_2O_3-M^{II}O$

Таблиця 1. Результати структурного експерименту для синтезованих монокристалів Na. Mg. Fe. (PO.). та Na. Ni. Fe. (PO.)

 $Na_{3,5}Mg_{0,5}Fe_{1,5}(PO_4)_3$ ta $Na_{3,5}Ni_{0,5}Fe_{1,5}(PO_4)_3$

Характеристика	$Na_{3,5}Mg_{0,5}Fe_{1,5}(PO_4)_3$	$Na_{3,5}Ni_{0,5}Fe_{1,5}(PO_4)_3$
Сингонія	Тригональна	Тригональна
Просторова група	R- $3c$	<i>R</i> -3 <i>c</i>
Параметри комірки		
a, Å	8,7944(3)	8,7799
<i>c</i> , Å	21,5686(5)	21,5399
$V, (\text{\AA}^3)$	1444,66(8)	1437,982
Z	6	6
Розміри кристала, мм	$0,1 \times 0,07 \times 0,05$	$0,2\!\times\!0,2\!\times\!0,15$
Незалежних відбиттів	3302	1313
Відбиттів з <i>I</i> > 2σ(<i>I</i>)	1054	1182
R _{iht}	0,0293	0,0287
θ_{MAKC} (°)	44,08	45,45
h, k, l	$-17 \rightarrow 17; -17 \rightarrow 17; -42 \rightarrow 42$	$-17 \rightarrow 16; -17 \rightarrow 17; -42 \rightarrow 40$
$R_1(\text{all}), wR_2$	0,0396; 0,0647	0,0315; 0,0290
F000	1341	1386

кристалографічних досліджень і уточнення структур зведено в табл. 1, а координати атомів та ступені заселення кристалографічних позицій — у табл. 2. Структури визначали прямим методом за допомогою програми SHELX-97, а уточнення структури здійснювали за допомогою програми SHELX-97.

Результати і їх обговорення. Формування складних фосфатів на основі Na $-M^{II}$ -Fe^{III} досліджували в умовах кристалізації багатокомпонентних розчин-розплавів системи Na₂O-P₂O₅-Fe₂O₃- M^{II} O (M^{II} - Co, Mg, Ni) за значень мольних співвідношень: Na/P = 1,3, Fe/P = 0,3, Fe/ M^{II} = 2, у температурному інтервалі 1000-650 °C. За умов охолодження розплавів незалежно від природи двовалентного металу при температурі 870 °C зафіксовано початок формування кристалів: безбарвних у випадку магнію, світло-жовтих для нікелю та світло-коричневих для кобальту (рис. 1). З подальшим охолодженням до 650 °C відбувався їх ріст, а найбільші за розмірами та правильної форми (плоскі квадрати) кристали одержано у випадку кобальтвмісної системи (див. рис. 1).

Результати порошкової рентгенографії для синтезованих кристалів вказують на утворення монофазних зразків (рис. 2, *a*). Індексування рентгенограм виявило їх ізоструктурність та належність до тригональної сингонії, просторової групи *R*-3*c*, а розраховані параметри комірок знаходяться в межах значень: (*a*, *b*) = 8,68 ÷ 8,80 Å, *c* = 21,47 ÷ 21,58 Å. Відмічено тенденцію до збільшення параметрів комірки у міру зростання розмірів двовалентного металу від Ni (0,69 Å) до Mg (0,72 Å) та Co (0,745 Å) (для к.ч. 6) [13].

За даними елементного аналізу встановлено склад одержаних монокристалів: мольні співвідношення Na : M^{II} : Fe : Р становили 3,5 : 0,5 : 1,5 : 3, що передбачає загальну формулу Na_{3.5} $M^{II}_{0.5}$ Fe_{1.5}(PO₄)₃.

Дані ІЧ-спектроскопії синтезованих складних фосфатів $Na_{3,5}M^{II}_{0,5}Fe_{1,5}(PO_4)_3$ (M^{II} – Mg, Co, Ni) підтверджують присутність у їх складі ортофосфатного типу аніона PO₄: у частотному діапазоні 900—1200 см⁻¹ знаходяться смуги симетричних та асиметричних валентних коливань PO₄-тетраедрів, а відповідні деформаційні коливання спостерігаються в області 400—600 см⁻¹ (див. рис. 2, δ).

- / / -	/	- / · ,	. ,.			
Атом	Позиція	Фосфат	Заселення	x	y	z
(Fe/M ^{II})1	12 <i>c</i>	I	0,75/0,25	0,333333	0,666667	0,01819(11)
Na1	6 <i>b</i>		0.89	0,333333	0,666667	0,01846(9)
		II	0,00	0,03084(12)	0,333333	0,083333
Na2	18 <i>e</i>	I	0,86	0	0	0
P1	18 <i>e</i>	I	1	0,03933(4)	0,666667	-0,083333
01	36 <i>f</i>	II	1	0,333333	0,96028(3) 0,49746(10)	-0,083333 0.07987(4)
01	507	II	1	0,14383(9)	0,64621(10)	0,07986(4)
O2	36 <i>f</i>		1	0,14873(13) 0.31032(14)	0,68887(14) 0.85062(13)	-0,02543(5) -0.02535(5)
		11		0,01002(14)	0,00002(10)	0,02000(0)

Таблиця 2. Координати атомів і ступені заселеності позицій у структурах $Na_{3,5}Mg_{0,5}Fe_{1,5}(PO_4)_3$ (I) та $Na_{3,5}Ni_{0,5}Fe_{1,5}(PO_4)_3$ (II)

ISSN 1025-6415. Допов. Нац. акад. наук Укр. 2021. № 2

Рис. 2. Порошкові рентгенограми (*a*) та ІЧ-спектри (*б*) синтезованих фосфатів $Na_{3,5}M_{0,5}^{II}Fe_{1,5}(PO_4)_3$, $M^{II} - Mg$ (крива 1), Со (крива 2), Ni (крива 3), що належать до тригональної сингонії (пр. гр. *R*-3*c*)

Рис. 3. Основний будівельний блок $[(M^{\rm II}/{\rm Fe})_2({\rm PO}_4)_3]$ кристалічної структури фосфатів ${\rm Na}_{3,5}M^{\rm II}_{0,5}{\rm Fe}_{1,5}({\rm PO}_4)_3$ і розташування атомів натрію у порожнинах каркаса

Раніше повідомлялося, що за результатами кристалізації розчин-розплавів системи Na₂O–P₂O₅–Fe₂O₃– M^{II} O (M^{II} –Co, Mg, Ni) у розрізі мольних співвідношень: Na/P = 1,0÷1,4, Fe/P = 0,15 та 0,3 і за однакового вмісту полівалентних металів Fe/ M^{II} = 1 встановлено умови формування монофазних Na₄ M^{II} Fe(PO₄)₃ (для розплавів у межах мольного співвідношення Na/P = 1,2÷1,3). Особливістю зазначених сполук є однаковий вміст полівалентних металів у їх складі (M^{II} /Fe = 1,0) [9].

Таким чином, одержані результати та дані з роботи [9] свідчать про те, що в умовах розчин-розплавної кристалізації варіацією мольного співвідношення каркасо-

формувальних металів (Fe/*M*^{II}) у вихідному розплаві можна керувати відповідним їх співвідношенням у складі утворених складних фосфатів без істотного впливу на фазовий склад. Це в подальшому є важливим для пошуку факторів впливу на функціональні властивості сполук зі структурою типу NZP.

Основним будівельним блоком тривимірної аніонної підґратки синтезованих складних фосфатів $Na_{3,5}Mg_{0,5}Fe_{1,5}(PO_4)_3$ та $Na_{3,5}Ni_{0,5}Fe_{1,5}(PO_4)_3$ є фрагмент $[(M^{II}/Fe)_2(PO_4)_3]$ (так званий ліхтарик), що складається з двох змішаних поліедрів $(M^{II}/Fe)O_6$, які поєднані між собою трьома PO_4^- -тетраедрами (рис. 3). Фрагменти $[(M^{II}/Fe)_2(PO_4)_3]$ чергуються

вздовж осі *с*, поєднуючись з Na1O₆-поліедрами у ряди, що додатково об'єднано у тривимірний каркас (див. рис. 3).

Атоми двовалентного металу та феруму займають одну кристалографічну позицію 12*c* у співвідношенні 1 : 3 (табл. 2). Значення довжин зв'язку M—О у (M^{II} /Fe)O₆-поліедрі знаходяться в межах 1,96—2,07 Å (табл. 3), що є близьким до відповідних значень для відомих сполук зі структурою типу NZP: 2,01—2,13 Å для Na₄Fe₂(PO₄)₃ [7], 1,95— 2,05 Å для Na₄NiFe(PO₄)₃ [8] і 1,92— 2,04 Å для Na₄MgFe(PO₄)₃ [9].

Атоми фосфору перебувають у майже правильному тетраедричному

Таблиця 3. Довжини зв'язків у оксигенових
поліедрах для синтезованих фосфатів
Na _{3.5} Mg _{0.5} Fe _{1.5} (PO ₄) ₃ ta Na _{3.5} Ni _{0.5} Fe _{1.5} (PO ₄) ₃

Зв'язок	$Na_{3,5}Mg_{0,5}Fe_{1,5}(PO_4)_3$	$Na_{3,5}Ni_{0,5}Fe_{1,5}(PO_4)_3$				
(М ^{II} /Fe)О ₆ -поліедри						
$(M^{\rm II}/{\rm Fe})1-{\rm O4}$	$1,9688 \times 3$	$1,966 \times 3$				
$(M^{\rm II}/{\rm Fe})1-{\rm O1}$	$2,0686 \times 3$	$2,061 \times 3$				
РО ₄ -тетраедри						
P-O1	$1,5365 \times 2$	$1,5276 \times 2$				
P-O2	$1,5283 \times 2$	$1,5358 \times 2$				
NaO_x -поліедри						
Na1-O1	$2,452(4) \times 6$	$2,449 \times 6$				
Na2-O1	$2,416(2) \times 3$	$2,410 \times 3$				
Na2-O1	$2,463(4) \times 3$	$2,464 \times 3$				

оксигеновому оточенні — відстані Р—О знаходяться в межах значень 1,52–1,54 Å (див. табл. 3), що є типовим для фосфатів даного структурного типу [7–9].

Атоми натрію частково заселяють два типи позиції в порожнинах каркаса (див. рис. 3). Позиція Na1 зі ступенем заселення атомів 0,89 розміщена між двома блоками $[(M^{II}/Fe)_2(PO_4)_3]$ на осі третього порядку, і координаційне оточення атомів натрію формують шість атомів оксигену (d(Na1–O2) = 2,45 Å) (див. табл. 3). Інший тип атомів Na2 (ступінь заселення позиції 0,86), що знаходяться в порожнинах каркаса, оточують також шість атомів оксигену з довжинами зв'язків d(Na2–O) в межах значень 2,41–2,47 Å (див. табл. 3).

Отже, синтезовані фосфати Na_{3,5}Mg_{0,5}Fe_{1,5}(PO₄)₃ та Na_{3,5}Ni_{0,5}Fe_{1,5}(PO₄)₃ є ізоструктурними з відомими Na₄ M^{II} Fe(PO₄)₃ і належать до сімейства сполук зі структурою NASICON (NZP). Особливістю будови синтезованих фосфатів, на відміну від відомих фосфатів Na₄ M^{II} Fe(PO₄)₃, є формування їх тривимірного каркаса з Fe^{III} та M^{II} у співвідношенні 3 : 1, що передбачає наявність вакансій у катіонній підґратці (позиціях катіона лужного металу) і в подальшому матиме вплив на провідні властивості фосфатів. Одержані результати є важливими для пошуку ефективних матеріалів зі спеціальними іонпровідними властивостями на основі фаз структурного типу NASICON.

Таким чином, нами встановлено формування ізоструктурних складних фосфатів $Na_{3,5}M^{II}_{0,5}Fe_{1,5}(PO_4)_3$ (M^{II} – Mg, Co, Ni) за умов кристалізації розчин-розплавів $Na_2O-P_2O_5-Fe_2O_3-M^{II}O$ (M^{II} – Co, Mg, Ni) у розрізі мольних співвідношень: Na/P = 1,3, Fe/P = 0,3, Fe/ $M^{II} = 2$, у температурному інтервалі 1000—650 °C. Аналіз будови синтезованих монокристалів $Na_{3,5}Mg_{0,5}Fe_{1,5}(PO_4)_3$ та $Na_{3,5}Ni_{0,5}Fe_{1,5}(PO_4)_3$ виявив, що збільшення кількості феруму у вихідному розчин-розплаві (мольне співвідношення Fe/ $M^{II} = 2$) сприяє підвищенню його вмісту у складі монокристалів та утворенню вакансій у катіонній підґратці каркаса структурного типу NASICON.

ЦИТОВАНА ЛІТЕРАТУРА

- 1. Guin M., Tietz F., Guillon O. New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na_{3+x}Sc₂Si_xP_{3-x}O₁₂. *Solid State Ionics*. 2016. **293**. P. 18–26. https://doi.org/10.1016/j.ssi.2016.06.005
- Feng J.K., Lu L., Lai M.O. Lithium storage capability of lithium ion conductor Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃. J. Alloys Compd. 2010. 501, № 2. P. 255–258. https://doi.org/10.1016/j.jallcom.2010.04.084
- 3. Hou M., Liang F., Chen K., Dai Y., Xue D. Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. *Nanotechnology*. 2020. **31**, № 13. 132003. https://doi.org/10.1088/1361-6528/ab5be7
- 4. Park J.Y., Shim Y., Kim Y., Choi Y., Lee H. J., Park J., Wang J.E., Lee Y., Chang J. H., Yim K., Ahn C.W., Lee C.-W., Kim D. K., Yuk J. M. Iron-doped NASICON type sodium ion battery cathode for enhanced so-dium storage performance and its full cell applications. *J. Mater. Chem. A.* 2020. 8. P. 20436–20445. https://doi.org/10.1039/D0TA07766F
- 5. El-Shinawi H., Regoutz A., Payne D.J., Cussen E.J., Corr S.A. NASICON LiM₂(PO₄)₃ electrolyte (M = Zr) and electrode (M = Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance. *J. Mater. Chem. A.* 2018. **6**. P. 5296–5303. https://doi.org/10.1039/C7TA08715B
- 6. Wu M., Ni W., Hu J., Ma J. NASICON-structured NaTi₂(PO₄)₃ for sustainable energy storage. *Nano-Micro Lett.* 2019. **11**, № 44. https://doi.org/10.1007/s40820-019-0273-1
- Hatert F. Na₄Fe²⁺Fe³⁺(PO₄)₃, a new synthetic NASICON-type phosphate. *Acta Crystallogr. Sect. E.* 2009. 65. i30. https://doi.org/10.1107/S1600536809009210
- 8. Essehli R., El Bali B., Benmokhtar S., Bouziane K., Manoun B., Abdalslam M.A., Ehrenberg H. Crystal structures and magnetic properties of iron (III)-based phosphates: Na₄NiFe(PO₄)₃ and Na₂Ni₂Fe(PO₄)₃. *J. Alloys Compd.* 2011. **509**. P. 1163–1171. https://doi.org/10.1016/j.jallcom.2010.08.159
- 9. Струтинская Н.Ю., Затовский И.В., Яцкин М.М., Слободяник Н.С., Огородник И.В. Фазообразование в расплавах систем Na₂O−P₂O₅−Fe₂O₃−M^{II}O (M^{II} − Mg, Ni) и структура Na₄MgFe(PO₄)₃. *Heopr. маmep.* 2012. **48**, № 4. С. 472−477. https://doi.org/10.1134/S0020168512040176
- 10. Яцкін М.М., Струтинська Н.Ю., Затовський І.В., Слободяник М.С. Фазоутворення у розчинахрозплавах систем Na₂O-P₂O₅-Fe₂O₃-Me^{II}O, Me^{II} - Mn, Co, Cu, Zn. *Допов. Нац. акад. наук Укр.* 2012. № 4. С. 145-148.
- 11. Zatovsky I.V., Strutynska N.Yu., Ogorodnyk I. V., Baumer V. N., Slobodyanik N.S., Yatskin M.M., Odynets I.V. Peculiarity of formation of the NASICON-related phosphates in the space group *R*3₂: synthesis and crystal structures of Na₄*M*^{II}Al(PO₄)₃ (*M*^{II} Mg, Mn). *Struct. Chem.* 2016. **27**, № 1. P. 323–330. https://doi.org/10.1007/s11224-015-0713-6
- 12. Sheldrick G.M. SHELXL-97: Program for crystal-structure refinement. Göttingen: University of Göttingen, 1997.
- 13. Shannon R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. *Acta Cryst.* A. 1976. **32**, № 5. P. 751–767. https://doi.org/10.1107/S0567739476001551

Надійшло до редакції 16.02.2021

REFERENCES

- 1. Guin, M., Tietz, F. & Guillon, O. (2016). New promising NASICON material as solid electrolyte for sodium-ion batteries: Correlation between composition, crystal structure and ionic conductivity of Na_{3+x}Sc₂Si_xP_{3-x}O₁₂. Solid State Ionics, 293, pp. 18-26. https://doi.org/10.1016/j.ssi.2016.06.005
- Feng, J.K., Lu, L. & Lai, M.O. (2010). Lithium storage capability of lithium ion conductor Li_{1.5}Al_{0.5}Ge_{1.5}(PO₄)₃. J. Alloys Compd., 501, No. 2, pp. 255-258. https://doi.org/10.1016/j.jallcom.2010.04.084
- 3. Hou, M., Liang, F., Chen, K., Dai, Y. & Xue, D. (2020). Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology, 31, No. 13. https://doi.org/10.1088/1361-6528/ab5be7
- Park, J.Y., Shim, Y., Kim, Y., Choi, Y., Lee, H.J., Park, J., Wang, J.E., Lee, Y., Chang, J. H., Yim, K., Ahn, C.W., Lee, C.-W., Kim, D. K. & Yuk, J.M. (2020). Iron-doped NASICON type sodium ion battery cathode for enhanced sodium storage performance and its full cell applications. J. Mater. Chem., A, 8, pp. 20436-20445. https://doi.org/10.1039/D0TA07766F

- 5. El-Shinawi, H., Regoutz, A., Payne, D.J., Cussen, E.J. & Corr, S.A. (2018). NASICON LiM₂(PO₄)₃ electrolyte (M = Zr) and electrode (M = Ti) materials for all solid-state Li-ion batteries with high total conductivity and low interfacial resistance. J. Mater. Chem. A, 6, pp. 5296-5303. https://doi.org/10.1039/C7TA08715B
- 6. Wu, M., Ni W., Hu, J. & Ma, J. (2019). NASICON-structured NaTi₂(PO₄)₃ for sustainable energy storage. Nano-Micro Lett., 11, No. 44. https://doi.org/10.1007/s40820-019-0273-1
- 7. Hatert, F. (2009). Na₄Fe²⁺Fe³⁺(PO₄)₃, a new synthetic NASICON-type phosphate. Acta Crystallogr., Sect. E., 65, i30. https://doi.org/10.1107/S1600536809009210
- Essehli, R., El Bali, B., Benmokhtar, S., Bouziane, K., Manoun, B., Abdalslam, M.A. & Ehrenberg, H. (2011). Crystal structures and magnetic properties of iron (III)-based phosphates: Na₄NiFe(PO₄)₃ and Na₂Ni₂Fe(PO₄)₃. J. Alloys Compd., 509, pp. 1163-1171. https://doi.org/10.1016/j.jallcom.2010.08.159
- Strutynska, N.Yu., Zatovsky, I.V. Yatskin, M.M., Slobodyanik, N.S. & Ogorodnyk, I.V. (2012). Crystallization from Na₂O-P₂O₅-Fe₂O₃-M^{II}O (M^{II} – Mg, Ni) melts and the structure of Na₄MgFe(PO₄)₃. Inorg. Mater., 48, No. 4, pp. 402-406. https://doi.org/10.1134/S0020168512040176
- Yatskin, M.M., Strutynska, N.Yu., Zatovsky, I.V. & Slobodyanik, N.S. (2012). Phase formation in the flux systems Na₂O-P₂O₅-Fe₂O₃-Me^{II}O (Me^{II} Mn, Co, Cu, Zn). Dopov. Nac. akad. nauk Ukr., No. 4, pp. 145-148 (in Ukrainian).
- 11. Zatovsky, I.V., Strutynska, N.Yu., Ogorodnyk, I.V., Baumer, V. N., Slobodyanik, N.S., Yatskin, M.M., & Odynets, I.V. (2016). Peculiarity of formation of the NASICON-related phosphates in the space group *R*3₂: synthesis and crystal structures of Na₄*M*^{II}Al(PO₄)₃ (*M*^{II} Mg, Mn). Struct. Chem., 27, No. 1, pp. 323-330. https://doi.org/10.1007/s11224-015-0713-6
- 12. Sheldrick, G.M. (1997). SHELXL–97: Program for crystal-structure refinement. Göttingen: University of Göttingen.
- 13. Shannon, R.D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A, 32, No. 5, pp. 751-767. https://doi.org/10.1107/S0567739476001551

Received 16.02.2021

N.Yu. Strutynska¹, A.V. Spivak¹, V.N. Baumer², M.S. Slobodyanik¹

¹ Taras Shevchenko National University of Kyiv

² SSI "Institute for Single Crystals" of the NAS of Ukraine, Kharkiv

E-mail: Strutynska_N@bigmir.net

SYNTHESIS AND STRUCTURE OF COMPLEX PHOSPHATES Na $_{3.5}M_{0.5}^{II}$ Fe $_{1.5}$ (PO $_4$) $_3$ (M^{II} – Mg, Ni), OBTAINED UNDER CONDITION OF THE CRYSTALLIZATION OF MULTICOMPONENT SELF-FLUXES

The regularities of the formation of complex phosphates in the system Na₂O–P₂O₅–Fe₂O₃– M^{II} O (M^{II} – Co, Mg, Ni) at the crystallization of multicomponent self-fluxes at the values of molar ratios: Na/P = 1.3, Fe/P = 0.3, Fe/ M^{II} = 2, over the temperature interval of 1000-650 °C have been investigated. The single crystals of complex phosphates of Na_{3.5} $M^{II}_{0.5}$ Fe_{1.5}(PO₄)₃ (M^{II} – Mg, Co, Ni) 5 mm in size have been grown. In the FTIR spectra of synthesized complex phosphates Na_{3.5} $M^{II}_{0.5}$ Fe_{1.5}(PO₄)₃ (M^{II} – Mg, Co, Ni) 5 mm in size have been grown. In the FTIR spectra of synthesized complex phosphates Na_{3.5} $M^{II}_{0.5}$ Fe_{1.5}(PO₄)₃ (M^{II} – Mg, Co, Ni), the characteristic modes in the regions of 900-1200 cm⁻¹ (symmetric and asymmetric stretching vibrations (v₄, v₁, and v₃) of a phosphate tetrahedron) and 400-600 cm⁻¹ (corresponding deformation vibration) have been confirmed the presence of an orthophosphate–type anion in their composition. The calculated cell parameters for obtained phosphates (trigonal system, space group *R*-3*c*) are in the range of values (*a*, *b*) = 8.68-8.80 Å and *c* = 21.44-21.47 Å and depend on the nature of M^{II} . The basic building block of the structure of complex phosphates Na_{3.5} $M^{II}_{0.5}$ Fe_{1.5}(PO₄)₃ (M^{II} – Mg, Ni) is the [(M^{II} /Fe)₂(PO₄)₃] unit, which consists of two (M^{II} /Fe)O₆ polyhedra interlinked by three bridging PO₄-tetrahedra. The Na⁺ cations are distributed over two partially occupied sites in the cavities of the framework. The presence of vacancies in the cationic sublattice of complex phosphates with NASICON-related structure will further affect the ion-conducting properties of solid electrolytes based on them.

Keywords: crystallization of self-fluxes, single crystal, powder X-ray diffraction, FTIR spectroscopy.