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Using perturbation results on sums of ranges of nonlinear accretive mappings of Calvert and Gupta,
we present some abstract results about the existence of solutions of nonlinear Neumann elliptic systems
involving (p, q)-Laplacian. The systems discussed in this paper and the method used extend and comple-
ment some of the previous work.

З використанням результатiв, отриманих Калвертом та Гуптою, про збурення сум образiв не-
лiнiйних акретивних вiдображень, наведено деякi абстрактнi результати про iснування розв’яз-
кiв нелiнiйних елiптичних систем Неймана, що мiстять (p, q)-лапласiан. Розглянутi системи та
використанi методи продовжують та доповнюють результати попереднiх робiт.

1. Introduction. By using perturbation results on the ranges of m-accretive mappings, Calvert
and Gupta [1] and Gupta and Hess [2] provided sufficient conditions so that some nonlinear
boundary-value problems involving the Laplacian operator have solutions in Lp(Ω). Inspired by
their ideas, we obtained a sufficient condition in [3] so that the zero boundary-value problem

−∆pu + g(x, u(x)) = f(x) a.e. in Ω,
(1.1)

− ∂u

∂n
= 0 a.e. on Γ
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has solutions in Lp(Ω), where 2 ≤ p < +∞. In [4], we studied (1.1) in a more general space

Lp(Ω), where
2N

N + 1
< p < +∞ and N ≥ 1, and the restrictions are weaker than those in [3].

In [5], we showed that the nonlinear boundary-value problem

−∆pu + g(x, u(x)) = f(x) a.e. in Ω,
(1.2)

−
〈
ϑ, |∇u|p−2∇u

〉
∈ βx(u(x)) a.e. on Γ

has solutions in Lp(Ω), where 2 ≤ p < +∞. We further showed that (1.2) has solutions in
Ls(Ω), where max{N, 2} ≤ p ≤ s < +∞ and N ≥ 1, see [6]. In [7], we used the ideas of [6]

and continued our studies of (1.2) in the Hilbert space L2(Ω), where
2N

N + 1
< p < +∞ for

N ≥ 1. Recently, we examined the following boundary-value problem:

−∆pu + |u|p−2u + g(x, u(x)) = f(x) a.e. in Ω,
(1.3)

−
〈
ϑ, |∇u|p−2∇u

〉
∈ βx(u(x)) a.e. on Γ

which in addition contains a perturbation term |u|p−2u. In [8], we proved that (1.3) has solutions

in Ls(Ω), where
2N

N + 1
< p ≤ 2 for N ≥ 1 and 2 ≤ s < +∞. Further, in [9] we showed that

(1.3) has solutions in Lp(Ω), where
2N

N + 1
< p < +∞ for N ≥ 1. In [10] and [11], we extended

our work to the following problem

− div
[(

C(x) + |∇u|2
) p−2

2 ∇u

]
+ |u|p−2u + g(x, u(x)) = f(x) a.e. in Ω,

(1.4)

−
〈
ϑ, (C(x) + |∇u|2)

p−2
2 ∇u

〉
∈ βx(u(x)) a.e. on Γ.

In [10], we established that (1.4) has solutions in Lp(Ω), where 2 ≤ p < +∞; and in [11]
we proved that (1.4) has solutions in Ls(Ω), where max{N, 2} ≤ p ≤ s < +∞. Clearly, if
C(x) ≡ 0, then equation (1.4) reduces to contain only p-Laplacian operators.

As a summary of our previous work, in [12] we studied the following problem:

− div
[
(C(x) + |∇u|2)

p−2
2 ∇u

]
+ ε|u|q−2u + g(x, u(x)) = f(x) a.e. in Ω,

(1.5)

−
〈
ϑ, (C(x) + |∇u|2)

p−2
2 ∇u

〉
∈ βx(u(x)) a.e. on Γ,

where 0 ≤ C(x) ∈ Lp(Ω), ε is a non-negative constant and ϑ denotes the exterior normal
derivative of Γ. We showed that (1.5) has solutions in Ls(Ω) under some conditions, where

2N

N + 1
< p ≤ s < +∞, 1 ≤ q < +∞ if p ≥ N, and 1 ≤ q ≤ Np

N − p
if p < N, for N ≥ 1.
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In this paper, we shall extend our study to the case of nonlinear Neumann elliptic systems.
Specifically, by using perturbations of accretive mappings, we shall find a sufficient condition
for the existence of a solution in Lp(Ω)× Lq(Ω) of the following system:

−∆pu + ε1|u|p−2u + g(x, u(x), v(x)) = f1(x) a.e. in Ω,

−∆qv + ε2|v|q−2v + g(x, v(x), u(x)) = f2(x) a.e. in Ω,
(1.6)

−
〈
ϑ, |∇u|p−2∇u

〉
∈ βx(u(x)) a.e. on Γ,

−
〈
ϑ, |∇v|q−2∇v

〉
∈ βx(v(x)) a.e. on Γ.

Here, Ω is a bounded conical domain of the Euclidean space RN with its boundary Γ ∈ C1

(see [5]), f1(x) ∈ Lp(Ω) and f2(x) ∈ Lq(Ω) are given functions, ε1 and ε2 are non-negative
constants, and ϑ denotes the exterior normal derivative of Γ. We shall assume that the Green’s
formula is available.

2. Preliminaries. Let X be a real Banach space with a strictly convex dual space X ′. We shall
use „→” and „w − lim” to denote strong and weak convergences, respectively. For any subset
G of X, we denote by intG its interior and G its closure, respectively. A mapping T : X → X ′

is said to be hemi-continuous on X if w − lim
t→0

T (x + ty) = Tx for any x, y ∈ X.

Let J denote the duality mapping from X into 2X′
defined by

J(x) = {f ∈ X ′ : (x, f) = ‖x‖‖f‖, ‖f‖ = ‖x‖} ∀x ∈ X,

where (·, ·) denotes the generalized duality pairing between X and X ′. Since X ′ is strictly
convex, J is a single-valued mapping.

A multivalued mapping A : X → 2X is said to be accretive if (v1 − v2, J(u1 − u2)) ≥ 0,
for any ui ∈ D(A) and vi ∈ Aui, i = 1, 2. An accretive mapping A is said to be m-accretive if
R(I + λA) = X for some λ > 0. We say that A : X → 2X is boundedly-inversely-compact if,
for any pair of bounded subsets G and G′ of X, the subset G

⋂
A−1(G′) is relatively compact

in X.
A multivalued operator B : X → 2X

′
is said to be monotone if its graph G(B) is a

monotone subset of X ×X ′ in the sense that (u1 − u2, w1 − w2) ≥ 0 for any [ui, wi] ∈ G(B),
i = 1, 2. A monotone operator B is said to be maximal monotone if G(B) is maximal among
all monotone subsets of X ×X ′ in the sense of inclusion.

Definition 2.1 [1]. The duality mapping J : X → X ′ is said to satisfy condition (2.1) if there
exists a function η : X → [0,+∞) such that for u, v ∈ X,

‖Ju− Jv‖ ≤ η(u− v). (2.1)

Lemma 2.1 [1]. Let Ω be a bounded domain in RN and let Jp : Lp(Ω) → Lp′(Ω) denote
the duality mapping. Then, Jp satisfies condition (2.1). Moreover, for 2 ≤ p < +∞, Jpu =
= |u|p−1sgn u‖u‖2−p

p ∀u ∈ Lp(Ω); for 1 < p ≤ 2, Jpu = |u|p−1sgn u ∀u ∈ Lp(Ω), where
1
p

+
1
p′

= 1.
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Definition 2.2 [1]. Let A : X → 2X be an accretive mapping and J : X → X ′ be a duality
mapping. We say that A satisfies condition (2.2) if, for any f ∈ R(A) and a ∈ D(A), there exists
a constant C(a, f) such that, for any u ∈ D(A), v ∈ Au,

(v − f, J(u− a)) ≥ C(a, f). (2.2)

Lemma 2.2 [1]. Let Ω be a bounded domain in RN and g : Ω × R → R be a function
satisfying Carathéodory’s conditions (see [13]) such that

(i) g(x, ·) is monotonically increasing on R;
(ii) the mapping u ∈ Lp(Ω) → g(x, u(x)) ∈ Lp(Ω), 1 < p < +∞, is well defined.
Then, the mapping B : Lp(Ω) → Lp(Ω) defined by (Bu)(x) = g(x, u(x)), for any x ∈ Ω,

satisfies condition (2.2).

Theorem 2.1 [1]. Let X be a real Banach space with a strictly convex dual X ′. Let J : X →
→ X ′ be a duality mapping on X satisfying condition (2.1). Let A, C1 : X → 2X be accretive
mappings such that

(i) either both A and C1 satisfy condition (2.2), or D(A) ⊂ D(C1) and C1 satisfies conditi-
on (2.2);

(ii) A + C1 is m-accretive and boundedly-inversely-compact.
If C2 : X → X is a bounded continuous mapping such that, for any y ∈ X, there is a

constant C(y) satisfying (C2(u + y), Ju) ≥ −C(y) for any u ∈ X, then
(a) [R(A) + R(C1)] ⊂ R(A + C1 + C2);
(b) int [R(A) + R(C1)] ⊂ intR(A + C1 + C2).

We also require the following basic results for the product space, which can be found in [14].
The product space of Banach spaces X1 and X2, which is denoted by X1 ×X2, is a set of all

(ordered) pairs (x1, x2) of elements where x1 ∈ X1 and x2 ∈ X2. X1 ×X2 is a vector space if
the linear operation is defined by

k1(x1, y1) + k2(x2, y2) = (k1x1 + k2x2, k1y1 + k2y2).

Furthermore, X1 ×X2 becomes a normed space if the norm is defined by

‖(x1, x2)‖ = (‖x1‖2 + ‖x2‖2)
1
2 .

Other choices of the norm are possible, we employ the above norm mainly because it ensures
that (X1 × X2)′ = X ′

1 × X ′
2, where X ′

1 and X ′
2 are dual spaces of X1 and X2, respectively.

(X1×X2)′ = X ′
1×X ′

2 means the following: (i) each element (f, g) ∈ X ′
1×X ′

2 defines an element
F ∈ (X1 × X2)′ by ((x1, x2), F ) = (x1, f) + (x2, g) and, conversely, each F ∈ (X1 × X2)′ is
expressed in this form by a unique (f, g) ∈ X ′

1×X ′
2; (ii) the norm of the above F ∈ (X1×X2)′

is exactly equal to ‖(f, g)‖ = (‖f‖2 + ‖g‖2)
1
2 .

It is easily seen that X1 ×X2 is a Banach space since both X1 and X2 are Banach spaces.

3. Main results. In this paper, unless otherwise stated, we shall assume that

2N

N + 1
< p < +∞ and

2N

N + 1
< q < +∞,
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where N ≥ 1. We shall use ‖ · ‖p and ‖ · ‖q to denote the norms of spaces Lp(Ω) and Lq(Ω),
respectively.

Let ϕ : Γ × R → R be a given function such that, for each x ∈ Γ, ϕx = ϕ(x, ·) : R → R
is a proper, convex and lower-semi-continuous function with ϕx(0) = 0. Let βx be the subdi-
fferential of ϕx, i.e., βx ≡ ∂ϕx. Suppose that 0 ∈ βx(0) and for each t ∈ R, the function
x ∈ Γ → (I + λβx)−1(t) ∈ R is measurable for λ > 0.

Suppose that g : Ω × R × R → R is a given function satisfying Carathéodory’s conditions
such that for any 1 < p < +∞, the mapping u(x) ∈ Lp(Ω) → g(x, u(x), v(x)) ∈ Lp(Ω) is well-
defined for all fixed v(x) ∈ Lq(Ω) and for any 1 < q < +∞, the mapping v(x) ∈ Lq(Ω) →
→ g(x, v(x), u(x)) ∈ Lq(Ω) is well-defined for all fixed u(x) ∈ Lp(Ω). We shall also assume
that there exists a function 0 ≤ T (x) ∈ Lmin (p,q)(Ω) such that g(x, s, t)t ≥ 0, for |t| ≥ T (x),
x ∈ Ω, and for fixed number s ∈ R; and g(x, s, t)s ≥ 0, for |s| ≥ T (x), x ∈ Ω, and for fixed
number t ∈ R.

Our main idea to tackle (1.6) is to apply Theorem 2.1, similar arguments are also used in
[3 – 12].

To begin, let Y denote the product of two spaces Lp(Ω) and Lq(Ω), i.e., Y = Lp(Ω) ×
×Lq(Ω) = {(u, v) : u ∈ Lp(Ω), v ∈ Lq(Ω)}. The space Y will be endowed with the norm

‖(u, v)‖ =
√
‖u‖2

p + ‖v‖2
q , for (u, v) ∈ Lp(Ω)× Lq(Ω).

The dual space of Y will be denoted by Y ′.
We also use 〈·, ·〉 and | · | to denote the Euclidean inner-product and Euclidean norm in RN .

Lemma 3.1 [9, 12]. Define the mapping Bp : W 1,p(Ω) → (W 1,p(Ω))′ by

(w,Bpu) =
∫
Ω

〈|∇u|p−2∇u,∇w〉 dx + ε

∫
Ω

|u(x)|p−2u(x) w(x) dx

for any u, w ∈ W 1,p(Ω). Then, Bp is everywhere defined, monotone, hemi-continuous and coer-
cive.

Similarly, the mapping Bq : W 1,q(Ω) → (W 1,q(Ω))′ defined by

(w,Bqv) =
∫
Ω

〈|∇v|q−2∇v,∇w〉 dx + ε

∫
Ω
|v(x)|q−2v(x) w(x) dx

for any v, w ∈ W 1,q(Ω), is also everywhere defined, monotone, hemi-continuous and coercive.

Lemma 3.2 [9]. The mapping Φp : W 1,p(Ω) → R defined by Φp(u) =
∫
Γ ϕx(u|Γ(x))dΓ(x)

for any u ∈ W 1,p(Ω), is proper, convex and lower-semi-continuous on W 1,p(Ω).

Similarly, the mapping Φq : W 1,q(Ω) → R defined by Φq(v) =
∫
Γ ϕx(v|Γ(x))dΓ(x), for any

v ∈ W 1,q(Ω), is also a proper, convex and lower-semi-continuous on W 1,q(Ω).

Lemma 3.3 [9, 12]. Define the mapping Ap : Lp(Ω) → 2Lp(Ω) as follows:

D(Ap) = {u ∈ Lp(Ω) | there exists an f ∈ Lp(Ω) such that f ∈ Bpu + ∂Φp(u)}.
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For u ∈ D(Ap), we set Apu = {f ∈ Lp(Ω) | f ∈ Bpu + ∂Φp(u)}. Then Ap is m-accretive.
Define the mapping Aq : Lq(Ω) → 2Lq(Ω) as follows:

D(Aq) = {v ∈ Lq(Ω) | there exists an g ∈ Lq(Ω) such that g ∈ Bqv + ∂Φq(v)}.

For v ∈ D(Aq), we set Aqv = {g ∈ Lq(Ω) | g ∈ Bqv + ∂Φq(v)}. Then Aq is also m-accretive.

Definition 3.1. Define the mapping Ap,q : Y → 2Y as

Ap,q(u, v) = (Apu,Aqv) for (u, v) ∈ Y.

Proposition 3.1. The mapping Ap,q : Y → 2Y is m-accretive.

Proof. Let Jp denote the duality mapping from Lp(Ω) to Lp′(Ω), where
1
p

+
1
p′

= 1, and let

Jq denote the duality mapping from Lq(Ω) to Lq′(Ω), where
1
q

+
1
q′

= 1.

Let J : Y → Y ′ and J(u, v) = (Jpu, Jqv) for (u, v) ∈ Y. We shall show that J is the duality
mapping from Y to Y ′. For this, let (u, v) ∈ Y, then

((u, v), J(u, v)) = ((u, v), (Jpu, Jqv)) = (u, Jpu) + (v, Jqv) = ‖u‖2
p + ‖v‖2

q = ‖(u, v)‖2.

Moreover, we have

‖J(u, v)‖2 = ‖Jpu‖2 + ‖Jqv‖2 = ‖u‖2
p + ‖v‖2

q = ‖(u, v)‖2.

Thus, J is the duality mapping from Y to Y ′.
Next, we shall show that Ap,q is m-accretive. For this, let u∗ ∈ Lp(Ω) and v∗ ∈ Lq(Ω), then

it follows from Lemma 3.3 that there exist u ∈ Lp(Ω) and v ∈ Lq(Ω) such that u∗ = u + λApu
and v∗ = v + λAqv. Therefore,

(u∗, v∗) = (u, v) + λ(Apu, Aqv) = (u, v) + λAp,q(u, v),

which implies that R(I + λAp,q) = Y.
To see that Ap,q is accretive, let ui ∈ Lp(Ω), vi ∈ Lq(Ω), i = 1, 2, then from Lemma 3.3, we

have

(Ap,q(u1, v1)−Ap,q(u2, v2), J((u1, v1)− (u2, v2))) =

= (Apu1 −Apu2, Jp(u1 − u2)) + (Aqv1 −Aqv2, Jq(v1 − v2)) ≥ 0.

This completes the proof.

Proposition 3.2. The duality mapping J : Y → Y ′ defined in Proposition 3.1 satisfies condi-
tion (2.1).

Proof. From Lemma 2.1, we know that both Jp and Jq satisfy condition (2.1). Thus, there
exists a function η1 : Lp(Ω) → [0,+∞) such that

‖Jpu− Jpv‖ ≤ η1(u− v) ∀u, v ∈ Lp(Ω);
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and there exists η2 : Lq(Ω) → [0,+∞) such that

‖Jqw − Jqz‖ ≤ η2(w − z) ∀w, z ∈ Lq(Ω).

Define η : Y → [0,+∞) as

η(a, b) = (η2
1(a) + η2

2(b))
1
2 ∀(a, b) ∈ Y.

Then for any (u,w), (v, z) ∈ Y, we have

‖J(u, w)− J(v, z)‖ = ‖(Jpu− Jpv, Jqw − Jqz)‖ =

= (‖Jpu− Jpv‖2 + ‖Jqw − Jqz‖2)
1
2 ≤ η((u− v, w − z)).

This completes the proof.

Lemma 3.4 [15]. Let X be a Banach space and J : X → X ′ be the duality mapping. Then,
X is strictly convex if and only if

x∗ ∈ Jx, y∗ ∈ Jy, x 6= y =⇒ (x− y, x∗ − y∗) > 0.

By using Lemma 3.4, we can easily get the following result.

Proposition 3.3. The dual space Y ′ of Y = Lp(Ω)× Lq(Ω) is strictly convex.

Lemma 3.5 [9, 12]. Both the mappings Ap : Lp(Ω) → 2Lp(Ω) and Aq : Lq(Ω) → 2Lq(Ω) have

a compact resolvent, for
2N

N + 1
< p, q ≤ 2 and N ≥ 1.

Proposition 3.4. The mapping Ap,q : Y → 2Y has a compact resolvent, for
2N

N + 1
< p, q ≤ 2

and N ≥ 1.

Proof. Since Ap,q is m-accretive, it suffices to prove that if (u, v)+λAp,q(u, v) = (f, h), λ >
> 0, and {(f, h)} is bounded in Lp(Ω) × Lq(Ω), then {(u, v)} is relatively compact in Lp(Ω) ×
×Lq(Ω).

In fact, from (u, v) + λAp,q(u, v) = (f, h), we have u + λApu = f and v + λAqv = h.
Since {(f, h)} is bounded in Lp(Ω) × Lq(Ω), it follows that {f} is bounded in Lp(Ω) and {h}
is bounded in Lq(Ω). Lemma 3.5 implies that {u} is relatively compact in Lp(Ω) and {v} is
relatively compact in Lq(Ω). Therefore, {(u, v)} is relatively compact in Lp(Ω)× Lq(Ω).

This completes the proof.

Remark 3.1 [9]. If βx ≡ 0 ∀x ∈ Γ, then ∂Φp(u) ≡ 0 ∀u ∈ W 1,p(Ω) and ∂Φq(v) ≡ 0
∀v ∈ W 1,q(Ω).

Lemma 3.6 [9, 12]. If βx ≡ 0 ∀x ∈ Γ, then we have

(i) {f ∈ Lp(Ω)|
∫
Ω fdx = 0} ⊂ R(Ap) for

2N

N + 1
< p < +∞ and N ≥ 1, and

(ii) {f ∈ Lq(Ω)|
∫
Ω fdx = 0} ⊂ R(Aq) for

2N

N + 1
< q < +∞ and N ≥ 1.
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Proposition 3.5. If βx ≡ 0 ∀x ∈ Γ, then we have(f1, f2) ∈ Lp(Ω)× Lq(Ω)

∣∣∣∣∣∣
∫
Ω

f1 dx = 0 =
∫
Ω

f2dx

 ⊂ R(Ap,q).

Proof. From the fact that (f1, f2) ∈ Lp(Ω) × Lq(Ω) with
∫
Ω f1dx = 0 =

∫
Ω f2dx, and

Lemma 3.6, we have f1 ∈ R(Ap) and f2 ∈ R(Aq). Then (f1, f2) ∈ R(Ap,q) from the definition
of Ap,q.

This completes the proof.

Definition 3.2 [1, 9, 12]. For t ∈ R and x ∈ Γ, let β0
x(t) ∈ βx(t) be the element with least

absolute value if βx(t) 6= ∅ and β0
x(t) = ±∞, where t > 0 or < 0, respectively, in case βx(t) =

= ∅. Finally, let β±(x) = limt→±∞ β0
x(t) (in the extended sense) for x ∈ Γ. Then, β±(x) define

measurable functions on Γ.

Lemma 3.7 [9, 12]. If f1(x) ∈ Lp(Ω) satisfies∫
Γ

β−(x)dΓ(x) <

∫
Ω

f1(x)dx <

∫
Γ

β+(x)dΓ(x), (3.1)

then f1 ∈ intR(Ap), for
2N

N + 1
< p < +∞ and N ≥ 1.

Similarly, if f2(x) ∈ Lq(Ω) satisfies (3.1), then, f2(x) ∈ intR(Aq), for
2N

N + 1
< q < +∞

and N ≥ 1.

From Lemma 3.7, we can easily get the following result.

Proposition 3.6. Let f1(x) ∈ Lp(Ω), f2(x) ∈ Lq(Ω) satisfy (3.1). Then, we have (f1, f2) ∈
∈ intR(Ap,q).

Proposition 3.7. Let (f1, f2) ∈ Lp(Ω) × Lq(Ω), (u, v) ∈ Lp(Ω) × Lq(Ω) and (f1, f2) ∈
∈ Ap,q(u, v). Then, we have the following:

(a) −div
(
|∇u|p−2∇u

)
+ ε|u|p−2u = f1(x) a.e. x ∈ Ω;

(b) −
〈
ϑ, |∇u|p−2∇u

〉
∈ βx(u(x)) a.e. x ∈ Γ;

(c) −div (|∇v|q−2∇v) + ε|v|q−2v = f2(x) a.e. x ∈ Ω;
(d) −

〈
ϑ, |∇v|q−2∇v

〉
∈ βx(v(x)) a.e. x ∈ Γ.

Proof. The proof is similar to that of Proposition 2.2 in [9].

Definition 3.3. Define g+(x) = lim infs,t→+∞ g(x, s, t) and g−(x) = lim sups,t→−∞ g(x, s, t).
Further, define a function g1 : Ω×R×R → R by

g1(x, s, t) =


(infa≥s,b≥t g(x, a, b)) ∧ (s− T (x)) ∧ (t− T (x)) ∀ s, t ≥ T (x),(
supa≤s,b≤t g(x, a, b)

)
∨ (s + T (x)) ∨ (t + T (x)) ∀ s, t ≤ −T (x),

0, for the rest of s and t.
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We note that for each x ∈ Ω, g1(x, s, t) is increasing in t if s ∈ R is fixed; and g1(x, s, t) is
also increasing in s if t ∈ R is fixed. Moreover, lims,t→±∞ g1(x, s, t) = g±(x) for x ∈ Ω. If we
define g2(x, s, t) = g(x, s, t) − g1(x, s, t), then g2(x, s, t)s ≥ 0 for |s| ≥ T (x), x ∈ Ω and for
fixed t ∈ R; and g2(x, s, t)t ≥ 0 for |t| ≥ T (x), x ∈ Ω and for fixed s ∈ R.

Lemma 3.8. The mapping g1 : Ω × R × R → R satisfies Carathéodory’s condition and the
functions g±(x) are measurable on Ω.

Proof. Let Q denote the set of rational numbers. For s, t ∈ R, g1(·, s, t) is measurable on Ω
since

{x | g1(x, s, t) < α} = {x | s ≤ T (x)} ∪ {x | t ≤ T (x)} ∪ {x | 0 < t− T (x) < α}∪

∪ {x | 0 < s− T (x) < α} ∪ {x | ∃ r1, r2 ∈ Q, r1 > s, r2 > t, g1(x, r1, r2) < α},

when α ≥ 0, and

{x | g1(x, s, t) < α} = {x | s + T (x) < α} ∩ {x | t ≤ T (x)} ∩ {x | 0 < t− T (x) < α}∩

∩ {x | ∃ r1, r2 ∈ Q, r1 < s, r2 < t, g1(x, r1, r2) < α},

when α ≤ 0.
Next, let x ∈ Ω be such that g(x, ·, ·) is continuous on R×R. We shall show that
(i) for fixed s ∈ R and ∀t ∈ R such that t > T (x), tn ↑ t, we have limn→∞ g1(x, s, tn) =

= g1(x, s, t);
(ii) for fixed s ∈ R and ∀t ∈ R such that t ≥ T (x), tn ↓ t, we have limn→∞ g1(x, s, tn) =

= g1(x, s, t).
In fact, to prove (i), we notice that g(x, s, t) satisfies Carathéodory’s condition and tn ↑ t,

then

lim
n→∞

g(x, s, tn) = g(x, s, t).

Therefore, for all ε > 0, there exists N1 such that for fixed s ∈ R,

g(x, s, b) > g(x, s, t)− ε

2
,

when tN1 ≤ b ≤ t and n ≥ N1.

From the definition of g1(x, s, t), we also know that there exists N2 such that for n ≥ N2,

|g1(x, s, tn)− g1(x, s, t) ∧ inf
tn≤b≤t

g(x, s, b)| ≤ ε

2
.

Therefore, if n ≥ max{N1, N2}, then

g1(x, s, tn) > g1(x, s, t)− ε,

or

0 < g1(x, s, t)− g1(x, s, tn) < ε.
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This implies that (i) is true.
Next, to show (ii), we note the fact that g1(x, s, t) is increasing in t if s ∈ R is fixed and

x ∈ Ω, it follows from tn ↓ t that for fixed s ∈ R and x ∈ Ω,

g1(x, s, t) ≤ g1(x, s, tn).

From the definition of g1(x, s, t), we also know that there exists N such that for all ε > 0 and
n ≥ N,

|g1(x, s, tn)− g1(x, s, t) ∧ inf
tn≤b≤t

g(x, s, b)| < ε.

Therefore,

g1(x, s, t) ≤ g1(x, s, tn) < g1(x, s, t) + ε,

for n ≥ N, which implies that (ii) is true.
Similarly, we can show that for fixed s ∈ R, ∀t ∈ R such that t < −T (x), g1(x, s, t) is still

continuous for t. Likewise, g1(x, s, t) is continuous for s > T (x) or s < −T (x). Combining the
previous results that for each x ∈ Ω, g1(x, s, t) is increasing in t for each fixed s ∈ R, and is also
increasing in s for each fixed t ∈ R, we see that g1(x, s, t) is continuous for (s, t) ∈ R×R.

Hence g1 satisfies Caratheodory’s conditions. The measurability of g±(x) on Ω is obvious
from its definition.

This completes the proof.

Remark 3.2. Compared to our previous work, a new technique has been used in the constructi-
on of the mapping g1 : Ω×R×R → R.

Based on the assumption of g(x, s, t) and Lemma 3.8, and using similar arguments as in the
proof of Proposition 3.5 in [1], we obtain the following two results.

Lemma 3.9. Define C
(1)
1 : Lp(Ω) → Lp(Ω) by

(C(1)
1 u)(x) = g1(x, u(x), v(x))

for fixed v(x) ∈ Lq(Ω), x ∈ Ω, and u ∈ Lp(Ω). C
(1)
1 is bounded, continuous and m-accretive.

Also C
(2)
1 : Lq(Ω) → Lq(Ω) defined by

(C(2)
1 v)(x) = g1(x, v(x), u(x))

for fixed u(x) ∈ Lp(Ω), x ∈ Ω and v ∈ Lq(Ω), is bounded, continuous and m-accretive.

Lemma 3.10. The mapping C
(1)
2 : Lp(Ω) → Lp(Ω) defined by

(C(1)
2 u)(x) = g2(x, u(x), v(x)) = g(x, u(x), v(x))− g1(x, u(x), v(x))

satisfies the condition

(C(1)
2 (u + y), Jpu) ≥ −C(y), (3.2)
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for any u, y ∈ Lp(Ω), where C(y) is a constant depending on y. The mapping C
(2)
2 : Lq(Ω) →

→ Lq(Ω) defined by (C(2)
2 v)(x) = g2(x, v(x), u(x)) = g(x, v(x), u(x)) − g1(x, v(x), u(x)) also

satisfies (3.2), i.e.,

(C(2)
2 (v + y), Jqv) ≥ −C ′(y)

for any v, y ∈ Lq(Ω), where C ′(y) is a constant depending on y.

Proposition 3.8. The mapping C1 : Lp(Ω)× Lq(Ω) → Lp(Ω)× Lq(Ω) defined by

C1(u, v) = (C(1)
1 u, C

(2)
1 v)

for (u, v) ∈ Lp(Ω)× Lq(Ω) is bounded, continuous and m-accretive.
The mapping C2 : Lp(Ω)× Lq(Ω) → Lp(Ω)× Lq(Ω) defined by

C2(u, v) = (C(1)
2 u, C

(2)
2 v)

for (u, v) ∈ Lp(Ω)× Lq(Ω) satisfies the condition

(C2((u, v) + (w, y)), J(u, v)) ≥ −C(w, y)

for any u, w ∈ Lp(Ω), v, y ∈ Lq(Ω), where C(w, y) is a constant depending on w and y, and J is
the duality mapping from Lp(Ω)× Lq(Ω) to Lp′(Ω)× Lq′(Ω) defined in Proposition 3.1.

Proof. The result follows from Lemmas 3.9 and 3.10.

Proposition 3.9. The mapping C1 : Lp(Ω)×Lq(Ω) → Lp(Ω)×Lq(Ω) defined in Proposition
3.8 satisfies condition (2.2).

Proof. By Lemma 2.2, we know that both C
(1)
1 : Lp(Ω) → Lp(Ω) and C

(2)
1 : Lq(Ω) → Lq(Ω)

satisfy Condition (2.1). Thus, in view of the definition of C1, it is not difficult to check that
C1 : Lp(Ω)× Lq(Ω) → Lp(Ω)× Lq(Ω) satisfies condition (2.2).

This completes the proof.

Theorem 3.1. Let (f1, f2) ∈ Lp(Ω)× Lq(Ω) satisfy∫
Γ

β−(x)dΓ(x) +
∫
Ω

g−(x)dx <

∫
Ω

f1(x)dx <

∫
Γ

β+(x)dΓ(x) +
∫
Ω

g+(x)dx (3.3)

and ∫
Γ

β−(x)dΓ(x) +
∫
Ω

g−(x)dx <

∫
Ω

f2(x)dx <

∫
Γ

β+(x)dΓ(x) +
∫
Ω

g+(x)dx. (3.4)

Then, system (1.6) has a solution in Lp(Ω)× Lq(Ω).

Proof. Let Ap,q be the m-accretive mapping as in Definition 3.1 and let Ci : Lp(Ω) ×
×Lq(Ω) → Lp(Ω)× Lq(Ω) be as in Proposition 3.8, i.e., (Ci(u, v))(x) = (gi(x, u(x), v(x)), gi(x,
v(x), u(x))) for x ∈ Ω and i = 1, 2. We need to prove that Ap,q + C1 is boundedly-inversely-
compact. In fact, we only need to show that if (w, y) ∈ Ap,q(u, v) + C1(u, v) with {(w, y)} and
{(u, v)} being bounded in Lp(Ω)×Lq(Ω), then {(u, v)} is relatively compact in Lp(Ω)×Lq(Ω).
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For this, we need to discuss the following two cases.

(i) Suppose
2N

N + 1
< p, q ≤ 2, for N ≥ 1. From above we see that (w, y) − C1(u, v) ∈

∈ Ap,q(u, v) with {(w, y) − C1(u, v)} and {(u, v)} bounded in Lp(Ω) × Lq(Ω) which gives that
{(u, v)} is relatively compact in Lp(Ω) × Lq(Ω) since Ap,q is m-accretive and has a compact
resolvent from Proposition 3.4.

(ii) Suppose p, q ≥ 2, or
2N

N + 1
< p ≤ 2 and q ≥ 2, or

2N

N + 1
< q ≤ 2 and p > 2. From

(w, y) ∈ Ap,q(u, v) + C1(u, v), it follows that w ∈ Apu + C
(1)
1 u and y ∈ Aqu + C

(2)
1 v. Since

{(u, v)} is bounded in Lp(Ω)× Lq(Ω), we have {u} is bounded in Lp(Ω) and {v} is bounded in
Lq(Ω). From the proof of Theorem 3.1 in [12], we know that {u} is relatively compact in Lp(Ω)
and {v} is relatively compact in Lq(Ω), therefore {(u, v)} is relatively compact in Lp(Ω)×Lq(Ω).

Noting Propositions 3.1, 3.2, 3.3, 3.8 and 3.9, it is easy to show that all the conditions of
Theorem 2.1 are satisfied. Further, from Propositions 3.5 and 3.6, we have (f1, f2) ∈ int [R(Ap,q)+
+R(C1)]. Therefore, Proposition 3.7 implies that Theorem 3.1 holds.

Remark 3.3. If p ≡ q, our result reduces to the work of [8 – 12]; if moreover, ε1, ε2 ≡ 0, our
results reduce to those in [3 – 7].

Remark 3.4. The nonlinear elliptic system (1.6) can be extended to the following general
form:

− div
[
(C(x) + |∇u|2)

p−2
2 ∇u

]
+ ε1|u|p−2u + g(x, u(x), v(x)) = f1(x) a.e. in Ω,

− div
[
(C(x) + |∇v|2)

q−2
2 ∇v

]
+ ε2|v|q−2v + g(x, v(x), u(x)) = f2(x) a.e. in Ω,

(3.5)

−
〈
ϑ, (C(x) + |∇u|2)

p−2
2 ∇u

〉
∈ βx(u(x)) a.e. on Γ,

−
〈
ϑ, (C(x) + |∇v|2)

q−2
2 ∇v

〉
∈ βx(v(x)) a.e. on Γ.

By following the proof of this paper and using the results of paper [12], we can obtain the result
that (3.5) has a solution (u, v) ∈ Lp(Ω)× Lq(Ω) if both (3.3) and (3.4) are satisfied.
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