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Using perturbation results on sums of ranges of nonlinear accretive mappings of Calvert and Gupta,
we present some abstract results about the existence of solutions of nonlinear Neumann elliptic systems
involving (p, q)-Laplacian. The systems discussed in this paper and the method used extend and comple-
ment some of the previous work.

3 sukopucmannam peayavmamis, ompumanux Kaseepmom ma Iynmoro, npo 30ypennsa cym oo6pa3sie He-
AIHIUHUX AKPEMUBHUX 8I000PaNCceHb, HABeOeHO 0eAKl AGCMPAKMHI Pe3yAbmami npo ICHYB8AHHA PO38’A3-
Ki6 HeAlHIUHUX eainmuynux cucmem Heiimana, ujo micmameo (p, q)-aanaacian. Pozeasnymi cucmemu ma
BUKOPUCMAHL MeNOOU NPOO0BHCYIOMb Ma OONOBHIOIOMb Pe3yAbmamiu nonepeoHix pooim.

1. Introduction. By using perturbation results on the ranges of m-accretive mappings, Calvert
and Gupta [1] and Gupta and Hess [2] provided sufficient conditions so that some nonlinear
boundary-value problems involving the Laplacian operator have solutions in L”((2). Inspired by
their ideas, we obtained a sufficient condition in [3] so that the zero boundary-value problem

—Apu+g(z,u(z)) = f(xr) ae. in Q,
(L1)

ou
—— =0 .€. T
o a.e. on
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has solutions in LP(2), where 2 < p < +o0. In [4], we studied (1.1) in a more general space
LP(2), wh
(€2), where Nl

In [5], we showed that the nonlinear boundary-value problem

< p < +ooand N > 1, and the restrictions are weaker than those in [3].

—Apu+g(z,u(x)) = f(x) ae. in Q,
(1.2)

— (0, |VuP~*Vu) € By(u(z)) ae on T

has solutions in LP(2), where 2 < p < +oo0. We further showed that (1.2) has solutions in
L*(Q), where max{N,2} < p < s < +oocand N > 1, see [6]. In [7], we used the ideas of [6]

and continued our studies of (1.2) in the Hilbert space L?(f2), where < p < +oo for

N+1
N > 1. Recently, we examined the following boundary-value problem:

— Apu+ |[uP?u+ g(x,u(z)) = f(z) ae in
(1.3)

— (9, |VulP7?>Vu) € By(u(z)) ae on T

which in addition contains a perturbation term |u|P~2u. In [8], we proved that (1.3) has solutions
in L*(§2), where 2N
’ N+1

<p<2for N >1and2 < s < +oo. Further, in [9] we showed that

(1.3) has solutions in LP({2), where

our work to the following problem

> 1.
N1 < p < +oofor N > 1.In[10] and [11], we extended

p—2
2

—div [(C(az) + |Vu\2) Vu] + [ulP~2u + g(z,u(z)) = f(z) ae in Q,
(1.4)
- <19, (C(z) + yvu|2)”%2vu> € Bo(u(z)) ae. on .

In [10], we established that (1.4) has solutions in LP(2), where 2 < p < +oo; and in [11]
we proved that (1.4) has solutions in L*(2), where max{N,2} < p < s < +oo. Clearly, if
C(z) = 0, then equation (1.4) reduces to contain only p-Laplacian operators.

As a summary of our previous work, in [12] we studied the following problem:

_ div [(C(x)+ \WF)LSQVU} Felult%u + g(z,u(z)) = f(z) ae. in Q
(15)
{9, (C(@) + IVuP)'= vu> € Bo(u(z)) ae on T,

where 0 < C(z) € LP(Q), € is a non-negative constant and v} denotes the exterior normal
derivative of I". We showed that (1.5) has solutions in L*(£2) under some conditions, where

N
N+1<p§s<—|—oo,1§q<+ooifp2N,and1§q§N_ppifp<N,forN21.
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APPLICATIONS OF PERTURBATIONS ON ACCRETIVE MAPPINGS... 197

In this paper, we shall extend our study to the case of nonlinear Neumann elliptic systems.
Specifically, by using perturbations of accretive mappings, we shall find a sufficient condition
for the existence of a solution in LP(2) x L7(Q2) of the following system:

— A+ erufu+ gz, u(@), v(@) = filz) ae in L,

— A+ ealv|T %0 + g(z,v(z),u(x)) = folr) ae. in Q,
(1.6)

— (0, |VuP"*Vu) € B,(u(z)) ae. on T,
—(¥,|Vv|T2Vv) € By(v(z)) ae. on T.

Here, Q is a bounded conical domain of the Euclidean space RY with its boundary I' € C*
(see [5]), fi(z) € LP(Q) and fo(x) € L%(Q) are given functions, ¢; and e are non-negative
constants, and ¥ denotes the exterior normal derivative of I". We shall assume that the Green’s
formula is available.

2. Preliminaries. Let X be a real Banach space with a strictly convex dual space X’. We shall
use ,,—” and ,,w — lim” to denote strong and weak convergences, respectively. For any subset
G of X, we denote by int G its interior and G its closure, respectively. A mapping 7 : X — X’
is said to be hemi-continuous on X if w — }g% T(x+ty) = Txforany z,y € X.

Let J denote the duality mapping from X into 2% defined by

J(z) =A{f € X": (x, f) = llz[lll£], 1/l = [z} Vz € X,

where (-,-) denotes the generalized duality pairing between X and X'. Since X' is strictly
convex, J is a single-valued mapping.

A multivalued mapping A : X — 2% is said to be accretive if (vy — v, J(u1 — uz)) > 0,
for any u; € D(A) and v; € Au;, i = 1,2. An accretive mapping A is said to be m-accretive if
R(I + MA) = X for some A > 0. We say that A : X — 2% is boundedly-inversely-compact if,
for any pair of bounded subsets G' and G’ of X, the subset G A~(G’) is relatively compact
in X.

A multivalued operator B : X — 2X" s said to be monotone if its graph G(B) is a
monotone subset of X x X’ in the sense that (u1 — ug, w; — wy) > 0 for any [u;, w;] € G(B),
i = 1,2. A monotone operator B is said to be maximal monotone if G(B) is maximal among
all monotone subsets of X x X' in the sense of inclusion.

Definition 2.1 [1]. The duality mapping J : X — X' is said to satisfy condition (2.1) if there
exists a functionn : X — [0, +00) such that for u,v € X,

[Ju— Jo|| < n(u—v). (2.1)

Lemma 2.1 [1]. Let Q be a bounded domain in RN and let J, : LP(Q) — LP(Q) denote
the duality mapping. Then, J, satisfies condition (2.1). Moreover, for 2 < p < +oo, Jyu =
= |uftsgnullulli P Vu € LP(Q); for 1 < p < 2, Jou = |ulP7lsgnu Vu € LP(Q), where

1
-+ =1
p p
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Definition 2.2 [1]. Let A : X — 2% be an accretive mapping and J : X — X' be a duality
mapping. We say that A satisfies condition (2.2) if, for any f € R(A) and a € D(A), there exists
a constant C'(a, f) such that, for any uw € D(A),v € Au,

(v—f,J(u—a)) > C(a, f). (2.2)

Lemma 2.2 [1]. Let Q be a bounded domain in RN and g : Q x R — R be a function
satisfying Carathéodory’s conditions (see [13]) such that

(i) g(x,-) is monotonically increasing on R;

(ii) the mapping u € LP(Q)) — g(x,u(x)) € LP(Q), 1 < p < +o0, is well defined.

Then, the mapping B : LP(Q)) — LP(Q) defined by (Bu)(z) = g(z,u(z)), for any z € Q,
satisfies condition (2.2).

Theorem 2.1 [1]. Let X be a real Banach space with a strictly convex dual X'. Let J : X —
— X' be a duality mapping on X satisfying condition (2.1). Let A, C, : X — 2% be accretive
mappings such that

(i) either both A and C, satisfy condition (2.2), or D(A) C D(C1) and C; satisfies conditi-
on (2.2),

(ii) A + C4 is m-accretive and boundedly-inversely-compact.

If Cy : X — X is a bounded continuous mapping such that, for any y € X, there is a
constant C(y) satisfying (Ca(u + y), Ju) > —C(y) for any u € X, then

(a) [R(A) + R(C1)] C R(A+ Cy + Cy);

(b) int [R(A) + R(C1)] C int R(A + Cy + C3).

We also require the following basic results for the product space, which can be found in [14].

The product space of Banach spaces X; and X5, which is denoted by X; x X5, is a set of all
(ordered) pairs (x1, x2) of elements where x; € X; and 22 € Xo. X; x X5 is a vector space if
the linear operation is defined by

ki(z1,y1) + ka(z2,y2) = (k1z1 + kowa, K1y + koy2).

Furthermore, X; x X5 becomes a normed space if the norm is defined by

1
I(z1, 22)ll = (laa]® + llz2l*)>.

Other choices of the norm are possible, we employ the above norm mainly because it ensures
that (X; x X3)' = X| x X/, where X| and X} are dual spaces of X; and X5, respectively.
(X1xX39)" = X x X/ means the following: (i) each element (f, g) € X| x X} defines an element
F € (X; x X3) by ((z1,22), F) = (21, f) + (x2, g) and, conversely, each F' € (X; x X3) is
expressed in this form by a unique (f,g) € X; x XJ; (ii) the norm of the above F' € (X7 x Xo)’
is exactly equal to [|(£.9)[| = (I/1% + llg]*)z.

It is easily seen that X; x X5 is a Banach space since both X; and X5 are Banach spaces.

3. Main results. In this paper, unless otherwise stated, we shall assume that

<p< d
N1 “p st and e

< q < +00,
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APPLICATIONS OF PERTURBATIONS ON ACCRETIVE MAPPINGS... 199

where N > 1. We shall use || - ||, and || - ||, to denote the norms of spaces LP({2) and L4(f2),
respectively.

Let ¢ : I' x R — R be a given function such that, foreachz € I', ¢, = ¢(z,) : R — R
is a proper, convex and lower-semi-continuous function with ¢,(0) = 0. Let /3, be the subdi-
fferential of ¢, i.e., B, = Op,. Suppose that 0 € [,(0) and for each ¢t € R, the function
r € T — (I +)\B;)"1(t) € Ris measurable for A > 0.

Suppose that g : © x R x R — R is a given function satisfying Carathéodory’s conditions
such that for any 1 < p < 400, the mapping u(x) € LP(Q) — g(z,u(z),v(x)) € LP(Q) is well-
defined for all fixed v(x) € L%(Q2) and for any 1 < ¢ < 400, the mapping v(z) € L4(Q) —
— g(z,v(x),u(r)) € L1(Q) is well-defined for all fixed u(xz) € LP(2). We shall also assume
that there exists a function 0 < T'(z) € L™"®9(Q) such that g(z, s, t)t > 0, for [t| > T(z),
x € Q, and for fixed number s € R; and g(z,s,t)s > 0, for |s| > T'(z), z € Q, and for fixed
number ¢t € R.

Our main idea to tackle (1.6) is to apply Theorem 2.1, similar arguments are also used in
[3-12].

To begin, let Y denote the product of two spaces LP(2) and L%(Q2), i.e., Y = LP(Q) x
xL4(Q) = {(u,v) : u € LP(Q),v € LI(N)}. The space Y will be endowed with the norm

1w, ) = 3/ llully +llollg,  for  (u,v) € LP(Q2) x LU(€).

The dual space of Y will be denoted by Y.
We also use (-, -) and | - | to denote the Euclidean inner-product and Euclidean norm in RY.

Lemma 3.1 [9, 12]. Define the mapping B, : W1P(Q) — (W1P(Q)) by

(w, Bpu) = /(]Vu\p_2Vu, Vw) dw—i—s/]u(m)]f”_Qu(aﬂ)w(x) dx
Q Q

for any u,w € W1P(Q). Then, B, is everywhere defined, monotone, hemi-continuous and coer-
cive.

Similarly, the mapping B, : W14(Q) — (W19(Q))’ defined by

= 0|12V, V) dz ()9 20(2) w(z) dz
<w,qu>—Q/<|V| Vo, V) d +e/9|<>| (2) w(z) d

for any v, w € WhH4(Q), is also everywhere defined, monotone, hemi-continuous and coercive.

Lemma 3.2 [9]. The mapping ®, : W'P(Q) — R defined by ®,(u) = [; (u|r(z))dl(z)
for any u € WP(Q), is proper, convex and lower-semi-continuous on W1»(Q).

Similarly, the mapping ®, : W4(Q) — R defined by ®,(v) = [, ¢ (v|r(z))dI(z), for any
v € WhH4(Q), is also a proper, convex and lower-semi-continuous on W4().

Lemma 3.3 [9, 12]. Define the mapping A, : LP(Q2) — 2 as follows:

D(Ap) = {u € LP(Q) | there exists an f € LP(Q)) such that [ € Byu+ 0®,(u)}.

ISSN 1562-3076. Heainitini koausarnnsa, 2009, m. 12, N2 2



200 Li WEI, R. P AGARWAL, P. J. Y. WONG

Foru € D(Ap), weset Ayu = {f € LP(Q)| f € Bpu+ 0®y(u)}. Then A, is m-accretive.
Define the mapping A, : LY(Q}) — 2L g5 follows:

D(Ay) = {v e LYQ) | there exists an g € L) such that g € Byv+ 0®4(v)}.

Forv € D(Ay),weset Agv = {g € LU(Q) | g € Byv+ 0P4(v)}. Then Ay is also m-accretive.
Definition 3.1. Define the mapping A, , : Y — 2Y as

Apq(u,v) = (Apu, Agu)  for (u,v) € Y.

Proposition 3.1. The mapping A, , : Y — 2 is m-accretive.
/ 1 1
Proof. Let J, denote the duality mapping from LP(Q2) to L? (§2), where — + — = 1, and let
p D

/ 1 1
Jq denote the duality mapping from L4(Q2) to LY (§2), where — + i 1.

q
LetJ :Y — Y'and J(u,v) = (Jpu, Jyv) for (u,v) € Y. We shall show that J is the duality
mapping from Y to Y. For this, let (u,v) € Y, then

((u,0), J(u,0)) = ((u,0), (Jpu, Jgv)) = (u, Jpu) + (v, Jgv) = [lullz + o[ = [[(u,v)]>.
Moreover, we have
1 (w, 0)[[> = (| Jpul® + [|Jgoll? = l[ulls + oll7 = [[(u, 0)]]%.

Thus, J is the duality mapping from Y to Y.

Next, we shall show that A, , is m-accretive. For this, let v* € LP(Q) and v* € L9(2), then
it follows from Lemma 3.3 that there exist u € LP(2) and v € L9(Q2) such that u* = u + AApu
and v* = v + AA4v. Therefore,

(u*,v*) = (u,v) + AMApu, Agv) = (u,v) + A, 4(u,v),

which implies that R(/ + AA,,) = Y.
To see that A, , is accretive, let u; € LP(Q), v; € L4(2), i = 1,2, then from Lemma 3.3, we
have

(Apq(ur,v1) — Ap g(uz,v2), J((u1,v1) — (u2,v2))) =
= (Apul — Apuz, Jp(ul —ug)) + (Aqvl — Aquo, Jq(vl — 7)) > 0.

This completes the proof.

Proposition 3.2. The duality mapping J : Y — Y’ defined in Proposition 3.1 satisfies condi-
tion (2.1).

Proof. From Lemma 2.1, we know that both J, and J, satisfy condition (2.1). Thus, there
exists a function 7y : LP(2) — [0, +00) such that

| Jpu — Jpvl| < m(u—wv) Vu,v € LP(Q);

ISSN 1562-3076. Heainitini koausarnnsa, 2009, m. 12, N2 2
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and there exists 72 : LY(€2) — [0, 4+00) such that
| Jqw — Jgz|| < mo(w —2) Vw,z € LI(Q).

Definen : Y — [0, +00) as

D=

n(a,b) = (ni(a) +m3(b))2 ¥(a,b) € Y.

Then for any (u,w), (v,2) € Y, we have
1w, w) = (v, 2)[| = [[(Jpu = v, Jqw = Jg2)|| =
1
= (|| Jpu — Jpo|* + || Jgw — Jz||3)2 < n((u —v,w — 2)).

This completes the proof.
Lemma 3.4 [15]. Let X be a Banach space and J : X — X' be the duality mapping. Then,
X is strictly convex if and only if

e dJr, yeJy xz#y—=— (x—y,z"—y") >0.

By using Lemma 3.4, we can easily get the following result.

Proposition 3.3. The dual space Y' of Y = LP(Q) x L4(Q) is strictly convex.

Lemma 3.5 [9, 12]. Both the mappings A, : LP(Q) — 21" and A, : 19(Q) — 2°(Y) have
<p,qg<2and N > 1.

a compact resolvent, or
P for N1

Proposition 3.4. The mapping A, , : Y — 2Y has a compact resolvent, for
and N > 1.

2N
N1 SPes 2

Proof. Since A, , is m-accretive, it suffices to prove that if (u,v) + AAp 4(u,v) = (f,h), A >
> 0, and {(f,h)} is bounded in LP(§2) x L4(2), then {(u,v)} is relatively compact in LP(Q2) x
xL1(Q).

In fact, from (u,v) + AA, 4(u,v) = (f,h), we have u + MApu = f and v + A\Av = h.
Since {(f, )} is bounded in LP(Q2) x L%(Q), it follows that {f} is bounded in LP(Q2) and {h}
is bounded in L?(Q2). Lemma 3.5 implies that {u} is relatively compact in LP(2) and {v} is
relatively compact in L?(2). Therefore, {(u, v)} is relatively compact in LP(Q) x L%(1).

This completes the proof.

Remark 3.1 [9]. If 3, = 0Vz € T, then 0%,(u) = 0Vu € WP(Q) and 99,(v) = 0
Yu € Whi(Q).

Lemma 3.6 [9, 12]. If 5, = 0Vx € T, then we have
2N
() {f € LP(Q)| Jo fdz = 0} C R(A,) for

N +1
(i) {f € LUQ)| Jo fdx = 0} C R(A) for

<p<4ocand N > 1,and
2N
N +1

<qg< +ooand N > 1.

ISSN 1562-3076. Heainitini koausarnnsa, 2009, m. 12, N2 2



202 Li WEI, R. P AGARWAL, P. J. Y. WONG

Proposition 3.5. If 3, = 0Vx € T, then we have

/flde/fgdx} b

Proof. From the fact that (fy, f2) € LP(Q) x L9(Q) with [, fide = 0 = [, fodz, and
Lemma 3.6, we have f; € R(A4,) and fo € R(A,). Then (fi, f2) € R(Ap,) from the definition
of A, 4.

This completes the proof.

Definition 3.2 [1,9, 12]. Fort € Rand x € T, let 30(t) € B.(t) be the element with least
absolute value if 3,(t) # @ and 30(t) = +oo, wheret > 0 or < 0, respectively, in case (3,(t) =
= @. Finally, let B+ (x) = lim;_, 4o, B2(t) (in the extended sense) for x € T. Then, B3+ (z) define
measurable functions on T'.

Lemma 3.7 [9, 12]. If fi(x) € LP(R)) satisfies
/@ 2)dl (x /f1 \dz </ \ (2)dT(z), (3.1)

then f1 € int R(A,), for

{(fl,fQ) S Lp >< Lq

> 1.
N+l <p<-+4ooand N > 1
Similarly, if fo(x) € L9(Q) satisfies (3.1), then, fo(x) € int R(A,), for

and N > 1.
From Lemma 3.7, we can easily get the following result.

Proposition 3.6. Let fi1(x) € LP(Y), fa(z) € LUN) satisfy (3.1). Then, we have (f1, f2) €
€ int R(A, ).

Proposition 3.7. Let (f1, f2) € LP(Q) x LYQ), (u,v) € LP(Q) x LYN) and (f1, f2) €
€ A, 4(u,v). Then, we have the following:

(a) —div (|VulP~2Vu) + elulP~2u = fi(z) a.e. x €

(b) — (0, |VulP~2Vu) € By(u(x)) ae z €T}

(c) —div (|Vv|972Vv) + g|v|972v = fo(x) a.e. v €

(d) — (9, |Vv|[12Vv) € By(v(z)) a.e.z € T.

Proof. The proof is similar to that of Proposition 2.2 in [9].

< <
Nyl sS4t

Definition 3.3. Define g, (z) = liminfs; .o g(, s,t) and g_(x) = limsup,, ,_, g(z,s,1).
Further, define a function g1 : @ x RX R — R by

(infa>sp>eg(x,a,0)) A (s =T (x)) ANt —=T(x)) Vs, t>T(x),
gi1(@,5,t) = ¢ (supgesper 9(x,a,0)) V (s + T(2)) V (t+T(2)) Vs, t < —T(x),

0, for the rest of s and t.
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We note that for each =z € Q, gi(x, s,t) is increasing in t if s € R is fixed; and g1 (=, s, ) is
also increasing in s if ¢ € R is fixed. Moreover, limg ;.10 g1(2, s,t) = g+(x) for x € Q. If we
define go(x,s,t) = g(z,s,t) — gi(x, s,t), then go(x,s,t)s > 0 for |s| > T(z), x € Q and for
fixed t € R;and ga(z,s,t)t > 0for |t| > T(x),x € Q and for fixed s € R.

Lemma 3.8. The mapping g1 : Q0 x R x R — R satisfies Carathéodory’s condition and the
functions g4 (x) are measurable on ).

Proof. Let () denote the set of rational numbers. For s,t € R, ¢1(, s,t) is measurable on 2
since

{z|gi(z,s8,t) <a}={z|s <T(x)}U{z |t <T(x)}U{z|0<t—T(x) < a}U

U{z|0<s—T(z) <alU{x|Ir,re € @, > s, ro >t, gi(x,r,r2) < a},
when o > 0, and

{z|gi(z,s,t) <a}={z|s+T(x) <a}n{z|t <T(x)}n{zx|0<t-—T(x) < a}n
ﬂ{x | El?”l,’l“g € Qa <8, 12 < tv gl(x,rlaTQ) < O[},

when o < 0.

Next, let x € €2 be such that g(z, -, -) is continuous on R x R. We shall show that

(i) for fixed s € Rand Vt € Rsuch thatt > T(z), t, T t, we have lim,_,o g1(x, s,t,) =
=0 (CL’, S, t)?

(ii) for fixed s € Rand Vt € Rsuchthatt > T'(z), t, | t, we have lim,, o g1(z, s,tn) =
=01 (1’, S, t)

In fact, to prove (i), we notice that g(z, s, t) satisfies Carathéodory’s condition and ¢,, T ¢,
then

lim g(z,s,tn) = g(a, s,t).

n—oo

Therefore, for all ¢ > 0, there exists N7 such that for fixed s € R,

g(x787b) > g(l"svt) - %)

whenty, <b<tandn > Nj.
From the definition of g;(z, s, t), we also know that there exists Ny such that for n > No,

DO ™

— inf <
|gl($787tn) gl(xasat)/\tnlgnbgtg(xasab)‘ —=
Therefore, if n > max{Ny, N2}, then

g1(z, s, tn) > gi1(z,s,t) — e,

or
0 < gi(z,s,t) — g1(z,s,tp) < €.
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This implies that (i) is true.
Next, to show (ii), we note the fact that g;(x, s, t) is increasing in ¢ if s € R is fixed and
x € Q, it follows from ¢,, | ¢ that for fixed s € Rand x € €,

g1($,8,t) < gl(x787tn)'
From the definition of ¢;(z, s,t), we also know that there exists NV such that for all ¢ > 0 and
n > N,
tn) — t) A inf b .
|gl($787 n) gl(x787 ) tnlélbftg(x’(s’ )| <e
Therefore,
g1(z,s,t) < gi(x,s,tn) < q1(z,s,t) + ¢,

for n > N, which implies that (ii) is true.

Similarly, we can show that for fixed s € R, Vt € R such thatt < —T'(z), g1(z, s,t) is still
continuous for ¢. Likewise, gi(z, s, t) is continuous for s > T'(x) or s < —T'(z). Combining the
previous results that for each © € 2, g1 (x, s, t) is increasing in ¢ for each fixed s € R, and is also
increasing in s for each fixed ¢t € R, we see that g (z, s,t) is continuous for (s,t) € R x R.

Hence g; satisfies Caratheodory’s conditions. The measurability of g+(x) on € is obvious
from its definition.

This completes the proof.

Remark 3.2. Compared to our previous work, a new technique has been used in the constructi-
on of the mapping g; : 2 x R X R — R.

Based on the assumption of g(z, s,t) and Lemma 3.8, and using similar arguments as in the
proof of Proposition 3.5 in [1], we obtain the following two results.

Lemma 3.9. Define Cfl) : LP(Q)) — LP(Q) by

(CDu) (@) = gi(z, ul@), v(x))

for fixed v(x) € LY(Q), z € Q,and u € LP(Q). Cfl) is bounded, continuous and m-accretive.
Also C? 1 L9(Q) — LI(Q) defined by

(CPv)(2) = g1 (x, v(x), u(z))

for fixed u(x) € LP(Q), x € Qand v € LI(RY), is bounded, continuous and m-accretive.

Lemma 3.10. The mapping Cél) : LP(Q)) — LP(Q) defined by

(C5"u) (@) = ga(a, u(@), v(@)) = gla, u(@),v(x)) = g1 (@, ulw), V()
satisfies the condition

(OS5 (u+y), Jyu) = ~C(y), (32)
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for any u,y € LP(QQ), where C(y) is a constant depending on y. The mapping 052) : LY(Q) —
— LU(Q) defined by (C5v)(x) = ga(a,v(@), ux)) = (e, v(@),u(x)) - (2, v(z), u(x)) also
satisfies (3.2), i.e.,

(C57 (v + ). Jyv) = =C'(y)
forany v,y € L1(Q), where C'(y) is a constant depending on y.
Proposition 3.8. The mapping Cy : LP(Q2) x L1(Q2) — LP(Q) x L9(2) defined by

Cy(u,v) = (C’{l)u, C}Q)v)

for (u,v) € LP(Q) x L) is bounded, continuous and m-accretive.
The mapping Cy : LP(Q2) x L1(Q2) — LP(Q) x L1(QY) defined by

Co(u,v) = (C’él)u, CSQ)U)
for (u,v) € LP(Q) x LY(Q) satisfies the condition
(Co((u,v) + (w,y)), J(u,v)) = =C(w,y)
forany u,w € LP(Q), v,y € L1(Q), where C(u/}, y)isa constant depending on w and y, and J is
the duality mapping from LP(Q) x L1(2) to LP (Q) x LY () defined in Proposition 3.1.

Proof. The result follows from Lemmas 3.9 and 3.10.

Proposition 3.9. The mapping Cy : LP(Q) x L1(Q2) — LP(Q) x L1(QY) defined in Proposition
3.8 satisfies condition (2.2).

Proof. By Lemma 2.2, we know that both C’fl) : LP(Q2) — LP(Q) and C£2) : L9(Q2) — LI(Q)
satisfy Condition (2.1). Thus, in view of the definition of (1, it is not difficult to check that
Cy: LP(QQ) x LY(Q2) — LP(Q) x L9(Q) satisfies condition (2.2).

This completes the proof.

Theorem 3.1. Let (f1, fo) € LP(Q) x L1(Q) satisfy
[o-@ir@)+ [o-@ds < [ @i < [su@are + [o@ds 63
N Q Q N Q

and

/6_(x)dI‘(:L‘) +/g_(x)d:1: < /fg(x)dx < /B+(x)dF(a:)+/g+(x)dx. (3.4)
r Q Q r Q

Then, system (1.6) has a solution in LP(§2) x L1(2).

Proof. Let A, , be the m-accretive mapping as in Definition 3.1 and let C; : LP(Q) x
xL4(Q2) — LP(Q) x L1(Q2) be as in Proposition 3.8, i.e., (C;(u,v))(x) = (gi(x,u(x),v(x)), gi(z,
v(z),u(z))) forz € Qand i = 1,2. We need to prove that 4, , + C; is boundedly-inversely-
compact. In fact, we only need to show that if (w,y) € A, 4(u,v) + C1(u,v) with {(w,y)} and
{(u,v)} being bounded in LP(Q2) x L(2), then {(u,v)} is relatively compact in LP(2) x L(2).
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For this, we need to discuss the following two cases.

2N
(i) Suppose N1 < P4 < 2, for N > 1. From above we see that (w,y) — Cy(u,v) €

€ Ay 4(u,v) with {(w,y) — Ci(u,v)} and {(u,v)} bounded in LP(£2) x L4(€2) which gives that
{(u,v)} is relatively compact in LP(2) x L4(2) since A, , is m-accretive and has a compact
resolvent from Proposition 3.4.

< 2andgq > 2
N+1<p_ and ¢ > ’OrN—|—1

(w,y) € Apq(u,v) + Ci(u,v), it follows that w € A,u + C’fl)u andy € Aju+ C’fQ)v. Since
{(u,v)} is bounded in LP(Q) x L(2), we have {u} is bounded in LP(2) and {v} is bounded in
L%(Q2). From the proof of Theorem 3.1 in [12], we know that {u} is relatively compact in LP(Q2)
and {v} is relatively compact in L4(f2), therefore {(u, v)} is relatively compact in LP(£2) x L4(£2).

Noting Propositions 3.1, 3.2, 3.3, 3.8 and 3.9, it is easy to show that all the conditions of
Theorem 2.1 are satisfied. Further, from Propositions 3.5 and 3.6, we have (f1, f2) € int [R(Ap )+
+R(C1)]. Therefore, Proposition 3.7 implies that Theorem 3.1 holds.

ii) Suppose p,q > 2, or < q < 2andp > 2. From
PP

Remark 3.3. If p = ¢, our result reduces to the work of [8—12]; if moreover, £1, e5 = 0, our
results reduce to those in [3-7].

Remark 3.4. The nonlinear elliptic system (1.6) can be extended to the following general
form:

— div [( (z) + |Vu[?) 7 Vu} +e1ulP?u + gz, u(x),v(x)) = fi(z) ae. in Q,

—div [( R VU:| + e9]v|7 20 + g(z,v(z), u(z)) = folz) ae. in Q,
(3.5)

—<19( (z) + |Vul?) >€/8x u(z)) ae. on T,
— <19, (C(z) + ]Vv]Q)%Vv> € Br(v(x)) ae. on T.

By following the proof of this paper and using the results of paper [12], we can obtain the result
that (3.5) has a solution (u,v) € LP(Q) x L4(2) if both (3.3) and (3.4) are satisfied.
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