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The difference equation

∆2u(k) +
m∑

l=1

pl(k)u(τl(k)) = 0,

is considered, where m ∈ N, the functions pl : N → R+, τl : N → N, lim
k→+∞

τl(k) = +∞, l = 1, . . . ,m,

are defined on the set of natural numbers and the difference operator is defined by ∆u(k) = u(k+1)−u(k),
∆2 = ∆ ◦∆.

Necessary conditions are obtained for the above equation to have a positive solution. Besides, osci-
llation criteria of a new type are obtained generalizing some earlier known results.

Розглянуто рiзницеве рiвняння

∆2u(k) +
m∑

l=1

pl(k)u(τl(k)) = 0,

де m ∈ N, функцiї pl : N → R+, τl : N → N, lim
k→+∞

τl(k) = +∞, l = 1, . . . ,m, визначено на

множинi натуральних чисел, а рiзницевий оператор ∆u(k) = u(k + 1)− u(k), ∆2 = ∆ ◦∆.
Встановлено необхiднi умови для того, щоб це рiвняння мало додатний розв’язок. Також

отримано критерiї нового типу, якi узагальнюють попереднi результати, для iснування коли-
вання.

1. Introduction. Consider the difference equation

∆2u(k) +
m∑

l=1

pl(k)u(τl(k)) = 0, (1.1)
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where m ≥ 1 is a natural number, pj : N → R+, τj : N → N, j = 1, . . . ,m, are functions
defined on the set of natural numbersN = {1, 2, . . . },∆u(k) = u(k+1)−u(k) and ∆2 = ∆◦∆.
Everywhere below it is assumed that

lim
k→+∞

τl(k) = +∞, l = 1, . . . ,m, (1.2)

sup
{
pl(i) : i ≥ k

}
> 0 for k ∈ N, l = 1, . . . ,m. (1.3)

For each n ∈ N denote Nn = {n, n+ 1, . . .}.

Definition 1.1. Let n ∈ N. We will call a function u : N → R a proper solution of the
equation (1.1) on the set Nn, if it satisfies (1.1) on Nn and sup{|u(i)| : i ≥ k} > 0 for any
k ∈ Nn.

Definition 1.2. We say that a proper solution u : Nn → R of the equation (1.1) is oscillatory
if for any k ∈ Nn there are n1, n2 ∈ Nk such that u(n1)u(n2) ≤ 0. Otherwise the solution is
called nonoscillatory.

In Section 3 of the presented paper a necessary condition for existence of a positive solution
of the equation (1.1) is obtained. Using that result, in Section 4 sufficient conditions for osci-
llation of all solutions of (1.1) are given which generalizes the results presented in [1], where

lim inf
k→+∞

τl(k)
k

> 0, l = 1, . . . ,m, was an essential assumption. In the given paper this restriction,

in general, is removed.
The problem of oscillation of solutions of the equation of the type (1.1) has been studied

by several authors, see e.g. [2 – 10] and the references therein. Everywhere below it is assumed
that the conditions

+∞∑
k=1

k

(
m∑

l=1

pl(k)

)
= +∞, (1.4)

and
+∞∑
k=1

(
m∑

l=1

τl(k) pl(k)

)
= +∞ (1.5)

are fulfilled.
Using the fixed point principle, one can easily show that the conditions (1.4) and (1.5) are

necessary for oscillation of all solutions of the equation (1.1) [1].

2. Some auxiliary statements.

Lemma 2.1. Let {ai}+∞
i=1 , {bi}

+∞
i=1 be two infinite sequences of real numbers, the series

+∞∑
i=1

bi

be convergent and aiBi+1 → 0 as i → +∞, where Bi =
+∞∑
j=i

bj . Then the convergence of either

of the series
+∞∑
i=1

ai bi and
+∞∑
i=2

(ai − ai−1)Bi implies the convergence of the other and

+∞∑
i=1

ai bi = a1B1 +
+∞∑
i=2

(ai − ai−1)Bi.
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Lemma 2.2. Let u : Nn → R be a nonoscillatory proper solution of (1.1). Then there exists
k0 ∈ Nn such that

u(k) ∆u(k) > 0 for k ∈ Nk0 . (2.1)

Lemma 2.3. Suppose that (1.4) and (1.5) hold and u : Nn → R is a nonoscillatory solution
of (1.1). Then

lim
k→+∞

u(k) = +∞, lim sup
k→+∞

|u(k)|
k

< +∞. (2.2)

Lemma 2.4. Let ϕ,ψ : N → (0,+∞), ψ be nonincreasing and

lim
k→+∞

ϕ(k) = +∞, (2.3)

lim inf
k→+∞

ψ(k) ϕ̃(k) = 0, (2.4)

where ϕ̃(k) = inf{ϕ(s) : s ≥ k, s ∈ N}. Then there exists an increasing sequence of natural
numbers {ki}+∞

i=1 such that

ϕ̃(ki) = ϕ(ki), ψ(k) ϕ̃(k) ≥ ψ(ki) ϕ̃(ki), k = 1, 2, . . . , ki, i = 1, 2, . . . .

We refer the reader to [1] for the proofs of Lemmas 2.1 – 2.4.

Lemma 2.5. Let τl : N → N, l = 1, . . . ,m, and (1.2) be fulfilled. Then there exists a
nondecreasing function σ : N → N such that

1) lim
k→+∞

σ(k) = +∞,

2) σ(k) ≤ min{k, τl(k) : l = 1, . . . ,m}, (2.5)

3) σ(Nk) ⊃ Um
l=1τl(Nk) for any k ∈ N.

Proof. Consider the sequence

A ={a1, a2, . . . , a2m+2, . . .} =

= {1, τ1(1), . . . , τm(1), 2, τ1(2), . . . , τm(2), . . .}

and denote by τ the function τ : N → A thus defined. By (1.2) it is obvious that

lim
k→+∞

τ(k) = +∞ and τ(Nk) ⊃ τl(Nk), l = 1, . . . ,m, (2.6)

for any k ∈ N.

Introduce the following sets

s ∈ A1 ⇔ s ∈ N, τ(s) = inf{τ(k); k ∈ N},

s ∈ Aj ⇔ s ∈ N, τ(s) = inf
{
τ(k); k ∈ N\U j−1

i=1 Ai

}
, j = 2, 3, . . . ,
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and denote ξj = maxAj , j = 1, 2, . . . , ξ01 = ξ1, ξ
0
j = max{ξj , ξ0j−1 + 1}, j = 2, 3, . . . . We

will construct the function σ as follows: σ(k) = τ(ξ1) for 1 ≤ k ≤ ξ01 , σ(k) = τ(ξj) for
ξ0j−1 < k ≤ ξ0j , j = 2, 3, . . . . The function σ is obviously nondecreasing and satisfies the
conditions 1 and 2. We also have σ(Nk) ⊃ τ(Nk) for any k ∈ N. Therefore in view of (2.6) it is
obvious that the condition 3 is also satisfied.

The lemma is proved.

3. A necessary condition for the existence of a positive solution. The result obtained in
this section is very important for establishing sufficient conditions of oscillation of all proper
solutions of the equation (1.1). Below the following notation will be used.

Let k0 ∈ N. Denote by Uk0 the set of all proper solutions of (1.1) satisfying u(k) > 0 for
k ∈ Nk0 .

Theorem 3.1. Let k0 ∈ N, Uk0 6= ∅. Then there exists λ ∈ [0, 1] such that

lim sup
ε→0+

(
lim inf
k→+∞

ρ(k, ε, λ)
)
≤ 1, (3.1)

where

ρ(k, ε, λ) = k−λ−h2ε(λ)
k−1∑
i=1

(σ(i))h1ε(λ)+h2ε(λ)
+∞∑
j=i

(
m∑

l=1

pl(j)(τl(j))λ−h1ε(λ)

)
, (3.2)

h1ε(λ) =
{

0, if λ = 0,
ε, if λ ∈ (0, 1],

h2ε(λ) =
{

0, if λ = 1,
ε, if λ ∈ [0, 1),

(3.3)

and σ is any function satisfying (2.5) (such a function exists due to Lemma 2.5).

Proof. First of all note that according to Lemma 2.5 there exists a function σ satisfying the
conditions (2.5). Let k0 ∈ N and Uk0 6= ∅. Show that there is a λ0 ∈ [0, 1] such that for λ = λ0

the inequality (3.1) is fulfilled, where the function ρ is given by (3.2) and (3.3). By definition
of the set Uk0 , the equation (1.1) has a solution u satisfying the condition u : Nk0 → (0,+∞).
Lemmas 2.2 and 2.3 obviously imply that

u(k) ↑ +∞ and
u(k)
k

for k ↑ +∞, (3.4)

and

u(k) ≥
k−1∑
i=k1

+∞∑
j=i

(
m∑

l=1

pl(j)u(τl(j))

)
, k = k1 + 1, k1 + 2, . . . , (3.5)

where k1 ∈ Nk0 is sufficiently large.
Denote

Λu =
{
λ ∈ [0, 1] : lim

k→+∞

u(k)
kλ

= +∞
}
, u ∈ Uk0(

if there is no λ ∈ [0, 1] such that lim
k→+∞

u(k)
kλ

= +∞, then we assume that Λu = ∅
)

.
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By (3.4) we obviously have 0 ∈ Λu and 1 6∈ Λu. Therefore

Λu ⊂ [0, 1) and λ0 = supΛu ∈ [0, 1].

Show that the λ0 selected in this way satisfies (3.1) (λ = λ0). First show that

u(k)
k

↓ 0 for k ↑ +∞. (3.6)

Indeed, if this is not the case, then by Lemma 2.2, c > 0 may be found such that u(τl(i)) ≥
≥ cτl(i), l = 1, . . . ,m, for i ∈ Nk0 , where k0 is sufficiently large. Therefore in view of (1.5)
from (1.1) we will have

∆(u(k)) ≥
+∞∑
j=k0

(
m∑

l=1

pl(j)ul(τl(j))

)
≥ c

+∞∑
j=k0

(
m∑

l=1

pl(j) τl(j)

)
= +∞.

The obtained contradiction shows that (3.6) is true. In view of (3.3), (3.6) and the choice of λ0,
for all sufficiently small ε we have

lim
k→+∞

u(k)
kλ0−h1ε(λ0)

= +∞, lim inf
k→+∞

u(k)
kλ0+h2ε(λ0)

= 0, (3.7)

0 ≤ λ0 − h1ε(λ0) < λ0 + h2ε(λ0) ≤ 1. (3.8)

Denote

ϕ̃(k) = inf
{

u(σ(s))
(σ(s))λ0−h1ε(λ0)

: s ≥ k ≥ k0, s ∈ N

}
. (3.9)

For all sufficiently small positive ε, due to (3.8) and (3.9), the condition

lim inf
k→+∞

ϕ̃(k)
(σ(k))h1ε(λ0)+h2ε(λ0)

= 0 (3.10)

is fulfilled. Indeed, for all sufficiently small ε in view of (3.8) and (3.9) we have

ϕ̃(k)
(σ(k))h1ε(λ0)+h2ε(λ0)

≤ u(σ(k))
(σ(k))λ0+h2ε(λ0)

.

Hence the second condition of (3.7) implies (3.10). Since lim
k→+∞

σ(k) = +∞, due to (3.5) there

exists k2 ∈ Nk such that

u(σ(k)) ≥
σ(k)−1∑
i=k1

+∞∑
j=i

(
m∑

l=1

pl(j)u(τl(j))

)
, k ∈ Nk2 . (3.11)
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We see that (3.7), (3.8) and (3.10) obviously imply that the functions

ϕ(k) =
u(σ(k))

(σ(k))λ0−h1ε(λ0)
, ψ(k) = (σ(k))−(h1ε(λ0)+h2ε(λ0)) (3.12)

satisfy the conditions of Lemma 2.4. Therefore there exists a sequence {ki}+∞
i=3 such that ki ∈

∈ Nk2 , i = 3, 4, . . . , ki ↑ +∞ as i ↑ +∞ and

ϕ̃(ki) = ϕ(ki), i = 3, 4, . . . , (3.13)

ψ(ki) ϕ̃(ki) ≤ ψ(s) ϕ̃(s), k2 ≤ s ≤ ki, s ∈ N, i = 3, 4, . . . . (3.14)

Since the function σ satisfies (2.5), it is obvious that for any sufficiently large k ∈ N and suffici-
ently small ε > 0

inf
{

u(τl(s))
(τl(s))λ0−h1ε(λ0)

: s ≥ k

}
≥ inf

{
u(σ(s))

(σ(s))λ0−h1ε(λ0)
: s ≥ k

}
= ϕ̃(k),

l = 1, . . . ,m.

Therefore, taking into account the nondecreasing character of ϕ̃(k), from (3.11) we obtain

u(σ(k)) ≥
σ(k)−1∑
i=k2

ϕ̃(i)
+∞∑
j=i

(
m∑

l=1

pl(j) (τl(j))λ0−h1ε(λ0)

)
.

Hence, with regard to (3.14) we get

u(σ(ki)) ≥ ϕ̃(k)ψ(ki)
σ(ki)−1∑

j=k2

(σ(j))h1ε(λ0)+h2ε(λ0)
+∞∑
s=j

(
m∑

l=1

pl(s)(τl(s))λ0−h1ε(λ0)

)
, i = 3, 4, . . . .

By (3.12) and (3.13) we have

lim sup
i→+∞

(σ(ki))−λ0−h2ε(λ0)

σ(ki)−1∑
i=k1

(σ(i))h1ε(λ0)+h2ε(λ0)
+∞∑
j=i

(
m∑

l=1

pl(j) (τl(j))λ0−h1ε(λ0)

)
≤ 1.

Therefore

lim inf
k→+∞

k−λ0−h2ε(λ0)
k−1∑
i=k2

(σ(i))h1ε(λ0)+h2ε(λ0)
+∞∑
j=i

(
m∑

l=1

pl(j) (τl(j))λ0−h1ε(λ0)

)
≤ 1.

Due to the fact that for all sufficiently small ε > 0 we have−λ0−h2ε(λ0)< 0, the latter inequality
obviously implies that

lim inf
k→+∞

k−λ0−h2ε(λ0)
k−1∑
i=1

(σ(i))h1ε(λ0)+h2ε(λ0)
+∞∑
j=i

(
m∑

l=1

pl(j) (τl(j))λ0−h1ε(λ0)

)
≤ 1

ISSN 1562-3076. Нелiнiйнi коливання, 2009, т . 12, N◦ 2



186 R. KOPLATADZE, G. KVINIKADZE

for all sufficiently small ε > 0. Taking the upper limit of both sides in the latter inequality as
ε → 0+, we will obtain the inequality (3.1), where the function ρ is defined by the equalities
(3.2), (3.3).

The theorem is proved.

4. Sufficient conditions for oscillation. In this section, using Theorem 3.1, sufficient conditi-
ons will be established for oscillation of all proper solutions of the equation (1.1) which generali-
ze the results given in the paper [1].

Theorem 4.1. Let for any λ ∈ [0, 1]

lim sup
ε→0+

(
lim inf
k→+∞

ρ(k, ε, λ)
)
> 1, (4.1)

where the function ρ is defined by (3.2) with hiε, i = 1, 2, defined by (3.3) and σ any function sati-
sfying (2.5) (such a funcyion exists due to Lemma 2.5). Then any proper solution of the equation
(1.1) is oscillatory.

Proof. Suppose the contrary. Let u : Nk0 → (0,+∞) with k0 ∈ N be a positive proper
solution of the equation (1.1), i.e., Uk0 6= ∅. Taking into account Theorem 3.1, we will conclude
that there exists λ0 ∈ [0, 1] such that the inequality (3.1) holds for λ = λ0. But this contradicts
the condition (4.1). The obtained contradiction proves the theorem.

Theorem 4.2. Let αi ∈ (0,+∞), i = 1, . . . ,m, and

lim inf
k→+∞

τi(k)
kαi

> 0. (4.2)

Then for all proper solutions of (1.1) to be oscillatory it is sufficient that for any λ ∈ [0, 1]

lim sup
ε→0+

lim inf
k→+∞

k−λ−h2ε(λ)
k−1∑
i=1

iα(h1ε(λ)+h2ε(λ))
+∞∑
j=i

(
m∑

l=1

pl(j) (τl(j))λ−h1ε(λ)

) > 1, (4.3)

where

α = min{1, α1, . . . , αm}. (4.4)

Proof. To prove the theorem it suffices to show that the conditions of Theorem 4.1 are
fulfilled. Due to (4.2) there is c ∈ (0, 1] such that τl(k) ≥ ckα, l = 1, . . . ,m, k ∈ N, where α is
given by (4.4). Therefore the function σ(k) = [ckα] satisfies the conditions (2.5). On the other
hand, we have

ρ(k, ε, λ) = k−λ−h2ε(λ)
k−1∑
i=1

[ciα]h1ε(λ)+h2ε(λ)
+∞∑
j=i

(
m∑

l=1

pl(j) (τl(j))λ−h1ε(λ)

)
.
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Therefore in view of (3.3) and (4.3) for any λ ∈ [0, 1] we have

sup lim
ε→0+

(
lim inf
k→+∞

ρ(k, ε, λ)
)
≥

≥ sup lim
ε→0+

(
inf lim

k→+∞
k−λ−h2ε(λ)

k−1∑
i=1

iα(h1ε(λ)+h2ε(λ) ×

×
+∞∑
j=i

(
m∑

l=1

pl(j) (τl(j))λ−h1ε(λ)

) inf lim
ε→0+

ch1ε(λ)+h2ε(λ) > 1.

Therefore all the conditions of Theorem 4.1 are fulfilled, which proves our theorem.

Theorem 4.3. Let the conditions (4.2) be fulfilled and for any λ ∈ [0, 1]

lim sup
ε→0+

lim inf
k→+∞

k1−λ+αh1ε(λ)+(α−1)h2ε(λ) ×
+∞∑
j=k

(
m∑

l=1

pl(j) (τl(j))λ−h1ε(λ)

) > λ, (4.5)

where the functions h1ε and h2ε are defined by (3.3). Then any proper solution of (1.1) is osci-
llatory.

Proof. To prove the theorem, it suffices to show that (4.5) implies (4.3). In view of (4.5) there
exists a sequence {εi}+∞

i=1 of positive numbers such that εi → 0 as i → +∞, δ > 0, ki ∈ N,
i = 1, 2, . . . , and

k1−λ+αh1εi
(λ)+(α−1)h2εi

(λ)
+∞∑
i=k

(
m∑

l=1

pl(j) (τl(j))λ−h1εi
(λ)

)
≥ λ+ δ,

k ∈ Nki
, i = 1, 2, . . . .

Therefore from the equality

I(k, εi) = k−λ−h2εi
(λ)

k−1∑
s=1

sα(h1εi
(λ)+h2εi

(λ))
+∞∑
j=s

(
m∑

l=1

pl(j) (τl(j))λ−h1εi
(λ)

)
=

= k−λ−h2εi
(λ)

ki−1∑
s=1

sα(h1εi
(λ)+h2εi

(λ))
+∞∑
j=s

(
m∑

l=1

pl(j) (τl(j))λ−h1εi
(λ)

)
+

+ k−λ−h2εi
(λ)

k−1∑
s=ki

sα(h1εi
(λ)+h2εi

(λ))
+∞∑
j=s

(
m∑

l=1

pl(j) (τl(j))λ−h1εi
(λ)

)
,

i = 1, 2, . . . ,

we get

I(k, εi) ≥ k−λ−h2εi
(λ)(λ+ δ)

k−1∑
s=ki

sλ−1+h2εi
(λ), i = 1, 2, . . . .

ISSN 1562-3076. Нелiнiйнi коливання, 2009, т . 12, N◦ 2



188 R. KOPLATADZE, G. KVINIKADZE

Thus

lim inf
k→+∞

I(k, εi) ≥ (λ+ δ) inf lim
k→+∞

k−λ−h2εi
(λ)

k−1∑
s=ki

sλ−1+h2εi
(λ), i = 1, 2, . . . . (4.6)

On the other hand, since λ− 1 + h2εi(λ) ≤ 0, i = 1, 2, . . . , we have

k−1∑
s=ki

sλ−1+h2εi
(λ) ≥

k−1∑
s=ki

s+1∫
s

ξλ−1+h2εi
(λ)dξ =

=

k∫
ki

ξλ−1+h2εi
(λ)dξ =

1
λ+ h2εi(λ)

(
kλ+h2εi

(λ) − k
λ+h2εi

(λ)

i

)
.

Therefore, since −λ− h2εi(λ) < 0, i = 1, 2, . . . , from (4.6) we get

inf lim
k→+∞

I(k, εi) ≥
λ+ δ

λ+ h2εi(λ)
.

If we pass to upper limit in the latter equality as i → +∞, we will obtain

lim sup
i→+∞

(
lim inf
k→+∞

I(k, εi)
)
≥ λ+ δ

λ
> 1,

which proves the equality (4.3).
The theorem is proved.

Theorem 4.4. Let the conditions (4.2) hold and for any λ ∈ [0, 1]

lim sup
ε→0+

(
lim inf
k→+∞

k1+(α−1)(h2ε(λ)+h1ε(λ)) ×

×
+∞∑
i=k

(
m∑

l=1

pl(j)
(
τl(i)
i

)λ−h1ε(λ)
))

> λ(1− λ). (4.7)

Then any proper solution of (1.1) is oscillatory.

Proof. If λ = 0, then due to the first condition of (3.3), (4.7) clearly implies (4.5). Therefore
below we will assume that λ ∈ (0, 1] and show that (4.7) implies (4.5). Indeed, from (4.7) it
follows that there exist a sequence {εi}+∞

i=1 of positive numbers satisfying εi → 0 as i → +∞,
δ > 0 and ki ∈ N, i = 1, 2, . . . , such that

k1+(α−1)(h2ε(λ)+h1εi
(λ))

+∞∑
j=k

(
m∑

l=1

pl(j)
(
τl(j)
j

)λ−h1εi
(λ)
)
>

> λ(1− λ)(1 + δ), k ∈ Nki
, i = 1, 2, . . . . (4.8)
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On the other hand, by Lemma 2.1, we have

I1(k, εi) : df= k1−λ+αh1εi
(λ)+(α−1)h2εi

(λ)
+∞∑
j=k

(
m∑

l=1

pl(j) (τl(j))λ−h1εi
(λ)

)
=

= k1−λ+αh1εi
(λ)+(α−1)h2εi

(λ)
+∞∑
j=k

jλ−h1εi
(λ)

(
m∑

l=1

pl(j)
(
τl(j)
j

)λ−h1εi
(λ)
)

=

= k1−λ+αh1εi
(λ)+(α−1)h2εi

(λ)kλ−h1εi
(λ)

+∞∑
j=k

jλ−h1εi
(λ)×

×

(
m∑

l=1

pl(j)
(
τl(j)
j

)λ−h1εi
(λ)
)

+

+ k1−λ+αh1εi
(λ)+(α−1)h2εi

(λ)
+∞∑

j=k+1

(
jλ−h1εi

(λ) − (j − 1)λ−h1εi
(λ)
)
×

×
+∞∑
s=j

(
m∑

l=1

pl(s)
(
τl(s)
s

)λ−h1εi
(λ)
)
≥

≥ λ(1− λ)(1 + δ) + λ(1− λ)(1 + δ)k1−λ+αh1εi
(λ)+(α−1)h2εi

(λ)×

×
+∞∑

j=k+1

(
jλ−h1εi

(λ) − (j − 1)λ−h1εi
(λ)
)
j−1j(1−α)(h1εi

(λ)+h2εi
(λ))

for k ∈ Nki
, i = 1, 2, . . . .

Since α ≤ 1, the latter inequality yields

I1(k, εi) ≥ λ(1− λ)(1 + δ)1 + k1−λ+h1εi
(λ)

(
k

k + 1

)(α−1)(h1εi
(λ)+h2εi

(λ))

×

×
+∞∑

j=k+1

(
jλ−h1εi

(λ) − (j − 1)λ−h1εi
(λ)
)
j−1 (4.9)

for k ∈ Nki
, i = 1, 2, . . . .
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On the other hand, since the function k 7→ k − 1
k

is nondecreasing, we have

+∞∑
j=k+1

(
jλ−h1εi

(λ) − (j − 1)λ−h1εi
(λ)
)
j−1 =

=
+∞∑

j=k+1

(
j − h1εi(λ)

)
j−1

j∫
j−1

ξλ−h1εi
(λ)−1dξ =

=
(
j − h1εi(λ)

) +∞∑
j=k+1

j − 1
j(j − 1)

j∫
j−1

ξλ−h1εi
(λ)−1dξ ≥

≥
(
j − h1εi(λ)

) k

k + 1

+∞∑
j=k+1

j∫
j−1

ξλ−2−h1εi
(λ)dξ =

=
(
j − h1εi(λ)

) k

k + 1

+∞∫
k

ξλ−2−h1εi
(λ)dξ =

=
(
j − h1εi(λ)

) k

k + 1
kλ−1−h1εi

(λ)

1− λ+ h1εi(λ)
dξ.

Therefore (4.9) implies

I1(k, εi) ≥ λ(1− λ)(1 + δ)
(
1 + (λ− h1εi(λ)

) 1
1− λ+ h1εi(λ)

(
k

k + 1

)1+(α−1)(h1εi
(λ)+h2εi

(λ))

.

Hence it is clear that

inf lim
k→+∞

I1(k, εi) ≥ λ(1− λ)(1 + δ)
(

1 +
λ− h1εi(λ)

1− λ+ h1εi(λ)

)
, i = 1, 2, . . . .

Passing to upper limit in this inequality as i → +∞, we will get

lim sup
i→+∞

(
lim inf
k→+∞

I1(k, εi)
)
≥ λ(1− λ)(1 + δ)

(
1 +

λ

1− λ

)
= λ(1 + δ) > λ.

Therefore the inequality (4.5) holds, which proves the validity of the theorem.
Theorem 4.4. immediately implies the following theorem.

Theorem 4.4′. Let the condition (4.2) be fulfilled with αi ≥ 1, i = 1, . . . ,m. Then for any
proper solution of (1.1) to be oscillatory it is sufficient that

lim sup
ε→0+

inf lim
k→+∞

k
+∞∑
j=k

(
m∑

l=1

pl(j)
(
τl(j)
j

)λ−h1ε(λ)
) > λ(1− λ). (4.10)
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Theorem 4.4′ makes Theorem 3.2 of [1] more precise.

Corollary 4.1. Let there exist αl, l = 1, . . . ,m, such that αl ∈ (0,+∞) and

lim inf
i→+∞

τl(i)
i

= αi. (4.11)

Then the condition

inf lim
k→+∞

k
+∞∑
i=k

(
m∑

l=1

pl(i)αλ
l

)
> λ(1− λ)

is sufficient for oscillation of all proper solution of (1.1).

Corollary 4.2. Let the condition (4.11) be fulfilled and there exist cj ∈ (0,+∞), j = 1, . . . ,m
and a function p : N → [0,+∞) such that pj(k) ≥ cjp(k), j = 1, . . . ,m, for large k. Then the
condition

lim inf
k→+∞

k
+∞∑
i=k

p(i) > max

λ(1− λ)

(
m∑

l=1

clα
λ
l

)−1

: λ ∈ [0, 1]

 (4.12)

is sufficient for oscillation of all proper solutions of (1.1).

Remark 4.1. Corollaries 4.1 and 4.2 are given in [1]. But the optimality of the condition
(4.12) is proved there only in the case m = 1. Here we will give an example illustrating that
the condition (4.12) can not be replaced by the nonstrict inequality for any m. Indeed, let cj ,
αj ∈ (0,+∞). Denote

c = max

λ(1− λ)

(
m∑

l=1

clα
λ
l

)−1

: λ ∈ [0, 1]

 (4.13)

and let λ0 be the point where the right hand side of (4.12) attains its maximum. Consider the
equation

∆2u(k) +
m∑

j=1

(
c
cj
k2

+ ϕ(k)
)
u([αjk]) = 0, (4.14)

where

ϕ(k) = −
−∆2(kλ0) +

c

k2

m∑
j=1

cj([αk])λ0

m∑
j=1

([αk])λ0

(4.15)

and [a] denotes the integer part of a. It is obvious that by (4.15) the function u = kλ0 is a
positive solution of the equation (4.14). Since

∆2(kλ0) = λ0(λ0 − 1)kλ0−2 + kλ0o

(
1
k2

)
,
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by (4.15) we have ϕ(k) = o

(
1
k2

)
. Therefore it is obvious that

pl(k) = c
cl
k2

+ ϕ(k) ≥ (c− ε)
cl
k2

= clp(k), p(k) =
c− ε

k2
.

Since
+∞∑
i=k

i−2 ≥ k−1, we have

inf lim
k→+∞

k
+∞∑
i=k

p(i) ≥ c− ε.

Therefore, due to arbitrariness of ε we have

lim inf
k→+∞

k
+∞∑
i=k

p(i) ≥ c. (4.16)

On the other hand, since the equation (4.14) has a positive solution, (4.13) and Corollary 4.2
imply

lim inf
k→+∞

k
+∞∑
i=k

p(i) ≤ c.

Therefore by (4.16) we have lim inf
k→+∞

k
+∞∑
i=k

p(i) = c. But this shows that in Corollary 4.2 the

inequality (4.12) can not be replaced by the non-strict one.

Corollary 4.3. Let the condition (4.2) be fulfilled, there exist a nonincreasing function p̃ ∈
∈ C(R+;R+) and a nondecreasing function τ̃ ∈ C(R+;R+) such that lim

t→+∞
τ̃(t) = +∞ and

pl(i) ≥ cl p̃(i), τl(i) ≥ dl τ̃(i), l = 1, . . . ,m, (4.17)

where cl, dl ∈ (0,+∞). Let, moreover, for any λ ∈ [0, 1] the condition

lim sup
ε→0+

inf lim
k→+∞

k1+(α−1)(h1ε(λ)+h2ε)(λ)

+∞∫
k−1

p̃(1 + ξ) τ̃λ−h1ε(λ)(ξ)dξ

 >

> λ(1− λ)

(
m∑

l=1

cl d
λ
l

)−1

(4.18)

be fulfilled, where α is given by (4.4). Then any proper solution of (1.1) is oscillatory.
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Proof. To prove the corollary, it suffices to show that (4.18) implies (4.7). Indeed, from (4.17)
we have

+∞∑
j=k

(
m∑

l=1

pl(j)
(
τl(j)
j

)λ−h1ε(λ)
)

=

=
+∞∑
j=k

 m∑
l=1

pl(j)
(
τl(j)
j

)λ−h1ε(λ)
j∫

j−1

ds

 ≥

≥

(
m∑

l=1

cl d
λ−h1ε(λ)
l

)
+∞∑
i=k

j∫
j−1

p̃(1 + s) τ̃ λ−h1ε(λ)(s) ds =

=

(
m∑

l=1

cl d
λ−h1ε(λ)
l

) +∞∫
k−1

p̃(1 + s) τ̃ λ−h1ε(λ)(s)ds.

Therefore (4.18) obviously implies (4.7).
The corollary is proved.

Corollary 4.4. Let cl, dl, α ∈ (0,+∞), l ∈ 1, . . . ,m,

pl(i) ≥
cl
i2
, τl(i) ≥ dli

1+α. (4.19)

Then any proper solution of (1.1) is oscillatory.
To prove the corollary, it suffices to note that the conditions of Corollary 4.3 are fulfilled

with p̃(t) =
1
t2
, τ̃(t) = tα.

Corollary 4.5. Let the conditions (4.2) be fulfilled and there exist nondecreasing functions
τ̃ , p̃ ∈ C(R+;R+) such that the conditions (4.17) are fulfilled, where cl, dl ∈ (0,+∞), l ∈
∈ 1, . . . ,m. Let, moreover, for any λ ∈ [0, 1] the condition

sup lim
ε→0+

inf lim
k→+∞

k1+(α−1)(h1ε(λ)+h2ε(λ))

+∞∫
k

p̃(s) τ̃ λ−h1ε(λ)(s) ds

 >

> λ(1− λ)

(
m∑

l=1

cl d
λ
l

)−1

be fulfilled. Then any proper solution of (1.1) is oscillatory.

Corollary 4.6. Let the conditions (4.19) be fulfilled, where cl, dl ∈ (0,+∞), l = 1, . . . ,m,
and

pl(i) ≥
cl
iβ
, τl(i) ≥ dli

1−α,

where β < 2− α, α ∈ (0, 1). Then any proper solution of (1.1) is oscillatory.
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