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We consider a mixed boundary-value problem for the Poisson equation in a plane thick junction Q). which
is the union of a domain Q) and a large number of c-periodically situated thin rods. The nonuniform
Signorini conditions are given on the vertical sides of the thin rods. The asymptotic analysis of this problem
is made as € — 0, i.e., when the number of the thin rods infinitely increases and their thickness tends to
zero. With the help of the integral identity method we prove the convergence theorem and show that the
nonuniform Signorini conditions are transformed (as ¢ — 0) in the limiting variational inequalities in the
region that is filled up with the thin rods when passing to the limit. Existence and uniqueness of the solution
to this non-standard limit problem is established. The convergence of the energy integrals is proved as well.

Poseasdaembcsa miwana kpaiiosa zadaua oasn pieuanns Ilyaccona y naockomy 2ycmomy 3’ €OHanHi €.,
AKe € 00’eOHanHAaAM Oeakoi obaacmi g ma 6eAuUKol KiAbKOCmi €-nepioOUHHO DO3MIULEHUX MOHKUX
cmepxcHie. Ha 6iuHUX cmopoHax MOHKUX CMepHCHI8 3a0aH0 HeOOHOPIOHI Kpatiosi ymosu CiHbOpDiHI.
IIposedeno acumnmomutne 00CAiONceHHA 0anoi 3adaqi npu ¢ — 0, MOOMO KOAU KIAbKICMb MOHKUX
CIEPIHCHIB HEOOMENCEHO 3POCMAE, a4 IXHA MOBUUHA NPAMYE 00 HYAA. 3 O0NOMO2010 MEMOOY Cheuidnb-
HUX [HMe2PAAbHUX MOMONCHOCHEl 008€0eHO meopemy 30IHHOCMI | NOKA3AHO, W0 HeOOHOPIOHI Kpatio-
8i ymosu Cinvopini mparcgpopmyromucsa npu e — 0y eapiayiiini HepigHOCMI 8 004aCMI, AKA 3ANOBHIO-
€MbCA MOHKUMU CIEPHCHAMU Y 2PAHULHOMY nepexoOi. [l08e0eHo ICHY8AHHA Ma €OUHICMb PO36 A3KY
maxoi HecmanOapmHoi 2panu4Hoi 3aoadi. Taxox 008edeHo 30CHICMb IHMe2Paaie eHepeil 8UXIOHOL 3a-
oaui.

1. Introduction and statement of the problem. Boundary-value problems in thick junctions are
mathematical models of widely used engineering and industrial constructions as well as of many
other physical and biological systems with very distinct characteristic scales. In recent years, a
rich collection of new results on asymptotic analysis of boundary-value problems in thick multi-
structures has appeared (see [1-8]).

In this paper we homogenize the Signorini problem in a thick plane junctionof type 2 : 1 : 1
using the integral identity method developed in [9, 10].

A thick junction (or thick multi-structure) of type k£ : p : d is the union of some domains
in R™, which is called the junction’s body, and a large number of e-periodically situated thin do-
mains along some manifolds on the boundary of the junction’s body (see Figure). This manifold
is called the joint zone. Here ¢ is a small parameter, which characterizes the distance between
neighboring thin domains and their thickness. The type k& : p : d of a thick junction refers
respectively to the limiting dimensions of the body, the joint zone, and each of the attached thin
domains.
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This classification of thick junctions was given in [11-16] and [9, 10], where rigorous mathe-
matical methods were developed (homogenization, approximation, asymptotic expansions) for
analyzing the main boundary-value problems in thick junctions of different types. It was pointed
out that qualitative properties of solutions essentially depend on the junction type and on the
conditions given on the boundaries of the attached thin domains. In addition, as it was shown
in [17] such problems lose the coercitivity as ¢ — 0 and this creates special difficulties in the
asymptotic investigation. It should be noted that papers [18, 19] were the first papers in this
direction.

For the first time a problem known now as the Signorini problem was considered by Signori-
ni himself in [20]. The sense of the Signorini boundary condition consists in a priori ignorance
of which of the boundary conditions (Dirichlet or Neumann) are satisfied and where. Many
interesting problems in applied mathematics involve the Signorini boundary conditions. Appli-
cations arise in groundwater hydrology, in plasticity theory, in crack theory, in optimal control
problems, etc. (see [21]). The problems that can be recast that variational inequalities become
relatively easy to study (see [21-23]). Asymptotic investigations of variational inequalities in
perforated domains were conducted in [24 - 28].

1.1. Statement of the problem. Let a,l be positive numbers, h a fixed number from the
interval (0,1), and N a large positive integer. Define a small parameter ¢ = %. A model plane

thick junction Q. (see Figure) consists of the junction’s body
Qo = {x: (x1,22) eR?: O0O<z1<a, 0<uxo <fy(a:1)},

where v € C1([0,a]), and a large number of the thin rods

I~

€ 2e 3e
H D=(0,2) x (-1,0)
-1 |
T~ r, / he

A model plane thick junction 2. of type 2:1:1

Y
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N-1
ie,Q = QUG whereG. = (J Gj(e).
j=0
The discrete parameter chargcterizes the distance between the rods and their thickness
that is equal to ch. Obviously, the thin rods fill out the rectangle Dy = (0,a) x (—,0) in the
limit passage as N — +o0 (¢ — 0).
Let us denote the union of vertical sides of the thin rods G by S¢; the union of bases of the
thin rods will be denoted by I'..
In Q. we consider the following boundary-value problem:

—Au.(x) = f(z), =z € Q.,

ue(z) < g(z), Oue(z) < ed(z), =€ S,

(1
(ue(x) = g(2)) (Opuc(z) —ed(x)) = 0, = €S,

ue(z) =0, =z €Tl Opue(z) =0, x € 00\ (S:UTy),

where 9, = 9/0v is the outward normal derivative, f,g,d are given functions.
We assume that f € L2(€;), where Q1 = Qg U Dy, the function d belongs to the Sobolev
space H!(Dy), and

g € Hl(Do; LUl = {v € Hl(DO) : v’hUIO - 0}’

where [; = {z: =z € (0,a), z2= -1}, Ip={x: =z € (0,a), z2=0}.
Our goal is to study the asymptotic behavior of the solution u. to problem (1) ase — 0, i.e.,
when the number of the thin rods infinitely increases and their thicknesses tend to zero.

2. Definitions of the weak solution and its existence. In the Sobolev space H!(Q; I'.) =
= {u e H'(Q.) : u|p, = 0}, we define subset

K. = {p e H(Q;T,) : ols. < glg. ae.on S},

where 1|4 denotes the trace of a Sobolev function 1) on a curve S. Obviously, K. is a closed and
convex set for every fixed value of €.

Let us suppose the existence of a classical solution to problem (1). We can regard that g = 0
in Qp. Multiplying the equation of problem (1) by the function (u. — g), integrating by parts in
Q. and taking into account the boundary conditions for u., we obtain

/Vu6 - Vue dr + /VuE -V(ug — g)dx = /fuE dx+
Q0 Ge Qo

T / flue —g)do +e / d(e) (s — g) ds, @
Ge

Se
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"o Ju Jw
j=1 0 0z
Now we take any function ¢ € K. and multiply the equation of the problem (1) by (¢ — g).
Similar as before we get

where Vv - Vw =

/Vu€ -V(,odac/Vu6 -V(p—g)de =
Qo Ge

= /fsodfc+/f(<ﬁg)dﬂf+8/d(w)(s@9)d8+
Qo G.

Se
+ /((%u8 —ed(x))(p — g) ds. 3)
Se
Since dyu.(z) < ed(z) and (x) < g(x) a.e.in S,
/(f)Vu‘E —ed(x))(¢ —g)ds > 0. (4)
Se
Taking into account (4), it follows from equality (3) that

/VUE-Vgodx+/Vu5-V(<pg)dx >
Qo Ge

> [ sedt [ fo-gydne [dwie-g)ds (5)
Qo Ge

€

Definition 1. A function u. € K. is called a weak solution to problem (1) if it satisfies the
integral equality (2) and integral inequality (5) for an arbitrary function ¢ € K..
Another definition is as follows.

Definition 2. A function u. € K. is called a weak solution to problem (1) if it satisfies the
integral inequality

/VuE -V(p —us)de > /f(«p — ug) dx+
Qe Qe

+z—:/d(x)(g0—u€)ds Vo € K.. (6)
Se

Let us show that these definitions are equivalent. Subtracting equality (2) from inequality
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48 YU. A. KAZMERCHUK, T. A. MEUNYK

0, x € Qo,

g z€G. in (6), we have

(5), we arrive at (6). Setting ¢ = {

/\Vu5|2dx+/Vug~V(gu5)d:U > /fugd:v+
G.

Q() QO

T / F(g—ue)da + / d(z)(g - ue) ds. %
Ge

Se

2u,, x € Q,

. —g z€G. in (6), we get the converse inequality

Putting ¢ = {

/|Vu5|2dx+/Vus'V(u€—g) dx > /fusdx—l—
Q0 Gs Qo

T / flue — g)do +e / d(x) (e — g) ds. ()
Ge

Se

in (6), where ¢ is an arbitrary

This means that (2) holds. Setting p = { z i Z@ , i E go,
e 9 €

function from K., we get (5).

It is well known (see for instance [21 —23]) that there exists a unique solution of inequali-
ty (6) for any fixed value of e.

3. Auxiliary uniform estimates. To homogenize boundary-value problems in thick multi-
structures with nonhomogeneous Neumann or Fourier conditions on the boundaries of the
thin attached domains, the method of special integral identities was proposed in [9, 10]. For our
problem this identity is as follows (see [10], Lemma 1)

eh

5 vdry = /Udm—es/Y(x;> Opvde Vv e H'(G.), )
S. Ge G-

1
where Y (§) = =&+ [£] + 2 [¢] is the integral part of £.
Using (9) and taking into account that maxg |Y| < 1, we get

1
[vllr2(s.) < Cre 2ol Yo € HY(G:). (10)

Remark 1. Here and in what follows all constants {C; } and {¢; } in inequalities are independent
of the parameter ¢.

Also the following uniform estimates will be very important for our research.
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1
3
Lemma 1 [14]. The usual norm ||u| g1 (q.) = </ (IVul® + u?) da:) in HY(Q.,T.) and a
Qe

norm || - ||z that is generated by the scalar product
(u,v)e = /VU-VU de, wu,v € HY(Q,T,),
Qe

are uniformly equivalent, i.e., there exist constants C1 > 0 and €9 > 0 such for all ¢ € (0,¢p)
and for all w € H (), T.) the estimates

lulle < flullm @) < Cillulle (11)

hold.

Remark 2. In fact, in Lemma 1, the following Friedrich inequality:
ullr20) < ColVullr2@q.) YVu € H'(Q,T:) (12)

was proved.

Using the Cauchy—Bunyakovsky integral inequality and Cauchy’s inequality with § > 0
(2ab < da® + 5~ 1b? for any positive numbers a and b), with help of (10) and (12) we deduce
from (2) that

/ Vue[*dz < co(81 + 02 + 83) || Ve |72+
Q

€

+e1(L+ 87 ) g F gy + c2(L+ 0 11172+
+es3(L+057) ldl 1 - (13)

1
Choosing 41, d2, 03 such that ¢1 (61 + d2 + d3) < 2 we have
[ 1Vulde < e (1718 + oo + 1l o) - (14)
Qe

By virtue of (11) we obtain from (14) the following uniform estimate:
[uell 1.y < Cs. (15)

4. Convergence theorem. In the sequel, v denotes the zero extension of a function « defined
on G. to the rectangle Dy, which is filled up with thin rods passing to the limit as ¢ — 0, namely,

— v | u(x), e,
i) = { 0, x€Dy\G..
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50 YU. A. KAZMERCHUK, T. A. MEUNYK

Ifu € H'(G.,T.) then, due to the rectilinearity of the boundaries of the thin rods, u belongs
to the anisotropic Sobolev space

H"(Do; I) = {v € L*(Dy) : 3 weak derivative d,,v € L?(Dy) and vl = O} (16)
and 0,u = @ a.e.in Dy.
Theorem 1. The solution u. to problem (1) satisfies the relations

Uelg, — uf  weaklyin H'(Qy),

Ue — huy weaklyin WO (Do, I)), as ¢ — 0, (17)

O tle — 0 weakly in L?(Dy)

Jr
and the function ug(r) = { ZQ’ z € (o, is a unique solution of the following problem:
0>

x € Dy,
—Aug (z) = f(x), x € Qo,
—h@%wmua(az) < h f(x) + 2d(z), x € Dy,
ug (r) < g(z), x € Do,
(ug (z) = 9(2)) (h0Z,4,uq () + hf(2) +2d(z)) = 0, z € Do, 18)
dyud () = 0, x € 0\ I,
ug (z1,—1) =0, z1 € [0,4q],
ug (21,0) = ug (z1,0), z1 € [0,4q],
Oryug (21,0) = hdyug (21,0), z1 € [0,q],

which is called the homogenized problem for (1).
Furthermore, the following energy convergence holds:

;ii% Ee(us) = Eo(uo),

where
F.(u.) = /|Vu€|2d:1:, Fo(ug) = /vugﬁdﬁh/mmuoﬁdx.
Qo Qo Do

Before the proof of Theorem 1 we investigate the homogenized problem (18).

4.1. Solvability of the homogenized problem. We see that the homogenized problem (18)
is a non-standard boundary-value problem that consists of the Poisson equation in the junction
body g, the variational inequalities in Dy and the transmission conditions in the joint zone
Iy. Therefore, at first we give a definition of a weak solution to this problem and then with the
help of the general approach in the theory of variational inequalities we prove the existence
and uniqueness.
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Let us introduce the partly anisotropic Sobolev space

H(Q1, Dos I;) = {u € L*(Q) : Fdpyu € L* (), wulg, € H' (), ulp, € H*'(Do; 1)},

where H%!(Dy; I}) is defined in (16). It follows from properties of anisotropic Sobolev spaces

(see [29]) that the traces of the restrictions u™ := u|g and u~ := u|p, on Iy are equal. In

addition, since traces of functions from H (21, Dy; ;) vanish on I;, there exists a constant C
such that

/u2 dx < Co</Vu+]2d:c+/8mu_|2dz> Vu e H(Q, Do I).
04 Qo Dy

In H(Q4, Do; I;) we introduce a norm || - |7, which is generated by the scalar product

(u,v)y = /Vu+ Vot dm+h/3x2u_ Op,v™ dx, u, v € H(Qy, Do I).
QO DO

We now define the subset Ky = {¢ € H(Q,Do;I;) : ¢~ < g a.e.in Dy} in H(Q4, Do; I}).
Obviously, K is a closed and convex set.

Definition 3. A function ug € Ky is called a weak solution of problem (18) if it satisfies the
integral equality

/Vuar -Vugd dr + h/amugam(ug —g)dr =
QO DO

_/fugdwrh/f(ua—g)d:c+2/d(ua—g)dx, (19)

and the integral inequality

/Vua“ -Vepdx + h/@muga@(cp —g)dx >
QQ DO

2/fsodl‘+h/f(s0—g)dm+2/d(so—g)dﬂc (20)
Qo Do Do

for an arbitrary function p € K.

If there exists a classical solution to the homogenized problem (18), then relations (19) and
(20) can be obtained by the same way as relations (2) and (5) in Definition 1. Similarly as we
proved the equivalence of Definitions 1 and 2, we can show the equivalence of Definition 3 to
the following definition.
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52 YU. A. KAZMERCHUK, T. A. MEUNYK

Definition 4. A function uy € Ky is called a weak solution to problem (18) if it satisfies the
integral inequality

/Vua“-V(go—ua')dx—i-h/amuaa@(cp—ua)daf >
Qo DO

Z/f(so—u(T)d:v+h/f(so—uo)dw+2/d(<p—Uo)dfﬂ (1)
Qo Do Do

for an arbitrary function ¢ € K.
We now give the third definition of a weak solution to problem (18).

Definition 5. A function ug € Ky is called a weak solution to problem (18) if it satisfies the
integral inequality

/Vg0~V(go—uar)d:z:—i—h/@mgoc‘)m(ap—ua)d:c >
Qo DO

>/f(w—u(T)derh/f(so—ua)daer?/d(«P—ua)dw (22)
Qo Do

Dy

for an arbitrary function ¢ € K.

Let us prove that Definition 4 and Definition 5 are equivalent. Adding the inequality
[ V=) Vo —uiydo+h [ Onlo— i)l - 5) 20, o€ Ko
Qo Dy

to inequality (21), we get (22). Now we take any ¢y € Kj. Setting ¢ = wp + t(¢ — ug) € Ko
(for any ¢ € [0,1]) in inequality (22), we obtain

[ v+t =) V@ = uyde b [ O + 86 - 05)) 00 (0 - ug) o >
Q() DO

> [rw—aydern [ fo-up)dee [dw-uw)de @3
Qo Do Dy
Passing to the limit in (23) as ¢ — 0, we arrive at (21). Thus, all Definitions 3, 4 and 5 are

equivalent.
We can rewrite inequality (21) in the following form:

(uyop —u)y > (F,p—u) Yo € Ky, (24)
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where F'is a linear continuous functional on H(2;, Do; I;) defined by the formulae

(F,w) = /fw+da:+h/fwda;+2/dwdx for all w € H(Q4, Do; I;).
Qo Do Do

Using the theory of variational inequalities in Hilbert spaces (see [21], Section 2), we can state
that there exists a unique solution of the inequality (23) and consequently of the homogenized
problem (18).

4.2. Proof of Theorem 1. 4.2.1. From (15) it follows that |[uc| g1(y) < Cs, |UellL2(py) < Cs

and Hgg;/ugHLz(Do) < (3,1 = 1,2. Therefore we can choose a subsequence {¢'} C {¢} (again
denoted by ¢) such that

Uelg, — uf  weaklyin H'(Qp),
. — huy weaklyin L%(Dy), as e — 0, (25)

—~—

O, le  — i weakly in L?(Dyg), i=1,2,

where ua’ , Ug » V1, Y2 are some functions which will be determined later.
At first we determine 7. Take any function ¢ € C§°(Dyp) and perform the following
calculations:

[ovde = [ondvdr = [ouvde =~ [wonvde =~ [@0u0dn
Dy Do Ge

Ge Do

Passing to the limit in this identity, as e — 0, we obtain

/’}/del‘ = —h/uo 0,0 dx Vi € C§°(Dy), (26)

Do Do

whence it follows that there exists the weak derivative 0,,u, and 72 = h0,u, a.e.in Dy.
Now let us find ;. Consider the function

o 0, ve€f e oo >0
= - o0
(z) v, (%>¢+g, v e G Y € C5°(Dy), 1 >0,

where Y1 (§) = —¢& + [£]. Itis easy to see that & € K. and
_(_ ! 1
V@-g) = (—v+evi (Z) 0y, ¥ (D) onv),  zeCe
Substituting the function ® — g into the integral inequality (5) for solution u., we get

/(—leugw—i—aYl (%) vus-vw) de > 5/Y1 (%) Fepde — E2(1:|Ih)/d¢ das,
Ge

2
G, sE
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where the sings” +” or 7 — 7 in S& indicate the union of the right- or the left-hand sides of the
thin rods, respectively. With the help of (10) and (15) we deduce from the previous inequality
the estimate

[omucvanl < e [ (2) Vw90 = poplae+ L [lavian | <
e Se

0
< eer (IVuell 2o IVl 2y + 1 lzeoll¥ll iz + elldl nzsy vl n2gs.)) <

< et (luell oo 1Yl a1 (Do) + 1 L2020 191 L2000y + 1l o2 (Do) 1] 11 (D)) < €2,

from which, passing to the limit as e — 0, we get fDO mdx = 0forally € C§°(Dp),yp > 0.
This means that v, = 0 a. e. in Dy.

4.2.2. Let us show that the traces of the functions u and v, on I, are equal. By virtue of
the compactness of the trace operator and the first relation in (25), we have

ue(21,0) —= uf (21,0) in L*(0,a) as & — 0. (27)
Consider the following equality:
~ T
@(21,0) = vh (?) ue(z1,0) for a. e. 1 € (0,a), (28)

where x,(§), zi € R, is the 1-periodic function defined on the segment [0, 1] as follows:

]-a ‘é_l‘gha

2 2

xn(§) = h 1
— — | <1

o 5 <l

It is known that x, (%) % h weakly in L?(0,1) as ¢ — 0. Using this fact and (27), we

obtain that the right-hand side in (28) converges to hug (x1,0) weakly in L2(0, a). On the other
hand,

a

[ 0ita) o = [ @)t dos

0 Do

+ % /(xz + D)0y, uc - (1) da Vi e C5°(0,a). (29)

Do
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Passing to the limit in (29) as ¢ — 0 and taking (26) into account, we have

a

h/ug(',O)w(:cl)dxl = ]Z/uaw(:vl)dx—i—

0 Do

+7 [ Do ) de o € CR0.0)

Do
whence,
/ ud (- 0)(ar) day = / w5 (- OW(n) dy Vb € C5°(0,a),
0 0

ie., ug (z1,0) = ug (21,0) for a.e. 21 € (0,a).
Similarly we can prove that the trace v |;, is equal to zero.

Thus, the results obtained above mean that the function

ug, x € Qo,
up(z) =

uy, « € Dy,

belongs to the space H (21, Do; I;).
4.2.3. Let us add the inequality

/ Vip—ue) V(e —u)do + / O (9 — 1) Dy (0 — uc) + / Otz Dz > 0,
Qo Ge Ge

where ¢ is an arbitrary function from C*(Q;) such that ¢|, = 0 and ¢ < g in Dy (obviously
vlo. € K.) toinequality (6). We get

/Vg@-V(gp—ug)daH—/0x1u53x1¢d$+/0x2g08x2(<p—ug)dfc >
QO Ge Ge

> [ fo-udo+e [ da)o - u)ds,
Qe

Se
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which we can rewrite with the help of (9) in the following form:

/V@-V(cp—us)dx+/mﬁmlgpdx+

—i—/Xh (%) Ory @ Ogopdx — | Oy Opyusdz >
DO DO

/f —u, dx+/xh( )fcpda:—/fugd:c+

Do

+2/Xh< )dgodx—z/d{[adx—

Do DO

_ % Y (%) By, (d(g — uz)) d. (30)

Ge

Passing to the limit in (30) as ¢ — 0 and taking into account the results obtained above, we
obtain the following integral inequality:

/Vgp V(e —ugd dx+h/8$2308z2( © — Uy dx>/f —ug) dz+

Qo

+h/f(cp—ua)dx+2/d(gp—ua)dx (31)

DO DO

for any function ¢ € K; = {gp e CH ) : ¢, =0, p<gin DO}

Since the set K is dense in K|, the integral inequality (31) holds for any function ¢ € K.
This means that the function g is a unique solution of inequality (21) (see Definition 4) and
also it is a weak solution to the homogenized problem (18).

Due to the uniqueness of the solution to problem (18), the above argumentations are true
for any subsequence of {¢} chosen at the beginning of the proof. Thus the limits (17) hold.

4.2.4. From equalities (2) and (19) it follows that

E.(us) = /|Vu€|2dx = /VuE-ng:U+/qud1:+
Qe Ge Qo

/f da;+€/d( )(ue — g) ds, (32)

Se
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Eo(up) = /|Vua“|2dx+h/|6x2ua|2dx = h/amug Oryg dr+
Dy

Q() DO
-l—/fugrda:—kh/f(ua—g)dw+2/d(uag)dx. (33)
Qo Do Do

Passing to the limit in (32) similarly as we made this in (30) and taking into account (33), we
obtain hmsﬂo Es(us) = Eo(uO).
The theorem is proved.
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