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We consider a mixed boundary-value problem for the Poisson equation in a plane two-level junction ).,
which is the union of a domain Qy and a large number 3N of thin rods with thickness of order ¢ =
= O(N7Y). The thin rods are divided into two levels depending on their length. In addition, the thin
rods from each level are e-periodically alternated. The uniform Dirichlet conditions and the nonuni-
form Neumann conditions are given respectively on the sides of the thin rods from the first level and
the second level. Using the method of matched asymptotic expansions and special junction-layer solutions,
we construct the asymptotic approximation for the solution and prove the corresponding estimates in the
Sobolev space H*(Q.) ase — 0 (N — +00).

Poseasdaembcs miwana kpatiosa sadawa 04s pienarna I[lyaccona y naockomy 080pieHesomy 3’ €OHAHHI
Q.. ke € 06’ eOHanHaAM Oeakol o6.aacmi Qy ma eeauxoi Kiabkocni 3N MOHKUX CIEPHCHIB 3 MOBULUHOIO
nopaoky e = O(NY). Tonki cmepicni po3odineno Ha 08a piGHi 6 3a.AeHHOCM 8i0 X O0BHCUHLL, | CIEPHCHI
3 KOJICHO?20 PiBHA £-NepioOUYHO Yepeyrombca. Ha cmoponax moHKux cmepicHie 3 neputo20 pieHa 3a0a-
HO 0OHOPIOHI Kpatiosi ymosu [lipixae, a Ha CMOPOHAX CMepPHCHi8 OpPY2020 Pi6HA — HeOOHOPIOHI Kpatio-
8i ymosu Hetimana. 3 00nomo20t0 memooy y3200X4ceHHA ACUMNIMOMUYHUX DO3BUHEHb Md CReUidAbHUX
PO38°A3KI8 MUNY NPUMEN0B020 ULAPY 8 30HI 3’ €OHAHHA NOOYO)0BAHO ACUMNMOMUYHE HAOAUNCEHHA 017
P036°A3Ky 0aHoi 3a0a4i ma 008edeHo 8i0N0GIOHI acumnmomuyri ouinku y npocmopi Coboaesa H'(€2.)
npue — 0 (N — +00).

1. Introduction and statement of the problem. There are two ways for investigation of boundary-
value problems in perturbed domains. The first one is the proof of the corresponding convergen-
ce theorem. The second way consists in construction of the asymptotic approximation for the
solution and in proving the corresponding asymptotic estimate. For these two ways we need
different assumptions for data of the investigated problem. The last way is more suitable for
applied problems.

Boundary-value problems in thick one-level junctions (thick junctions) are very intensively
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investigated in recent time. As was shown in the papers [1, 2], such problems lose the coerci-
tivity and compactness as ¢ — 0. This creates special difficulties in the asymptotic investigati-
on. In addition, thick junctions are non-convex domains with Lipschitz boundaries, therefore
the solutions to boundary-value problems in such domains have only minimal H!-smoothness.
In [3-9], classification of thick one-level junctions was given and basic results (convergence
theorems and asymptotic approximations) were obtained both for boundary-value and spectral
problems in thick junctions of different types. It was shown that qualitative properties of soluti-
ons essentially depend on the junction type and on the conditions given on the boundaries of
the attached thin domains. A survey of results obtained in this direction is presented in the
papers [3-9]. Here we mention only the pioneer papers [10-12], where the asymptotic behavi-
our of Green’s function of the homogeneous Neumann problem for the Helmholtz equation in
unbounded thick junctions was studied.

In the present paper we continue the asymptotic research of boundary-value problems in
thick multilevel junctions. Those thick junctions have a more complex structure and because of
this the asymptotic study has own particularities and qualitative new results (see [13-18]). Here
we construct the asymptotic approximation for a solution to a mixed boundary-value problem
in a thick two-level junction and investigate influence of varying type of boundary conditi-
ons on the asymptotic behavior. In particular, the homogeneous Dirichlet boundary conditi-
ons are given on the lateral sides of the thin rods from the first level and the inhomogeneous
Neumann boundary conditions d,u. = €g. are given on the lateral sides of the thin rods from
the second level. At first sight it seems that there is no difference between this inhomogeneous
Neumann condition and the homogeneous Neumann condition since the term g. is multiplied
by the factor . But, as we will see in this paper, this is quite false. The Fourier conditions or
the inhomogeneous Neumann conditions make the process of homogenization and approxi-
mation more complicated and, to homogenize boundary-value problems in thick junctions with
those conditions, the method of the integral identities was proposed in [7—9]. The convergence
theorem for the solution of the investigated problem was proved in [16].

1.1. The statement of the problem. Let a, di, do2, b1, hi, ho be positive real numbers and
let d1 < d2,

1 hy
0<b1<§, 0<b1—?, bl+?<§—?

The last restrictions mean that the intervals

h2 hQ hl hl
Ihz(SQ) = <32 - ?a 592 + 2> 5 Ihl(sn) = <5n - ?a Sn+ 2) , = 1737

belong to (0, 1) and don’t intersect; here s; = by, so = 1/2, s3 = 1 — b;.
Let us divide the segment I := {z : 1 € [0,a], z2 = 0} into N equal segments

lej, eGG+1)], j=0,...,N—1 (5: %)

Here N is a large integer, therefore, the value ¢ is a small discrete parameter.
A model thick two-level junction (). consists of the junction’s body

Q={reR?: 0<z<a, 0<z<n~(z1)},
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where v € C*([0,a]), miny v =: 70 > 0, and a large number of the thin rods

» ch
G (s0,6) = {@“ €ER?: o —e(ftsw) < 5

h
G§2)(32,€) = {x ER?: |21 —e(j+s2)| < %

Thus Q. = Qo UGY UG, where

N-1

N—-1
¢ = (6P enauesma), 62 = | ¢Pse),
§=0

j=0

. A/_\/\

see Fig. 1.

Fig. 1

17 To € (—dl,O]}, n

2 xy € (—dQ,o]}, j=0,1,...,N—1.

We see that the number of the thin rods is equal to 3N and they are divided into two levels

Ggl) and GQ) depending on their length. The length of the rods from the first level is equal to
dy and it is equal to ds for the rods from the second one. The parameter ¢ characterizes the
distance between the neighboring thin rods and their thickness. These thin rods from each level

are e-periodically alternated along the segment .
In Q2. we consider the problem

Au(e) = fola), we Q.
us(z) =0, x€ s = oM \ Iy,
Opue(x) = €ge(x), x € s = oG \ (IoU{z : zp = —da}),
dus(z) =0, zeT. =0\ (S8 us?).

Here 0, = 0/0v is the outward normal derivative.

(1)
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Without loss of generality, we can assume that f. € L?(€s), where Q3 = Qo U Do; Dy =
= Iy x (—dg,0) is the rectangle that is filled up by the thin rods from the second level in the
limit passage as ¢ — 0. Analogously, we define D1 = Iy x (—dp,0) and Q1 = Qy U D1. We also
suppose that the function g. and its generalized derivative with respect to x1 belong to L?(Ds)
and

4Cy >0 Ve >0: |]8xlga||Lz(D2) < Cp. (2)

A function v, € H. = {u € H () : u = 0on st } is called a weak solution of
problem (1), if it satisfies the integral identity

/Vug -Vedr = /f5<p dr +¢ / gep dxo Vo € H.. (3)
P

It follows from the fundamental statements of the theory of boundary-value problems that for
every fixed value ¢ > 0 there exists a unique generalized solution to problem (1).

The aim of our research is to construct the asymptotic approximation of the solution to
problem (1) as ¢ — 0, i.e., when the number of the attached thin rods from each level infinitely
increases and their thickness tends to 0, and to prove the corresponding asymptotic estimates.

2. Formal asymptotics for the solution. In this section to construct the leading terms of
formal asymptotic expansions we assume that the right-hand sides in (1) are independent of ¢,
ie., fe = fo, 9 = go and fy, go are smooth.

2.1. Outer expansions. We seek the leading terms for the solution wu., restricted to €2, in
the form

u(z,e) ~ vy (z Ze v (z,¢€) (4)

W(s1,e), &M (s3,2), @ (s2,6). 4 = 0,...,N — 1,

and, restricted to each of the thin rods G ; ;

respectively in the form

T1

u(a:,s)NUO +Z€ vk :Ufl—j) 51:?, 1=1,2. (5)

In (5) we don’t indicate the dependence of s; = by and s3 = 1—b; ati = 1, since the asymptotic
expansions on these rods are the same.

Substituting the series (4) in the equation of problem (1) and in the boundary conditions on
'y = 9Q0\ 1o, and collecting coefficients of the same powers of ¢, we get the following relations

for the function vg :

fAvar(x) = fo(z), r € Q,
oy (r) = 0, z € Ty
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Now let us find limit relations in the rectangles D;, ¢ = 1,2. We write the Taylor series of
v,Ef’*) with respect to the z; at the point 1 = £(j+s,,) and pass to the "fast"variable §; = z /¢,

where s1 = by, so = 1/2, s3 = 1 — b;. Then (5) takes the form

u(z,e) = o5 (el + sn)yx2) + Y VI (s 61,22),  z € G (sp,0), (6)
k=1

where
J— Sn)m amvl(czi:r)z

k
i _ ) (o —j & -
Vk = vy, (6(] + Sn)7$27£1 ]) + Z m! 8.1'{”’

m=1

(e(G + sn) 22,61 —4). (7)

Substituting the series (6) in the differential equation of problem (1) on the rod ng) (s2,€)

from the second level and into the Neumann condition and collecting the coefficients of the
same power of ¢, we obtain one dimensional boundary-value problems with respect to ;.
The first problem is the following:

852%‘/12’j(82,§1,$2) =0, & € Iny(s2),

, h (8)
0, VY <82752 + 227332> =0,

where 0, = 9/9¢1, 8¢, = 0°/IE7; the variable z, is regarded as a parameter in this problem.

From (8) it follows that the function Vf’j doesn’t depend on &;. We restrict ourselves to the
leading terms of the asymptotics and set V12’] = 0. Then, due to (7), we have

VPN + 82), 22, € = §) = (€1 + 5 + 82)0, 050 (£ + 52), 22).

The problem for the function V22’j is as follows:

—32%‘62’j(827§1,w2) = 3%”(()27_)(6(j + s2),22) + fole(j + 52),72), &1 € Iny(s2),

; h . )
0e, Vs <52, S & 22,2132) = £go(e(j + s2), 22).
The solvability condition for (9) is given by the differential equation
—hy 02,057 (25 + 52),w2) = ha fo(e(j + 52),m2) + 200(e(j + 52), 7). (10)

If we substitute (6) into the Neumann conditions on the lower base QE.Q)(SQ,a) of rod
G§-2)(52, €), we get
D05 (e(j + 52), —d2) = 0. (11)
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ASYMPTOTIC APPROXIMATION FOR THE SOLUTION TO A BOUNDARY-VALUE PROBLEM... 341

Since the segments {z : z1 = €(j + s2), T2 € [~dp,0]}, j = 0,1,...,N — 1, fill out the
rectangle Do in the limitase — 0 (N — +o00), we can continue the differential equation (10)
into the rectangle D and the relations (11) into the segment [y, = {z : z; € [0,a], z2 =

= —da}.
Substitute now the series (6) in the differential equation of problem (1) on the rods G§1) (s1,€)

and Ggl) (s3,¢) from the first level. Since these asymptotic expansions are the same, we consider
the rod Ggl)(sl, e). Due to the Dirichlet conditions on the vertical sides, we have v(()l’*) = 0.
The problem for the function Vll’j (s1,£&1,x2) is as follows:

52%V11’j(51,€1,$2) =0, & € In(s1),

; h
Vll’] <S1781 + 21,$2> =0,

from which Vll’j = 0. Then, due to (7), we have vgl’_)(s(j + s1),22,& —j) = 0. The problem
for V, is the following:

—82%V21’j(51,§1,$2) = fo(e(j +s1),22), & € Ip,(51),

; h
VQI’J <81 + 21,172) = 0.

It is easy to verify that

&1
, h h
‘/2(1:])(51751’1,2) — hl—l (51 — 81 — 21> / <31 — 71 — t) fO(t,$2) dt+

81—h1/2

51+h1/2

+ht <51 - % - 51) / <t — o1 h21> Jo(t, wa)dt.

&1
According to (7), we obtain
VST + 51)s 2, 60— §) = VoD (s, 61, 20).

Thus, the asymptotic expansions on the rods from the first level have the form

521)&1’7)(5(]' + sp),z2) + Zskal’j(sn,gl,xg), x € Gg-l)(sn,s), n=13. (12)
k=3

It is evident that the first terms of the asymptotic expansions must coincide on the joint
zone Iy. Therefore, from (12) and (4) it follows that vy (e(j + s1),0) = vy (e(j + s3),0) = 0,
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(2,

N — 1. On the other hand, vy (¢(j + s2),0) must be equal to v )( (j + s2),0) at

., N — 1. This is possible if

I
=
—

<. .
Il

vg (21,0) = 1)(()2 )(ml,()) =0, x € Ip.

As a result, the first terms of the asymptotic expansions (4) and (5) on G have to be
solutions of the following problems:
—Avd (z) = fo(z), = € Qo,
dyvg (z) =0, = €Ty, (13)

vg (21,0) =0, 1 € Ip;

—hs 3:%2”(()2’7)(95) = ha fo(x) + 2g0(x), =z € Da,
v(()2’_)(x1,0) = 0,21 € I, (14)
89521)((]2’7)($1,—d2) =0, x1 € .

Obviously, there is a unique weak solution to problem (13) that belongs to the Sobolev space
HY(Q0,1y) = {u € H' () : u = 0on Iy}. It is easy to calculate that

x2 0
o (@) = —ay /(fo(xl,t)+2hzlgo(x1,t)) dt—/t(fo(xl,t)+2h2lgo(x1,t)) dt.  (15)
—d2 T2

Thus, the asymptotic expansion on the rod G§2) (s2, ) has the following form:

07 (e + s2),@2) + (=€ + § + 52)Duy 0T (G + s2),w2) + > MV (50, 61, 20).
k=2
If we consider the function
vsr(x), r € Q,
R(z) = v(()Q’_)(a:) +¢eY (%) 8331?)(()2’_)(.%), T € Gg), (16)
0, T € G’(l)

as a first approximation for the solution to problem (1), then it leaves the remainder

(O v (21, 0) = hodpyo 7 (21,0))p(1,0) day, o € He, (17)

IoﬁGéQ)
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1
in the corresponding integral identity. In (16), Y () = —t+ B +[t], where [t] is the integral part of
t. To neutralize this remainder, we should construct a special inner expansion in a neighborhood

of the joint zone Ij.
2.2. Inner expansion. Near the joint zone I, we introduce the "rapid"coordinates £ =

= (&1,&), where & = x1/e, & = ma/e. Passing to ¢ = 0, we see that the rods G(()l)(sl,e),
G(()2) (s2,€), G(()l) (s3,¢) transform into the semiinfinite strips

Hl_ = Ihl(sl) X (—OO,O)7 HQ_ = [h2(32) X (—O0,0), Hg = Ihl (33) X (—O0,0).

};A
2 /
IT
0 T2
g,
| PR P §

Fig. 2

The domain ) transforms into the first quadrant {£ : & > 0,& > 0}. Taking into account
the periodicity of the thin rods we can regard the union II = II™ U II] U II; U II;, where
It = (0,1) x (0, +00), as the base domain, see Fig. 2, in which junction-layer problems have
to be considered. Obviously, solutions of these junction-layer problems must be 1-periodic in
51, ie.,

Z(O7§2) = Z(17€2)1 8512(0752) = 6&1Z(17§2)7 52 > 0. (18)

We seek the first term of the inner expansion in a neighborhood of [ in the form

us(z) = e <Z1 (g) Ozyvg (1,0) + =4 (g) (h;18x2v()+(x1,0) — 8@1}(2’7)(561,0))) + O(£%),

(19)

where the functions Z; (), £1(&), £ € I, are 1-periodic with respect to &; (see (18)). The last
summand in (19) to neutralize the remainder (17).
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Substituting (19) in the differential equation of problem (1) and in the corresponding boun-
dary conditions, taking into account that the Laplace operator takes the form e 2 in the coor-
dinates ¢ and collecting the coefficients of the same power of ¢, we obtain that the function Z;
must be a nontrivial solution to the following homogeneous problem:

—AZ1(&) =0, & eIl
9, Z1(8)|es=0 = 9%, Z1(& )lflzla & >0,p=0,1,
O¢, Z1(61,0) = &1 € (0, 1)\ (ny (51) U dny(52) U In, (53)), 20)
A [%Zlhgzzo =0, &1 € In, (51) U Iy (52) U I, (53),
Z1(§) =0, § €S USy,
0¢, Z1(€) = 0, £esS;y,

where S, = OII, \ Iy, (sn), n = 1,3, S5 = OII; \ In,(s2), the brackets denote the jump of
the enclosed quantities. The function =; must be a solution to the following problem:

—-AE1(€) =0, § eI,
9, E1(§)le1=0 = 9, Z1(§ )|51 1, & >0,p=0,1,

0¢,Z1(&1,0) = & € (0,1)\ (Zn, (s1) U Iny (52) U I, (53)),

E1), ., = 0. €1 € Ini(51) U Iny (59) U Ty (55), o
9e51],,_, = 0, &1 € Iy (s1) U Iy (53),

0e51],,_, =1, €1 € Iny(s2),

=1(8) =0, £eS;uUsy,
06,21(8) = 0, £es;.

The main asymptotic relations for a solution to problem (20) can be obtained from general
results about the asymptotic behaviour of solutions to elliptic problems in domains with di-
fferent exits to infinity [19, 20]. The proofs simplify substantially if the polynomial property
of the corresponding sesquilinear forms is employed [21]. However, using symmetry of the
domain II, we can define more exactly the asymptotic relations and detect other properties of
the junction-layer solution Z; similarly as in the papers [4, 5].

Statement 1. There exits a unique solution Z; to problem (20), which has the following
differentiable asymptotics:

£+ ot + Oexp(—01&2)), & — +oo, & € ITT,

Z1(§) = { hy'&+a” +O(exp(0162), & — —o0, £ €11y, (22)
O(exp(d1€2)), §2 — —oo, £ € I} Uy,
where ot are some fixed constants; 6, is an arbitrary fixed number from the interval (0, ). In

addition, the function Z, is even in & with respect to 1/2.
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In order to find the constant o in (22), it is necessary to substitute the function Z; and &
into the second Green’s formula in the domains IIT N{¢ : 0 < & < REL, M7 N{¢: —R <
<& <0} I, N{E: —R < & <0}, n{¢: —R < & < 0}, and to pass to the limit as
R — oo. As aresult, we obtain

at = / Z1(€1,0)dEy, o =h12 / Z1(61,0) dé;. (23)

0,1\ (I, (s1)UI1, (s3)) Thy (s2)

Now let us investigate the solvability of problem (21). Let égo (I, ST U S3) be a space
of infinitely differentiable functions that are equal to zero on S| U S;, satisfy the periodic
conditions (18), and are finite in &9, i.e.,

Vo € CO(I, S US;) 3R>0 VEell |& > R: o) = 0.
Let H be the completion of the space égo (I, S7 U S5 ) with respect to the norm
lullre = [Veull L2 (-
A function = € H is called a weak solution of problem (21), if it satisfies the integral identity

/VgE-Vg(pde— / p(61,0)d6r Ve M.
11

Ihg (52)

Lemma 1. There exits a unique weak solution =1 to problem (21), which has the following
differentiable asymptotics:

ﬁ—’_ + O(exp(—52§2)), 52 — 400, 5 € H+7
E1(§) = § B~ +O(exp(d262)), & — —oo, £ € 115, (24)
O(exp(d262)), §o — —oo, £ € II] ULy,

where (3% are some fixed constants; & is an arbitrary fixed number from the interval (0, ). In
addition, the function E is even in {; with respect to 1/2.

Proof. To prove the first part of this lemma it is enough to show that the linear functional

I(p) = / p(61,0)der, ¢ €,
Iny (s2)

is bounded. With help of the Friedrichs inequality and the cut-off function xo € C*°(R), 0 <
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< xo <1, xo(§2) = 1if |§2] < 1/2,and x0(&2) = 0if [§2] > 1, we deduce

Q)P < hy / S(61,0)dé1 < hy / (9, (x0(&2) (61,62)))? dérdésy <

In,(s2) In, (s2)x(0,1)

< 2hy / (x0)%p” dé + / (Oe,0) " de | <
In,(s2)x(0,1) In, (s2)x(0,1)

<o / G+ oll2 | <
IIN{&:—1<&2<1}

< e / Vo2 de + [l9llZ | < eallglld

IIN{&:—1<&2<1}

Taking into account the properties of solutions to elliptic problems in semiinfinite domains,
we can state that the solution Z; has the asymptotics (24).

Due to the symmetry of the domain w and using the substitution £; = 1 — &; in problem
(21), we obtain that the difference =; (&, &) — Z1(1 — &1, &2) is a solution of the homogeneous
problem (20) and it belongs to H. By virtue of the uniqueness of such a solution, it follows that
this difference vanishes.

By the same way as we obtained (23), we get

1
g = [ =@ - [ s@oda
[0,1\(Th, (51)UIp, (53)) In,(s2)
If we apply the second Green’s formula to the functions Z; and Z; in the domain I[IN{¢ : —R <

< & < R} and then pass to the limit as R — oo, we deduce the relation 5t — 8~ = hoa™.
The lemma is proved.

3. Asymptotic approximations. Here we construct an approximation function R, using the
terms va“ , v[()z’_), Z1, E; defined in the previous section and the following cut-off function
x1 € C¥[R), 0 < x1 <1, xi(z2) = 1if [z2] < A\/2, and x1(z2) = 0if [z2] > A1, where

A1 = 27 min{yg, d1,ds}. It is equal to
RE(z) := Re(x) = vy (z) +exa(z2) N7 (&, 1) [e=2, € Qo

R®(z) == Re = v (@) +e(Y(€)0m,v5 (@) + xa(22) NE (€, 21)) e—z, x € GO,

3

(25)

R (@) = Re(x) = exa(w2) NV 21) ez ve Gl

=
€
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Here Y is defined in (16); the functions N* (¢, 1), NZ7)(€,z1), N7 (€, 21) are 1-periodic
with respect to £; and

N*(&,21) = (Z1(6) = €)uyv (21,0) + Z1(6) (0ol (21,0) = hy ' 0yv (21,0)), & > 0,

N@7) = (Z1(€) — hy "€2)Dny v (21,0) + E1.(€) (Dnyv 7 (21,0) — hy 'Oy (21,0)),

£1<0756H5a

N(L_) = Zl(g)azzv(;r(l:la 0) + El (f) (axﬂ]é&—)(l‘l’ 0) - hglargvar(l'bo))a
&1 <0, elly Ully.
It is easy to verify that Rf(z1,0) = gl’_)(:chO), z1 € Ig N Ggl), and RS (z1,0)

= Rgz’_)(xl,()), r1 € IpN ng). Thus, R. € H.. In addition, [0,, R.]
and

=0,z € IoﬂGgl);

IZQ:O

0n e, = —eY (€02, 08 (@1,0), @1 € NG, (26)

z9= T2T1

Theorem 1. Suppose that fo € C2(s), go € CZ(D3). Then for any &y € (0,1) there exist

positive constants Cy, £y such that for all values € € (0, ¢cq) the difference between the solution u.
to problem (1) and the approximation function R. defined by (25) satisfies the following estimate:

[ue = Rellm1.) < Co (51_50 et |fe = foll L2 guuay + 90 = gsHLz(Gg))) : (27)

Proof. 1. Discrepancies in the domain (). Taking into account the properties of the functions
Z, =1, var and fo, go, we conclude that RY satisfies all boundary conditions for problem (1)
on 9Q N 9N, Putting R in the equation of problem (1), we get

—Aij(.T) - fs(l‘) = _Xll(‘/I:Z) (a§2N+(£7x1))‘£:x/s_
= X1(22) (B N (6 21))lemaye — 200 (Xala) N (121 ) -

— ex1(%2) Oy (O, N (&, 1) e=gyc) — (fe(x) = fo(x)), = € Q. (28)

Further, the arguments of functions involved in calculations are indicated only if their absence
may cause confusion. We multiply the identify (28) by a test function ¢ € H. and integrate by
parts in o,

/ Oy R (21,0) 00 day + / VR - Votpdr — / fopds =
QQ Q0

IoNQe
= I (e, ) + ...+ I (e, %), (29)
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where

If () = - / o (2) Qs N (€, 1)) eyt I,

Qo

If (e,0) = — / 31 (22) (02,6, N (6,21 eyt i,

Qo

I;r(eﬂb) = S/X/l(xg) NT (g,m) O, d,

Qo

If(e,0) = ¢ / 31 (22) (0o, N (6,21)) e - Oy dit,

Qo

Igr(5’¢) = _/(fs(ﬂf) — fo(z)) ¢ dx.

Qo

2. Discrepancies in the thin rings from the second level. 1t is easy to calculate that
8x2R£2’7)(1:1, —d;) = 0, and
O RE™ = £e(Y (€)% 0,00 (@) 11 (@2) @ NO (€ 21))emase). @ e 5P, (30)

11

where we take ” +” or 7 — 7 depending on the right or left side of the thin rod.
Putting R in the differential equation of problem (1), we obtain

~A R (@) — folx) =
= i (2) (9 N (€, 1)) lemae — 1(22) (02,6, N (€ 1) e
— ey (Xi(a2) N7 (L,01) ) = exa(02) Oy (00 N2 (€21 ey ) =

— (fo(z) — folz)) — ediv (Y1 (%) v, (amlu((f"’)) +2hylgo(z),  z € GO,
(31)

Using the following integral identity:

52_1h2/vd$2: /vd:z—s / Y(%) Op,vdx Vv € He, (32)
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which was proved in [8], and taking into account (26) and the boundary values of 9, R_ (see
(30)), we multiply (31) by a test function ¢» € H. and integrate by parts in G, This yields

- / Ouy R (21,0) (21, 0) day + / VR .V, do—

TonG? a®

— / fgwdw—e/ggwdacg:If’_(s,w)+...+1'$’_(5,¢), (33)

Gg2) S§2)

where

I (e,0) = — / X1 (22) (e, N*7) (&, 21)) |ema e ¥ da,

a?

() = - / X (2) (82,6, N €, 21)) oo dr,

a®

X

B =¢ [ ) N (L) o de,

a®

‘[27_(571/}) =¢ / X1(«732) (aac1N(277)(€ax1))‘£:x/s 33@11#65907

a®

2 (e ) = - / (fo(@) — fola)) v da,

al®

I (e,0) =¢ / Vi (%) Vo (0ny0") - Vathda,

a®

Boeb) =< [ (ooo) - go0) v@)dos = 203" [ ¥ () Drafg0 ) do

S§2) Gf)

3. Discrepancies in the thin rings from the first level. 1t is easy to verify that 0, Rgl’f)(:cl,
—di) = 0 and Rgl’_)(x) = 0on SV. Putting R in the differential equation of problem

(1), we obtain
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_AIRS-L_) (‘T) - fa(x) = _X/l (1‘2) (8§2N(1’_) (57 xl))|§:m/s_

_ _ X
= X1(22) (92,6, N (€ 21) ey — 200 (X3 (2) N (L1 ) ) =

— ex1(22) Oy (B, NV (€, 21)|emaye) — fol), z € GV, (34)

Multiplying (34) by a test function ¢ € H. and integrating by parts in G (1), we get

£

_ / Day R (21,0) (21, 0) diy + / VRO Vo de — / fotbde =

NG al ol

= I (6,0) + ...+ I (e,9), (35)

where

I (e,) = — / X1 (22) (e, N (€, 21)) |ema e ¥ da,

alV

I () = / xi(2) (02,6 N (€, 1)) [e—p e 0 e,

al

_ _ T
B =¢ [ ) N (L) o de,

al”

I (e ) = & / 31 (22) (O NO (€, 21)) oo Dot e,
ol

I;’(e,w):—/fg(x)d)da:.

al

4. Asymptotic estimates. Summing (29), (33) and (35), we see that the function R, constructed
by formulas (25) satisfies the following integral identity:

/VIRE-Vﬂﬁdx:/fgwdx—l—e/ggwdasg—}—Fg(w) Vi € H,,
Qe Qe

5
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where FL(y) = If(e,¢) + ... + IF(e,9) + Ig " (e,0) + I7 7 (e,9), I} (e,9) = Ii(e,0) +

+I}’_(E, Y) + I?’_(e, ¥), j = 1,...,5. Subtracting the integral identity (3) from (32), we get

/VI(RE —u.) Vodr = F.(¢) Vi € H.. (36)
Qe

Now we should estimate the value F.(1)). At first we note that due to Lemma 1 [16] the
usual norm ||u|| g1(,) and the norm ||Vul|12(q.) are uniformly equivalent with respect to e.

Integrals in I;"(¢,4)) and I3 (¢, ) are taken, in fact, over

A
supp(xi(z2)) N Qe = {ﬂf : 31 <2 <M } NaQ.,

respectively. In this domain, by virtue of Statement 1 and Lemma 1, the functions

(a§2N+(£>$l))|§:$/€v (a§2N(1’_)(f,$1))’£:$/5, (aEQN(Q’_)(wal))E:z/e

are exponentially small and the functions N, N N(2-) are uniformly bounded with
respect to ¢. Therefore,

I (e,9) + I3 (5, 0)] < eClllllma,).
Here and in what follows all constants in asymptotic inequalities are independent of ¢.
In order to estimate the term I;(e, 1) we use the following statement.

Statement 2 [4, 5]. Assume that a function N is I-periodic in &, belongs to the space Lo(11)
and is exponentially decreasing at infinity as &2 — o0, iL.e., there exist positive constants c, R, o
such that for any |&2| > R

IV(©)] < cexp(—0al&)).

Then for any 6 > 0 there exist positive constants c1, ey such that for all values ¢ € (0,eq) the
following inequality holds:

/NC) Y(@)de| < ae' Yl Y € He.
Qe

Since all functions of ¢ entering in 92 ( N*(¢, 1), 02 NET)(&,21), 02 ( N (& 21)

z1&1 161
exponentially decrease as |£2| — +00, on the basis of Statement 2 we get that

15 ()| < €% Ca(So) 1l ey
where ¢y is an arbitrary fixed positive number.
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Integrals in I (c,1) are over {z : |za| < A} N Q. and they can be estimated in the
following way. Consider, for example, the integral

D] = | [ 906 (200 - )02 00 (01,0 +

Qo

+ E1O) (@00 @1,0) — 13102, 0 (20,0)) )|y, | <

< [ 3110001 (12106~ & — 01 + 1O ~ 571) |y (191t 01,00

Qo

3102, (21,0)] ) davt

+/xl|am¢|(|a+|+|ﬁ+|)(\ 2 027 (@1, 0)] + hy 02, vif (21, 0)]) dr <
Qo

< 1|0z, ¥ Lo (00) J /Xl ’21(5) — & — Ol+|§=x/5 dz +

Qo

+ \l/xl ‘El(f) _ﬁ+‘§:x/sd$+l <

Qo

< |02, ¥l Lo0) (VENZ1(E) = &2 — aF || 2y + VEIEL(E) = BT 2@+ + 1),

where [€| is measure of Q. The values [ Z1(£) — & — a™||p2r+) and [|[E1(§) — B || g2+ are
bounded because of (22) and (24). As a result, we have

EE 9] < e Callellm ). (37)
Remark 1. The constant Cy in (37) depends on the quantities

821)(()2’_)
81‘18%’2

821)3
8.%161’2

sSup ($17 O) )

x1€lp

sup
x1€ly

(21,0)]. (38)

Since fy € CZ(£22) the function v; and its derivatives have no singularities at the points (0, 0)
and (a,0). Therefore, by virtue of classical results on the smoothness of solutions to boundary-
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value problems, the first quantity in (38) is bounded. The boundedness of the second quanti-
ty follows from (15) and the condition gy € C3(Ds).

With the help of the Cauchy — Buniakovsky inequality we estimate the summand 7, 5i (e,),

IE(e,v)| = / (o) — fol@)) ¥ da + / £(0) b da| <

QUG at
— ||f€ - fOHLQ(QoUng))”Q’[)”LQ(QQUGS)) + ||f€||L2(G£1))€||8$1¢||L2(G£1)) S

< (Ifs = foll 2 ey + €C8) 1l .-
Since 811062’_) € H'(Ds), we have

1157 (e, 9)] < eCs [¢llm.).

Now it remains to estimate 172’_. It is obvious that the last summand in I?’_ is not greater
than ¢ie|¢| g1 (q. ). Using identity (32), assumptions (2) and gy € Cj(D2), we have

: / (g0(2) — 9(2)) (@) dan| < e / o — g¢| || d + / 100 (g0 — 92)¥) | dr | <

s a® @

< es (Ilgo = 92l o g, +2) Il o)

Thus, |27 (e, )| < Cr (lloo = el 2o, +2) 1llaan).
With regard to the inequalities obtained, we conclude that for the right-hand side in (36)
the following inequality holds:

[Fe(¢)] < Co (51750 et |fe = foll 2 quuey + 9o — gaHLg(Gg))) [l Y € He,
(39)

where d is a positive fixed number. From (36) and (39) it follows the inequality (27).
Theorem is proved.
Corollary 1. From (27) it follows that

2,—
lue = v I 2(00) + e = 087l o gy + el oy <

S C2 (51_60 +e+ HfE - fOH[P(QQUGg)) + HQO - g€||L2(G£2))> .
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Corollary 2. Assume that

fo(z) = fo(z) +efi(x,e), =€ Q. where |fi(,€)llr2.) =O() as & —0,

ge(2) = go(z) +eqi(z,¢), = €GP, where Hg1(-,€)HL2(Gg)) =0() as ¢ —0.
Then for any 6y > 0 there exist positive constants cs, ey such that for all values € € (0,¢¢)

60 27_)H (50.

[ue = Rel[ 0.y < cael ™, Hue—UJHL%Qo)"‘Hué_U(() )+HU€H < czel”

LG L2(Ge)

Conclusion. An important problem for existing multiscale methods is their stability and
accuracy. The proof of the error estimate between the constructed approximation and the exact
solution is a general principle that has been applied to the analysis of the efficiency of a multi-
scale method. In our paper we have constructed the asymptotic approximation for the solution
to problem (1) and proved such estimates in Theorem 1 and Corollaries 1 and 2.

It was shown that, due to the homogeneous Dirichlet boundary conditions on the vertical
sides of the rods from of first level, the original boundary-value problem (1) decomposes in the
limit into two independent problems (13) and (14). Thanks to the inhomogeneous Neumann
boundary conditions on the vertical sides of the rods the second level, we have obtained the
corresponding term in the right-hand side of the ordinary differential equation of problem (14).
This fact was noted in [22], where elliptic boundary-value problems that describe processes in
strongly inhomogeneous thin perforated domains with rapidly varying thickness were studied.

It follows from these results that for applied problems or for numerical calculations in
thick two-level junctions we can use the corresponding limit problems, which are more simple,
instead of the initial problem with a sufficient validity. Furthermore, owing to the convergence
theorem for the solution to problem (1) proved in [16], we can use the limit problems (13) and
(14) with minimal conditions for the right-hand sides fp and go.

In this paper we consider the thick two-level junction (2., which has more dense pa-
cking of the thin rods from the first level on the cell of the joining. As a result we have a more
complex domain (the domain II, see Fig. 2), where special junction-layer problems are consi-
dered. The junction-layer solutions behave as powers at infinity and do not decrease exponenti-
ally. Therefore, they influence directly the leading terms of the asymptotics. In addition, due
to the homogeneous Dirichlet boundary conditions we had to modify the form of the inner
expansion.
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