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IMPLICIT DIFFERENCE METHODS FOR PARABOLIC FUNCTIONAL
DIFFERENTIAL PROBLEMS OF THE NEUMANN TYPE

НЕЯВНI РIЗНИЦЕВI МЕТОДИ ДЛЯ ПАРАБОЛIЧНИХ
ФУНКЦIОНАЛЬНО-ДИФЕРЕНЦIАЛЬНИХ ЗАДАЧ
НЕЙМАНIВСЬКОГО ТИПУ

K. Kropielnicka

Inst. Math. Univ. Gdańsk
Wit Stwosz Str. 57, 80-952 Gdańsk, Poland

Nonlinear parabolic functional differential equations with initial boundary conditions of the Neumann
type are considered. A general class of difference methods for the problem is constructed. Theorems on
the convergence of difference schemes and error estimates of approximate solutions are presented. The
proof of the stability of the difference functional problem is based on a comparison technique. Nonlinear
estimates of the Perron type with respect to the functional variable for given functions are used. Numerical
examples are given.

Розглянуто нелiнiйнi параболiчнi функцiонально-диференцiальнi рiвняння з початковими гра-
ничними умовами нейманiвського типу. Побудовано загальний клас рiзницевих методiв для
розв’язку задачi. Доведено теореми про збiжнiсть рiзницевих схем та встановлено оцiнки похи-
бок наближених розв’язкiв. Доведення стiйкостi рiзницевої функцiональної задачi базується на
технiцi порiвняння. Використано нелiнiйнi оцiнки перронiвського типу вiдносно функцiональ-
ної змiнної для фiксованої функцiї. Наведено числовi приклади.

1. Introduction. For any two metric spaces X and Y we denote by C(X, Y ) the class of all conti-
nuous functions defined on X and taking values in Y. Let M [n] denote the set of all n× n real
matrices. We will use vector inequalities, understanding that the same inequalities hold between
their corresponding components. Let E = [0, a]× [−b, b], where a > 0, b = (b1, . . . , bn), bi > 0
for 1 ≤ i ≤ n, and

∂0E = [0, a]× ([−b, b] \ (−b, b)).

Write Σ = E × C(E, R)×Rn ×M [n] and

∂0Ej = {(t, x) ∈ ∂0E : xj = bj} ∪ {(t, x) ∈ ∂0E : xj = −bj}, 1 ≤ j ≤ n,

and suppose that

f : Σ → R, ϕ : [−b, b] → R, ϕj : ∂0Ej → R, 1 ≤ j ≤ n,

are given functions. We consider the problem consisting of the functional differential equation

∂tz(t, x) = f(t, x, z, ∂xz(t, x), ∂xxz(t, x)) (1)

with the initial boundary condition of Neumann type,

z(0, x) = ϕ(x) for x ∈ [−b, b], (2)
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∂xjz(t, x) = ϕj(t, x) for (t, x) ∈ ∂0Ej , 1 ≤ j ≤ n, (3)

where ∂xz = (∂x1z, . . . , ∂xnz), and ∂xxz = [∂xixjz]i,j=1,...,n.

For t ∈ [0, a] we write Et = [0, t] × [−b, b]. The function f is said to satisfy the Volterra
condition if for each (t, x, q, s) ∈ E×Rn×M [n] and z, z̄ ∈ C(E,R) such that z(τ, y) = z̄(τ, y)
for (τ, y) ∈ Et we have f(t, x, z, q, s) = f(t, x, z̄, q, s). Note that the Volterra condition means
that the value of f at the point (t, x, z, q, s) of the space Σ depends on (t, x, q, s) and on the
restriction of z to the set Et.

Our purpose is to investigate a numerical method for the approximation of classical soluti-
ons to problem (1) – (3) assuming that f satisfies the Volterra condition. We wish to approxi-
mate these classical solutions with solutions of associated implicit difference functional equati-
ons and to estimate the difference between these solutions.

In recent years a number of papers concerned with numerical methods for parabolic di-
fferential or functional differential equations were published.

Difference methods for nonlinear parabolic problems have the following property. It is easy
to construct an explicit Euler’s type difference scheme which satisfies consistency conditions
on all classical solutions of the original problem. The main task in these considerations is to
find a finite difference scheme which is stable. The method of difference inequalities or si-
mple theorems on recurrent inequalities are used in the investigations of the stability. The
convergence results were also based on a general theorem on the error estimate of numeri-
cal solutions for functional difference equations of the Volterra type with unknown functions
of several variables.

Finite difference approximations of the initial boundary-value problems for parabolic di-
fferential or functional equations were considered by many authors under various assumptions.
Difference methods for nonlinear parabolic differential equations with initial boundary conditi-
ons of the Dirichlet type were considered in [1 – 3]. Numerical treatment of the Cauchy problem
can be found in [4 – 7].

The paper [8] is concerned with initial boundary-value problems of the Neumann type.
Difference methods for nonlinear parabolic equations with nonlinear boundary condition

are investigated in [9 – 12].
The papers [13 – 16] initiated the theory of implicit difference methods for nonlinear parabo-

lic differential equations. Classical solutions of initial boundary-value problems of the Dirichlet
type for nonlinear equations without mixed derivatives are approximated in [14, 15] by solutions
of difference schemes which are implicit with respect to time variable. The paper [16] deals
with initial boundary-value problems of the Neumann type for nonlinear equations with mixed
derivatives. The proofs of the convergence of implicit difference schemes are based on the
method of difference inequalities. It is assumed that given functions have partial derivatives
with respect to all variables except for (t, x). Our assumptions are more general. In the paper
we introduce nonlinear estimates of the Perron type with respect to the functional variable.
Note that our theorems are new also in the case of parabolic equations without a functional
variable.

The paper is organized as follows. In Section 2 we not only set up the notation and termi-
nology, but we construct a class of difference schemes for (1) – (3) as well. The existence and
uniqueness of implicit difference schemes, which are not obvious in contrary to the explicit
schemes, are proved in Section 3. The third section is also devoted to the study of error esti-
mates for approximate solutions of implicit difference functional problems. The main part of
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the paper, Section 4, deals with the convergence of a difference method for (1) – (3). Finally the
numerical examples are presented in the last part of the paper.

Natural specification of given operator allows to apply the results of this paper to differential
equations with deviated variables and integral-differential problems.

2. Discretization of mixed problems. We will denote by F(X, Y ) the class of all functions
defined on X and taking values in Y, where X and Y are arbitrary sets. Let N and Z denote
the set of natural numbers and the set of integers, respectively. For x, y ∈ Rn where x =
= (x1, . . . , xn), y = (y1, . . . , yn), we write ‖x‖ = |x1|+ . . . + |xn| and x ∗ y = (x1y1, . . . , xnyn).
We formulate now a difference problem corresponding to (1) – (3). We define a mesh on E in the
following way. Let (h0, h

′) where h′ = (h1, . . . , hn) stand for steps of the mesh. For h = (h0, h
′)

and (r, m) ∈ Z1+n where m = (m1, . . . ,mn) we define nodal points as follows

t(r) = rh0, x(m) = m ∗ h′, x(m) = (x(m1)
1 , . . . , x(mn)

n ).

Let us denote by H the set of all h = (h0, h
′) such that there exist (N1, . . . , Nn) = N ∈ Nn

satisfying the condition N ∗ h′ = b. We write ‖h‖ = h0 + h1 + . . . + hn. Let N0 ∈ N be defined
by the relation N0h0 ≤ a < (N0 + 1)h0. For h ∈ H we put

R1+n
h = {(t(r), x(m)) : (r, m) ∈ Z1+n}

and
Eh = E ∩R1+n

h , ∂0Eh = ∂0E ∩R1+n
h ,

∂0Eh.j = ∂0Ej ∩R1+n
h , j = 1, . . . , n,

E′
h = {(t(r), x(m)) ∈ Eh : 0 ≤ r ≤ N0 − 1},

Σh = E′
h × F (Eh,R)×Rn ×M [n].

Put Eh.r = E ∩
(
[0, t(r)]×Rn

)
, where 0 ≤ r ≤ N0, and

‖z‖h.r = max{|z(r̃,m)| : (t(r̃), x(m)) ∈ Eh.r}, 0 ≤ r ≤ N0.

Let ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Rn be the vector with 1 in the i-th position. Write

J = {(i, j) : 1 ≤ i, j ≤ n, i 6= j}

and suppose that we have defined the sets J+, J− ∈ J such that J+ ∪ J− = J, J+ ∩ J− = ∅
(in particular, it may happen that J+ = ∅ or J− = ∅). We assume that (i, j) ∈ J+ when
(j, i) ∈ J+.

For each m ∈ Zn such that x(m) ∈ [−b, b]\(−b, b) we consider the class of α = (α1, . . . , αn) ∈
∈ Zn satisfying the conditions:

i) ‖α‖ = 1 or ‖α‖ = 2,
ii) if m = (m1, . . . ,mn) and there is j, 1 ≤ j ≤ n, such that mj = Nj then αj ∈ {0, 1},
iii) if m = (m1, . . . ,mn) and there is j, 1 ≤ j ≤ n, such that mj = −Nj then αj ∈ {−1, 0}.
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The set of all α ∈ Zn satisfying the above conditions will be denoted by A(m). Let us define
the following sets:

∂E+
h = {(t(r), x(m+α)) : (t(r), x(m)) ∈ ∂0Eh and α ∈ A(m)},

E+
h = ∂E+

h ∪ Eh.

Let z : E+
h → R and −N ≤ m ≤ N. We define

δ+
i z(r,m) =

1
hi

(
z(r,m+ei) − z(r,m)

)
, δ−i z(r,m) =

1
hi

(
z(r,m) − z(r,m−ei)

)
,

where 1 ≤ i ≤ n. We apply the difference operators δ0, and the operators

δ = (δ1, . . . , δn), δ(2) = [δij ]i,j=1,...,n

given by

δ0z
(r,m) =

1
h0

(
z(r+1,m) − z(r,m)

)
, (4)

δiz
(r,m) =

1
2

(
δ+
i z(r,m) + δ−i z(r,m)

)
, 1 ≤ i ≤ n. (5)

The difference operators of the second order δij , i, j = 1, . . . , n, are defined in the following
way:

δiiz
(r,m) = δ+

i δ−i z(r,m), 1 ≤ i ≤ n, (6)

and

δijz
(r,m) =

1
2

(
δ+
i δ−j z(r,m) + δ−i δ+

j z(r,m)
)

, (i, j) ∈ J−, (7)

δijz
(r,m) =

1
2

(
δ+
i δ+

j z(r,m) + δ−i δ−j z(r,m)
)

, (i, j) ∈ J+. (8)

Suppose that the functions

fh : Σh → R, ϕh : [−b, b] → R, ϕh.j : ∂0Eh.j → R, 1 ≤ j ≤ n,

are given. We consider the difference equations

δ0z
(r,m) = fh(t(r), x(m), z, δz(r+1,m), δ(2)z(r+1,m)), −N ≤ m ≤ N, (9)
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z(t(r), x(m+α)) = z(t(r), x(m−α)) + 2
n∑

j=1

αjhjϕh.j(t(r), x(m)) on ∂0Eh, α ∈ A(m), (10)

with the initial condition

z(0,m) = ϕ
(m)
h for x(m) ∈ [−b, b]. (11)

The function fh is said to satisfy the Volterra condition if for each (t(r), x(m), q, s) ∈ Σ′
h ×

×Rn ×M [n] and z, z̄ ∈ F (Eh,R) such that z(τ, y) = z̄(τ, y) for (τ, y) ∈ Eh.r we have

fh

(
t(r), x(m), z, q, s

)
= fh

(
t(r), x(m), z̄, q, s

)
.

The difference functional problem (9) – (11) with δ0, δ, δ(2) defined by (4) – (8) is considered
as an implicit difference method for (1) – (3). It is important in our considerations that the
difference expressions δz and δ(2)z appear in (9) at the point (t(r+1), x(m)). The corresponding
explicit difference scheme consist of (10), (11) and the equation

δ0z
(r,m) = fh(t(r), x(m), z, δz(r,m), δ(2)z(r,m)), −N ≤ m ≤ N. (12)

We assume that fh satisfies the Volterra condition. It is clear that there exists exactly one soluti-
on of problem (10) – (12). We prove that under natural assumptions on given functions there
exists exactly one solution uh : E+

h → R of the implicit difference problem (9) – (11).

3. Approximate solutions of difference functional problems. We will denote by Fh the Ni-
emycki operator corresponding to (9), i.e.,

Fh[z](r,m) = fh

(
t(r), x(m), z, δz(r+1,m), δ(2)z(r+1,m)

)
, (t(r), x(m)) ∈ E′

h.

Assumption H[fh]. The function fh : Σh → R of variables (t, x, w, q, s), where

q = (q1, . . . , qn), s = [sij ]i,j=1,...,n,

satisfies the conditions
1) fh(t, x, z, ·) ∈ C(Rn ×M [n],R) and the derivatives

∂qfh = (∂q1fh, . . . , ∂qnfh), ∂sfh = [∂sijfh]i,j=1,...,n,

exist on Σh and

∂qfh(t, x, z, ·) ∈ C(Rn ×M [n],Rn), ∂sfh(t, x, z, ·) ∈ C(Rn ×M [n],M [n])

for each (t, x, z) ∈ E′
h × F(Eh,R);

2) the functions ∂qfh : Σh → Rn, ∂sfh : Σh → M [n] are bounded;
3) the matrix ∂sfh is symmetric and

∂sijfh(P ) ≥ 0 for (i, j) ∈ J+, ∂sijfh(P ) ≤ 0 for (i, j) ∈ J−, (13)
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−1
2
|∂qifh(P )|+ 1

hi
∂siifh(P )−

n∑
j=1,j 6=i

1
hj
|∂sijfh(P )| ≥ 0, 1 ≤ i ≤ n, (14)

where P = (x, y, z, q, s) ∈ Σ.

Remark 1. It is assumed in condition H[fh] 3) that the functions

gh.ij = sign ∂sijfh, (i, j) ∈ J,

are constant on Σh. Relations (13) can be considered as definitions of the sets J+ and J−.

Remark 2. Suppose that
(i) conditions 1), 2) of Assumption H[fh] are satisfied;
(ii) there is p̃ > 0 such that

∂siifh(P )−
n∑

j=1
j 6=i

∣∣∂sijfh(P )
∣∣ ≥ p̃, i = 1, . . . , n, (15)

where P = (t, x, w, q, s) ∈ Σ.

Then there is ε̃ > 0 such that for ‖h′‖ < ε̃ assumption (14) is satisfied.
It is also worth noting that condition (15) implies that the function fh is parabolic in the

sense of Walter, i.e.,

if s̄, s̃ ∈ Mn×n and s̄ ≤ s̃ then
n∑

i,j=1

∂sijfh(P )(s̃ij − s̄ij)ξiξj > 0,

for ξ = (ξ1, . . . , ξn) ∈ Rn, ξ 6= 0.

We first prove a lemma on existence and uniqueness of a solution for problem (9) – (11).
The proof is based on the Banach fixed point theorem.

Lemma 1. If assumption H[fh] is satisfied and ϕh : [−b, b] → R, ϕh.j : ∂0Eh.j → R, j =
= 1, . . . , n, then there is exactly one solution uh : E+

h → R of problem (9) – (11).

Proof. Suppose that 0 ≤ r ≤ N0 − 1 is fixed and that the solution of (9) – (11) is defined
on E+

h ∩
(
[0, t(r)]×Rn

)
. We prove that the numbers u

(r+1,m)
h , where (t(r+1), x(m)) ∈ E+

h , exist
and that they are unique. There is Qh > 0 such that

Qh ≥ 2h0

n∑
i=1

1
h2

i

∂siifh(P )− h0

∑
(i,j)∈J

1
hihj

|∂sijfh(P )|, P ∈ Σh. (16)

Then equation (9) is equivalent to the system of equations

z(r+1,m) =
1

Qh + 1

[
Qhz(r+1,m) + u

(r,m)
h + h0fh(t(r), x(m), uh, δz(r+1,m), δ(2)z(r+1,m))

]
, (17)
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where −N ≤ m ≤ N, and

z(t(r+1), x(m+α)) = z(t(r+1), x(m−α)) + 2
n∑

j=1

αjhjϕh.j(t(r+1), x(m)), (18)

where (t(r+1), x(m)) ∈ ∂0Eh, α ∈ A(m), with the initial condition

z(0,m) = ϕ
(m)
h for x(m) ∈ [−b, b] (19)

and z(r+1,m) are unknown. Write

Sh =
{

x(m) : (t(r+1), x(m)) ∈ E+
h

}
.

We consider the space F(Sh,R). Elements of F(Sh,R) are denoted by ξ, ξ̄. For ξ ∈ F(Sh,R)
we write ξ(m) = ξ(x(m)) and

δξ(m) = (δ1ξ
(m), . . . , δnξ(m)), δ(2)ξ(m) =

[
δijξ

(m)
]
i,j=1,...,n

,

where δi and δij , 1 ≤ i, j ≤ n, are defined by (5) – (8). The norm in the space F(Sh,R) is
defined by

‖ξ‖∗ = max{|ξ(m)| : x(m) ∈ Sh}.

Set

Xh = {ξ ∈ F(Sh,R) : ξ(m+α) = ξ(m−α) + 2
n∑

j=1

αjhjϕh.j(t(r+1), x(m)) on ∂0Eh, α ∈ A(m)}.

Let Wr.h : Xh → Xh be the operator defined by

Wr.h[ξ](m) =
1

Qh + 1

[
Qhξ(m) + u

(r,m)
h + h0fh(t(r), x(m), uh, δξ(m), δ(2)ξ(m))

]
,

where −N ≤ m ≤ N and

Wr.h[ξ](m+α) = Wr.h[ξ](m−α) + 2
n∑

j=1

αjhjϕh.j(t(r+1), x(m)) on ∂0Eh, α ∈ A(m). (20)

We prove that for ξ, ξ̄ ∈ Xh we have

‖Wr.h[ξ]−Wr.h[ξ̄]‖∗ ≤
Qh

1 + Qh
‖ξ − ξ̄‖∗. (21)

Write

Ai.+(Q) =
h0

2hi
∂qifh(Q) +

h0

h2
i

∂siifh(Q)−
n∑

j=1
j 6=i

h0

hihj
|∂sijfh(Q)|,
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Ai.−(Q) = − h0

2hi
∂qifh(Q) +

h0

h2
i

∂siifh(Q)−
n∑

j=1
j 6=i

h0

hihj
|∂sijfh(Q)|,

B(Q) = −2
n∑

i=1

h0

h2
i

∂siifh(Q) +
n∑

i,j=1
j 6=i

h0

hihj
|∂sijfh(Q)|,

where Q ∈ Σh and 1 ≤ i ≤ n.
It follows from assumption H[fh] that for each m, −N ≤ m ≤ N, there is P (r,m) ∈ Σh

such that

|Wr.h[ξ](m) −Wr.h[ξ̄](m)|(Qh + 1) ≤ |(Qh + B(P (r,m)))(ξ − ξ̄)(m)|+

+

∣∣∣∣∣
n∑

i=1

Ai.+(P (r,m))(ξ − ξ̄)(m+ei)

∣∣∣∣∣+
∣∣∣∣∣

n∑
i=1

Ai.−(P (r,m))(ξ − ξ̄)(m−ei)

∣∣∣∣∣+

+ h0

n∑
(i,j)∈J+

1
2hihj

∂sijfh(Q)
[
|(ξ − ξ̄)(m+ei+ej)|+ |(ξ − ξ̄)(m−ei−ej)

]
−

− h0

n∑
(i,j)∈J−

1
2hihj

∂sijfh(Q)
[
|(ξ − ξ̄)(m+ei−ej)|+ |(ξ − ξ̄)(m−ei+ej)|

]
.

It follows from assumption H[fh] and from (16) that

Qh + B(P (r,m)) ≥ 0, Ai.+(P (r,m)) ≥ 0, Ai.−(P (r,m)) ≥ 0, 1 ≤ i ≤ n,

and

B(P (r,m)) +
n∑

i=1

Ai.+(P (r,m)) +
n∑

i=1

Ai.−(P (r,m))+

+ h0

n∑
(i,j)∈J+

1
2hihj

∂sijfh(Q)− h0

n∑
(i,j)∈J−

1
2hihj

∂sijfh(Q) = 0.

Thus we get ∣∣∣Wr.h[ξ](m) −Wr.h[ξ](m)
∣∣∣ ≤ Qh

Qh + 1
‖(ξ − ξ̄)‖∗, −N ≤ m ≤ N.

We conclude from (20) that the above inequality is satisfied for (t(r+1), x(m)) ∈ ∂0Eh, α ∈ A(m).
This completes the proof of (21). The Banach fixed point theorem implies that there exists
exactly one solution of (17) – (19). Since uh is given on the initial set {0} × [−b, b], the proof of
the lemma is completed by induction with respect to r, 0 ≤ r ≤ N0.
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Let us suppose that uh : E+
h → R is a solution of problem (9) – (11) and vh : E+

h → R
satisfies the following conditions:

|δ0v
(r,m)
h − Fh[vh](r,m)| ≤ γ(h) on E′

h, (22)

|v(r,m+α)
h − v

(r,m−α)
h − 2

n∑
j=1

αjhjϕ
(r,m)
j.h | ≤ γ1(h)‖h′‖2 on ∂0Eh, α ∈ A(m), (23)

|(v(0,m)
h − ϕ

(m)
h )| ≤ γ0(h), x(m) ∈ [−b, b], (24)

where γ, γ0, γ1 : H → R+ and

lim
h→0

γ(h) = 0, lim
h→0

γ0(h) = 0, lim
h→0

γ1(h) = 0. (25)

The function vh satisfying the above relations is considered as an approximate solution of
problem (9) – (11). We prove a theorem on an estimate of the difference between the exact
and approximate solutions of (9) – (11). Put

Ih = {t(r) : 0 ≤ r ≤ N0)}, I ′h = Ih \ {t(N0)}.

For a function η : Ih → R we write η(r) = η(t(r)).

Assumption H[fh, σh]. Assumption H[fh] is satisfied and there is a function σh : I ′h×R+ →
→ R+ is such that

1) σh is nondecreasing with respect to the second variable and σh(t, 0) = 0 for t ∈ I ′h;
2) the difference problem

η(r+1) = η(r) + h0σh(t(r), η(r)), 0 ≤ r ≤ N0 − 1, (26)

η(0) = 0, (27)

is stable in the following sense: if γ̄, γ̄0 : H → R+ are functions such that

lim
h→0

γ̄(h) = 0, lim
h→0

γ̄0(h) = 0, (28)

and ηh : Ih → R+ is a solution of the difference problem

η(r+1) = η(r) + h0σh(t(r), η(r)) + h0γ̄(h), 0 ≤ r ≤ N0 − 1, (29)

η(0) = γ̄0(h), (30)
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then there is α̃ : H → R+ such that η
(r)
h ≤ α̃(h) for t(r) ∈ Ih and limh→0 α̃(h) = 0;

3) the estimate

‖fh(t, x, z, q, s)− fh(t, x, z̄, q, s)‖ ≤ σh(t, ‖z − z̄‖h.r)

is satisfied on Σh.

Theorem 1. Suppose that assumption H[fh, σh] is satisfied and
1) uh : E+

h → R is a solution of (9) – (11) and the function vh : E+
h → R satisfies (22) – (24);

2) there is c̃ ∈ R+ such that ‖h′‖2 ≤ c̃h0.
Then there is α : H → R+ such that

|(uh − vh)(r,m)| ≤ α(h) on Eh (31)

and

lim
h→0

α(h) = 0. (32)

Proof. Let Γh : E′
h → R, Γ0.h : E0.h → R, Γ∂.h : ∂0Eh → R be defined by the relations

δ0v
(r,m)
h = Fh[vh](r,m) + Γ(r,m)

h on E′
h,

v
(r,m+α)
h − v

(r,m−α)
h = 2

n∑
j=1

αjhjϕ
(r,m)
j.h + Γ(r,m)

∂.h on ∂0Eh and α ∈ A(m),

v
(0,m)
h = ϕ

(m)
h + Γ(m)

0.h , x(m) ∈ [−b, b].

It follows from (22) – (25) that∣∣∣Γ(r,m)
h

∣∣∣ ≤ γ(h) on E′
h,
∣∣∣Γ(r,m)

∂.h

∣∣∣ ≤ γ1(h)‖h′‖2 on ∂0Eh,

∣∣∣Γ(m)
0.h

∣∣∣ ≤ γ0(h) for x(m) ∈ [−b, b]

and
lim
h→0

γ(h) = 0, lim
h→0

γ0(h) = 0, lim
h→0

γ1(h) = 0.

Write zh = uh − vh and

Ξ(r,m)
h = h0

[
fh(t(r), x(m), vh, δu

(r+1,m)
h , δ(2)u

(r+1,m)
h )− fh(t(r), x(m), vh, δv

(r+1,m)
h , δ(2)v

(r+1,m)
h )

]
,

Λ(r,m)
h = h0

[
fh(t(r), x(m), uh, δu

(r+1,m)
h , δ(2)u

(r+1,m)
h )− fh(t(r), x(m), vh, δu

(r+1,m)
h , δ(2)u

(r+1,m)
h )

]
.

Then we have

z
(r+1,m)
h = z

(r,m)
h + Ξ(r,m)

h + Λ(r,m)
h − h0Γ

(r,m)
h on E′

h (33)
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and
z
(r,m+α)
h = z

(r,m−α)
h − Γ(r,m)

∂.h on ∂0Eh, α ∈ A(m).

Our first goal is to estimate the function Λh. According to condition 3) of assumption H[fh],
we have

|Λ(r,m)
h | ≤ h0σh(t(r), ‖z‖h.r) on E′

h.

The task is now to find an estimate for Ξ(r,m)
h .

It follows from the definition of difference operators and from condition 1) of assumption
H[fh] that there is Q ∈ Σh such that

Ξ(r,m)
h = B(Q)z(r+1,m)

h +

+
n∑

i=1

Ai.+(Q)z(r+1,m+ei)
h +

n∑
i=1

Ai.−(Q)z(r+1,m−ei)
h +

+ h0

∑
(i,j)∈J+

1
2hihj

|∂sijf(Q)|
[
z
(r,m+ei+ej)
h + z

(r,m−ei−ej)
h

]
+

+ h0

∑
(i,j)∈J−

1
2hihj

|∂sijf(Q)|
[
z
(r,m+ei−ej)
h + z

(r,m−ei+ej)
h

]
, (34)

where (t(r), x(m)) ∈ E′
h.

Write
ε
(r)
h = max

{
|z(r,m)

h | : (t(r), x(m)) ∈ Eh.r

)}
,

ε̃
(r)
h = max

{
|z(r,m)

h | : (t(r), x(m)) ∈ E+
h ∩

(
[0, t(r)]×Rn

)}
,

where 0 ≤ r ≤ N0.
It follows from (13), (14), condition 1) of assumption H[fh] that

Ai.+(Q) ≥ 0, Ai.−(Q) ≥ 0. (35)

Thus we get

ε
(r+1)
h [1−B(Q)] ≤ ε̃

(r,m)
h +

+ ε
(r+1)
h

[ n∑
i=1

Ai.+(Q) +
n∑

i=1

Ai.−(Q) +
n∑

i,j=1
j 6=i

h0

hihj
|∂sijfh(Q)|

]
+

+ h0σh(t(r), ε(r)
h ) + h0γ(h).

One can note that
n∑

i=1

Ai.+(Q) +
n∑

i=1

Ai.−(Q) + B(Q) +
n∑

i,j=1
j 6=i

h0

hihj
|∂sijfh(Q)| = 0 (36)
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and
1−B(Q) > 0.

The above estimates and (33) imply

ε
(r+1)
h ≤ ε̃

(r)
h + h0σh(t(r), ε(r)

h ) + h0γ(h),

where 0 ≤ r ≤ N0 − 1. It is easily seen that

ε̃
(r)
h ≤ ε

(r)
h + h0γ1(h)c̃, 0 ≤ r ≤ N0 − 1.

Thus we see that the function εh satisfies the recurrence inequality

ε
(r+1)
h ≤ ε

(r)
h + h0σh(t(r), ε(r)

h ) + h0 (γ(h) + c̃γ1(h)) , 0 ≤ r ≤ N0 − 1,

and ε
(0)
h ≤ γ0(h).

Let us denote by η̄h : Ih → R+ a solution of the initial problem

η
(r+1)
h = η

(r)
h + h0σh(t(r), η(r)

h ) + h0 (γ(h) + c̃γ1(h)) , 0 ≤ r ≤ N0 − 1,

η
(0)
h = γ0(h).

It follows easily that ε
(r)
h ≤ η

(r)
h for 0 ≤ r ≤ N0. Then the assertion of the theorem follows

from the stability of problem (26), (27).

4. Convergence of implicit difference methods. Now we give an example of the operator fh

associated with (1) – (3), and we prove that the corresponding difference method is convergent.
For any z ∈ C(E, R) we put

‖z‖t = max{|z(τ, x)| : (τ, x) ∈ Et}, 0 ≤ t ≤ a.

Equation (1) contains the functional variable z which is an element of the space C(E,R). Then
we need an interpolating operator Th : F(Eh,R) → C(E,R). We give an example of such an
operator as follows. Put

= = {λ = (λ1, . . . , λn) : λi ∈ {0, 1} for 0 ≤ i ≤ n}.

Let z ∈ F (Eh,R) and (t, x) ∈ E. There exists (r, m) ∈ Z1+n such that t(r) ≤ t ≤ t(r+1),
x(m) ≤ x ≤ x(m+1) and (t(r), x(m)), (t(r+1), x(m+1)) ∈ Eh where m+1 = (m1 +1, . . . ,mn +1).
We define

Th[z](t, x) =
t− t(r)

h0

∑
λ∈=

z(r+1,m+λ)

(
x− x(m)

h

)λ(
1− x− x(m)

h

)1−λ

+

+

(
1− t− t(r)

h0

)∑
λ∈=

z(r,m+λ)

(
x− x(m)

h

)λ(
1− x− x(m)

h

)1−λ
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where (
x− x(m)

h

)λ

=
n∏

i=1

(
xi − x

(mi)
i

hi

)λi

,

(
1− x− x(m)

h

)1−λ

=
n∏

i=1

(
1−

xi − x
(mi)
i

hi

)1−λi

,

and we take 00 = 1 in the above formulas. Then we have defined Thz on E. It follows easily
that Thz ∈ C(E,R), and that ‖Th[z]‖t(r) = ‖z‖h.r, 0 ≤ r ≤ N0.

We approximate solutions of (1) – (3) with solutions of the difference equation

δ0z
(r,m) = f(t(r), x(m), Th[z], δz(r+1,m), δ(2)z(r+1,m)) (37)

with initial boundary condition (10), (11).

Lemma 2. Suppose that z : E → R and
1) z(t, ·) : [−b, b] → R is of class C2 for t ∈ [0, a] and zh = z|Eh

,

2) d̃ ∈ R+ is such a constant that

|∂xjxk
z(t, x)| ≤ d̃, (t, x) ∈ E, j, k = 1, . . . , n, (38)

3) there is L ∈ R+ such that

|z(t, x)− z(t̄, x)| ≤ L|t− t̄|. (39)

Then

‖Th[zh]− z‖E ≤ Lh0 + d̃‖h′‖2.

Proof. Let (t, x) ∈ E and t(r) ≤ t ≤ t(r+1), x(m) ≤ x ≤ x(m+1) where (t(r), x(m)),
(t(r+1), x(m+1)) ∈ Eh. Write

U(t, x) =
t− t(r)

h0

∑
λ∈=

z(r+1,m+λ)

(
x− x(m)

h

)λ(
1− x− x(m)

h

)1−λ

− z(t(r+1), x)

 ,

V (t, x) =

(
1− t− t(r)

h0

)∑
λ∈=

z(r,m+λ)

(
x− x(m)

h

)λ(
1− x− x(m)

h

)1−λ

− z(t(r), x)

 ,

W (t, x) =
t− t(r)

h0
[z(t(r+1), x)− z(t, x)] +

(
1− t− t(r)

h0

)
[z(t(r), x)− z(t, x)].

Then we have

Th[z](t, x)− z(t, x) = U(t, x) + V (t, x) + W (t, x).
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It follows from Theorem 5.27 ([3], Chapter 5) that

|U(t, x)|+ |V (t, x)| ≤ d̃‖h′‖2.

According to condition (39) we have |W (t, x)| ≤ Lh0. Hence, the proof is completed.

Assumption H[σ]. Suppose that the function σ : [0, a]×R+ → R+ is such that
1) σ is nondecreasing with respect to both variables,
2) σ(t, 0) = 0 for t ∈ [0, a] and the maximal solution of the Cauchy problem

ζ ′(t) = σ(t, ζ(t)), ζ(0) = 0,

is ζ(t) = 0 for t ∈ [0, a].

Assumption H[f ]. The function f : Σ → R of variables (t, x, z, q, s) satisfies the conditions:
1) f(t, x, z, · ) ∈ C(Rn ×M [n],R), the derivatives

∂qf = (∂q1f, . . . , ∂qnf), ∂sf = [∂sijf ]i,j=1,...,n,

exist on Σ and

∂qf(t, x, z, ·) ∈ C(Rn ×M [n],Rn), ∂sf(t, x, z, ·) ∈ C(Rn ×M [n],M [n])

for each (t, x, z) ∈ E′ × F(Eh,R),
2) the matrix ∂sf is symmetric and

∂sijf(P ) ≥ 0 for (i, j) ∈ J+, ∂sijf(P ) ≤ 0 for (i, j) ∈ J−, (40)

−1
2
|∂qif(P )|+ 1

hi
∂siif(P )−

∑
j=1,j 6=i

1
hj
|∂sijf(P )| ≥ 0, 1 ≤ i ≤ n, (41)

where P = (t, x, z, q, s) ∈ Σ,
3) there is a function σ satisfying assumption H[σ] such that

‖f(t, x, z, q, s)− f(t, x, z̄, q, s)‖ ≤ σ(t, ‖z − z̄‖t)

on Σh.
We can now formulate our main results.

Theorem 2. Suppose that assumption H[f ] is satisfied and
1) the function v : E → R is a solution of (1) – (3) and

vh = v|Eh
, ϕh.j = ϕj |∂0Eh

, 1 ≤ j ≤ n,

2) the function uh : Eh → R is a solution of (10), (11), (37),
3) there exists c ∈ R+ such that hk ≤ chj for 1 ≤ k, j ≤ n,
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4) there is γ0 : H → R+ such that

|ϕ(r,m)
0 − ϕ

(r,m)
0.h | ≤ γ0(h) on E0.h and lim

h→0
γ0(h) = 0, (42)

5) v(·, x) is of class C1 and v(t, ·) is of class C2.
Then there exists ε0 > 0 and a function α : H → R+ such that for ‖h‖ < ε0, h ∈ H we have

|(uh − vh)(r,m)| ≤ α(h) on E′
h and lim

h→0
α(h) = 0. (43)

Proof. We will use Theorem 1 on the error estimation. Write

fh(t, x, z, q, s) = f(t, x, Th[z], q, s) on Σh,

and
σh(t, p) = σ(t, p) on I ′h ×R+.

The conditions (22) – (24) are satisfied. Now we prove that problem (26), (27) is stable.
Let ηh : Ih → R+ be a solution of (29), (30) where γ0, γ̄ : H → R+ and lim

h→0
γ0(h) = 0,

lim
h→0

γ̄(h) = 0. Let η̃h : [0, a] → R+ be the maximal solution of the Cauchy problem

ζ ′(t) = σ(t, ζ(t)) + γ̄(h), ζ(0) = α0(h). (44)

Then lim
h→0

η̃h(t) = 0 uniformly on [0, a]. The function η̃h is convex on [0, a], therefore we have

η̃
(r+1)
h ≥ η̃

(r)
h + h0σ(t(r), η̃(r)

h ) + h0γ̄(h), 0 ≤ r ≤ N0 − 1.

Since ηh satisfies (29), we have η
(r)
h ≤ η̃

(r)
h ≤ η̃h(a) for 0 ≤ i ≤ N0, which completes the proof

of the stability of problem (26), (27). It follows from assumption H[f ] that

|fh(t, x, z, q, s)− fh(t, x, z̄, q, s)| =

= |f(t, x, Th[z], q, s)− f(t, x, Th[z̄], q, s)| ≤

≤ σ(t, ‖Th[z]− Th[z̄]‖t ≤ σ(t, ‖z − z̄‖h.r) = σh(t, ‖z − z̄‖h.r).

Thus we see that all the assumptions of Theorem 1 are satisfied and the proof of (43) is complete.

Remark 3. Suppose that assumption H[f ] is satisfied with

σ(t, p) = Lp, (t, p) ∈ [0, a]×R+ where L ∈ R+.

Then assuming that f satisfies the Lipschitz condition with respect to the functional variable we
obtain the following error estimates:

‖u(i,m)
h − v

(i,m)
h ‖ ≤ α0(h)eLa + γ̄(h)

eLa − 1
L

on Eh if L > 0
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and

‖u(i,m)
h − v

(i,m)
h ‖ ≤ α0(h) + aγ̄(h) on Eh if L = 0.

The above inequality follows from (43) with α(h) = η̃h(a) where η̃h : [0, a] → R+ is a
solution of (44).

Remark 4. Let us consider the explicit difference method (10) – (12). Then we need the
following assumption on f and on the steps of the mesh [8, 16]:

1− 2h0

n∑
j=1

1
h2

j

∂sjjf(P ) + h0

∑
(i,j)∈J

1
hihj

|∂sijf(P )| ≥ 0, (45)

where P ∈ Σ. If the partial derivatives ∂sijf, i, j = 1, . . . , 1, are bounded on Σ then inequality
(45) states relations between h0 and h′ = (h1, . . . , hn). It is important in our considerations that
condition (45) be omitted in the convergence theorem.

5. Numerical examples.

Example 1. Write

E = [0, 0.2]× [−1, 1]× [−1, 1],

∂0E = [0, 0.2]×
[(

[−1, 1]× [−1, 1]
)
\
(
(−1, 1)× (−1, 1)

)]
.

Consider the differential equation with deviated variables

∂tz(t, x, y) = ∂xxz(t, x, y) + ∂yyz(t, x, y)− 1
2
∂xyz(t, x, y)+

+ z

(
t,

x + y

2
,
x− y

2

)
+ f(t, x, y)z(t, x, y) + g(t, x, y) (46)

and the initial boundary conditions

z(0, x, y) = 1 for (x, y) ∈ [−1, 1]× [−1, 1], (47)

∂xz(t, 0, y) = ty, ∂xz(t, 1, y) = tyety for t ∈ [0, 0.2], y ∈ [−1, 1], (48)

∂yz(t, x, 0) = tx, ∂yz(t, x, 1) = txetx for t ∈ [0, 0.2], x ∈ [−1, 1], (49)

where

f(t, x, y) = xy − t2(x2 + y2) +
t

2
+

t2xy

2
,

g(t, x, y) = −e
t(x2−y2)

4 .
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The solution of (46) – (49) is known, it is

v(t, x, y) = etxy.

We found the approximate solutions of (46) – (49) using both implicit and explicit numerical
method, and taking the following steps of the mesh: h0 = 0.0005, h1 = 0.002, h2 = 0.002.

Note, that the function f and the steps of the mesh do not satisfy condition (45), which
is necessary for the explicit method to be convergent. In our numerical example the average
errors of the explicit method exceeded 10134, while the average errors εh for fixed t(r) of implicit
method are given in the following table.

Table of errors (εh)
h0 = 0.0005, h1 = 0.002, h2 = 0.002

t : 0.525 0.100 0.125 0.150 0.175 0.200
εh : 3 · 10−5 4 · 10−5 5 · 10−5 6 · 10−5 6 · 10−5 7 · 10−5

Example 2. Write
E = [0, 0.2]× [0, 1]× [0, 1],

∂0E = [0, 0.2]×
[(

[0, 1]× [0, 1]
)
\
(
(0, 1)× (0, 1)

)]
.

Let us consider the integral-differential equation

∂tz(t, x, y) = ∂xxz(t, x, y) + ∂yyz(t, x, y)− 1
π2

∂xyz(t, x, y)+

+ π2

x∫
0

y∫
0

z(t, τ, s)dsdτ +

t∫
0

z(τ, x, y)dτ + 2π2z(t, x, y) + (t + 1) cos πx cos πy

(50)

and the initial boundary conditions

z(0, x, y) = 0 for (x, y) ∈ [0, 1]× [0, 1], (51)

∂xz(t, 0, y) = 0, ∂xz(t, 1, y) = 0 for t ∈ [0, 0.2], y ∈ [0, 1], (52)

∂yz(t, x, 0) = 0, ∂yz(t, x, 1) = 0 for t ∈ [0, 0.2], x ∈ [0, 1]. (53)

The solution of (50) – (53) is known, it is

v(t, x, y) = (et − 1) cos πx cos πy.

Likewise in the previous numerical example we chose the steps of the mesh which do not satisfy
condition (45). In accordance with our expectations the explicit method is not convergent, and
the average errors are bigger than 10150, while the implicit method is convergent and gives the
following average errors.
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Table of errors (εh)
h0 = 0.0005, h1 = 0.002, h2 = 0.002

t : 0.525 0.100 0.125 0.150 0.175 0.200
εh : 3 · 10−4 4 · 10−4 5 · 10−4 6 · 10−4 7 · 10−4 8 · 10−4

The above examples show that there are implicit difference schemes which are convergent
and the corresponding classical methods are not convergent. This is due to the fact that we
need the relation (45) for steps of the mesh in the classical case. We do not need this condition
in our implicit method. Implicit difference methods presented in this paper have the potential
for applications in the numerical solving of integral-differential equations or equations with
deviated variables.

Calculations were carried out at the Academic Computer Center in Gdańsk.
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2. Leszczyński H. Convergence of one-step difference methods for nonlinear parabolic differential-functional
systems with initial boundary conditions of Dirichlet type // Comment. math. — 1991. — 30, № 2. — P. 357 –
375.
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aux dérivées mixtes // Ann. pol. math. — 1979. — 36, № 1. — P. 1 – 10.

4. Besala P. Finite difference approximation to the Cauchy problem for nonlinear parabolic differential equati-
ons // Ibid. — 1985. — 46. — P. 19 – 26.
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