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For the differential equation u′′ = f(t, u, u′), where the function f : R × R2 → R is periodic in the first
argument and f(t, x, 0) ≡ 0, sufficient conditions for the existence of a continuum of nonconstant periodic
solutions are found.

Для диференцiального рiвняння u′′ = f(t, u, u′), де функцiя f : R × R2 → R є перiодичною за
першим аргументом i f(t, x, 0) ≡ 0, знайдено необхiднi умови для iснування континууму перiо-
дичних розв’язкiв, що не є сталими.

The problems on the existence, uniqueness and non-uniqueness of periodic solutions of nonli-

near differential equations and systems attract attention of many mathematicians and are the

subject of numerous investigations (see, e.g, [1 – 16] and the references therein). Nevertheless,

the description of classes of equations having a continuum of periodic solutions is far from

being complete. The goal of the present paper is to fill this gap to a certain extent.

Below we consider the differential equation

u′′ = f(t, u, u′), (1)

where the function f : R × R2 → R satisfies the local Carathéodory conditions, i.e., f(t, ·, ·) :
R2 → R is continuous for almost all t ∈ R, f(·, x, y) : R → R is measurable for all (x, y) ∈ R2,

and for an arbitrary ρ > 0 the function fρ, given by

fρ(t) = max {|f(t, x, y)| : |x| + |y| ≤ ρ} for t ∈ R,

is Lebesgue integrable on every finite interval.

We are interested in the case, where the equalities

f(t+ ω, x, y) = f(t, x, y), f(−t, x,−y) = f(t, x, y),
(2)

f(t,−x,−y) = −f(t, x, y),

f(t, x, 0) = 0 (3)
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are fulfilled on R×R2; here ω is a positive constant.

In view of (3), equation (1) has a continuum of constant solutions. There naturally arises the

question whether equation (1) under the conditions (2) and (3) may have nonconstant periodic

solutions. As is stated in the proven below Theorem 1, the answer is positive.

Let R+ = [0,+∞), Lω be the space of ω-periodic and Lebesgue integrable on [0, ω] real

functions, and Mω the set of functions ϕ : R × R+ → R+ such that ϕ(·, x) ∈ Lω for arbitrary

x ∈ R+, ϕ(t, ·) : R+ → R a continuous nondecreasing function for almost all t ∈ R, ϕ(t, 0) ≡
≡ 0 and

ω
∫

0

ϕ(t, x) dt > 0 for x > 0. (4)

Theorem 1. Let conditions (2), (3) be fulfilled and

f(t, x, y) ≤ −ϕ(t, x)ψ(y) for t ∈ R+, x ∈ R+, 0 ≤ y ≤ r, (5)

where r > 0, ϕ ∈ Mω, and ψ : [0, r] → R+ is a continuous function such that

ψ(0) = 0, ψ(y) > 0 for 0 < y ≤ r,

r
∫

0

dy

ψ(y)
< +∞. (6)

Then equation (1) has a continuum of nonconstant periodic solutions.

To prove the theorem, we will need the following lemma.

Lemma 1. Let inequality (5) be fulfilled, where ϕ ∈ Mω, and ψ : [0, r] → R+ is a continuous

function satisfying condition (6). Then for an arbitrary c ∈ (0, r), there exists tc ∈ (0,+∞) such

that equation (1) on the interval [0, tc] has a solution uc satisfying the conditions

uc(0) = 0, u′c(0) = c, (7)

uc(t) > 0, 0 < u′c(t) < r for 0 < t < tc, u′c(tc) = 0. (8)

Proof. Let uc be a maximally extended to the right solution of problem (1), (7). Then either

uc is defined on R+, and

uc(t) > 0, 0 < u′c(t) < r for t ∈ R+, (9)

or there exists tc ∈ (0,+∞) such that

uc(t) > 0, 0 < u′c(t) < r for 0 < t < tc (10)

and

u′c(tc) ∈ {0, r}. (11)
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First we assume that condition (9) is fulfilled. Then in view of (5), for an arbitrarily fixed

a > 0 almost everywhere on [a,+∞) the inequality

ϕ(t, x) ≤ −
u′′c (t)

ψ(u′c(t))

is fulfilled, where x = uc(a) > 0. Integrating this inequality from a to a + kω, where k is an

arbitrary natural number, due to the ω-periodicity of ϕ(·, x) and condition (6) we find

k

a+ω
∫

a

ϕ(t, x) dt ≤

u′

c(a)
∫

u′

c(a+kω)

dy

ψ(y)
< ρ,

where

ρ =

r
∫

0

dy

ψ(y)
< +∞.

Consequently,
ω

∫

0

ϕ(t, x) dt =

a+ω
∫

a

ϕ(t, x) dt ≤
ρ

k
→ 0 as k → +∞,

which contradicts condition (4). The obtained contradiction proves that the function uc does

not satisfy inequalities (9). Hence for some tc ∈ (0,+∞), conditions (10) and (11) are fulfilled.

According to (5) and (10), almost everywhere on (0, tc) the inequality

u′′c (t) ≤ 0

is satisfied. Therefore u′c(tc) ≤ c < r, whence by virtue of (11) it follows that uc(tc) = 0. Thus

condition (8) holds.

The lemma is proved.

Lemma 2. Let on R × R2 equalities (2) be fulfilled and let the function u be a solution of

equation (1) on some interval [0, t0] ⊂ R+. Then for an arbitrary natural k the function v, given

by the equality

v(t) = u(kω − t) for kω − t0 ≤ t ≤ kω,

is a solution of equation (1) on [kω − t0, kω].

Proof. Indeed,

v′′(t) = u′′(kω − t) = f
(

kω − t, u(kω − t), u′(kω − t)
)

=

= f
(

kω − t, v(t),−v′(t)
)

almost everywhere on [kω − t, kω].

Thus according to (2), we find

v′′(t) = f
(

−t, v(t),−v′(t)
)

=

= f
(

t, v(t), v′(t)
)

almost everywhere on [kω − t, kω].

The lemma is proved.
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Proof of the theorem. Owing to Lemma 1, for an arbitrary c ∈ (0, r) there exists tc ∈
∈ (0,+∞) such that equation (1) on [0, tc] has a solution u satisfying conditions (7) and (8). We

choose a natural number k so that

kω ≥ 2tc

and extend uc on R in the following manner:

uc(t) =

{

uc(tc) for tc ≤ t ≤ kω − tc,

uc(kω − t) for kω − tc ≤ t ≤ kω,

uc(t+ kω) = −uc(t) for t ∈ R.

By conditions (2), (3) and Lemma 2, the function uc is a 2kω-periodic solution of equation

(1). On the other hand, it is evident that

uc1(t) 6≡ uc2(t) 6≡ const for 0 < c1 < c2 < r.

Consequently, if c runs through the interval (0, r), we obtain a continuum of periodic nonconstant

solutions of equation (1).

The theorem is proved.

As an example, we consider the generalized Emden – Fowler equation

u′′ =

m
∑

k=1

pk(t)|u
′|µk |u|λksgnu, (12)

where

λk > 0, µk > 0 pk ∈ Lω,
(13)

pk(−t) = pk(t) ≤ 0 for t ∈ R,

ω
∫

0

pk(t) dt < 0, k = 1, . . . ,m. (14)

The following proposition holds.

Corollary. Let conditions (13) and (14) be fulfilled. Then for the existence of a continuum of

periodic solutions of equation (12) it is necessary and sufficient that

min{µ1, . . . , µn} < 1. (15)

Proof. Assume first that along with (13) and (14) condition (15) is fulfilled. Then without

loss of generality we can assume that µ1 < 1. Due to condition (13), the function f, given by

the equality

f(t, x, y) =

m
∑

k=1

pk(t)|y|
µk |x|λksgnx,
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satisfies conditions (2) and (3). On the other hand, for an arbitrary r > 0 inequality (5) is

fulfilled, where

ϕ(t, x) = |p1(t)|x
λ1 , ψ(y) = yµ1 .

Moreover, ϕ ∈ Mω, and ψ satisfies condition (6) since

ω
∫

0

|p1(t)| dt > 0 and 0 < µ1 < 1.

Consequently, all the conditions of the above-given theorem are fulfilled which guarantees

the existence of a continuum of nonconstant ω-periodic solutions of equation (12).

It remains to state that if

µk ≥ 1, k = 1, . . . ,m, (16)

then an arbitrary periodic solution u of equation (12) is constant. Indeed, almost everywhere

on R the equality

u′′(t) = p(t)u′(t) (17)

is fulfilled, where

p(t) =

m
∑

k=1

pk(t)|u
′(t)|µk−1|u(t)|λksgn (u(t)u′(t));

in addition, in view of (16), we have

p ∈ Lω. (18)

On the other hand, owing to the ω-periodicity of u, there exists t0 ∈ R such that

u′(t0) = 0.

Thus it follows from (17) and (18) that u′(t) ≡ 0, i.e., u(t) ≡ const.
The corollary is proved.

Remark. If pk(t) ≡ 0, k = 1, . . . ,m, then equation (12) has no nonconstant periodic

solution. Consequently, condition (14) in the above-given corollary is essential and it cannot

be weakened.
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