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In this paper, a classification scheme for the eventually positive solutions of a class of two-dimensional
Volterra nonlinear difference equations is given in terms of asymptotic magnitudes. Some necessary as
well as sufficient conditions for the existence of such solutions are provided, without any monotonicity
conditions on the nonlinear term.

Jlas 32000M 000amHUX p0O36°A3KI8 0eAK020 KAACY 0B0BUMIPHUX 80ALMEPPIBCOKUX HEAIHIUHUX PIBHAHb
HABEOEeHO KAACUPDIKAYIIHY cXemy 8 MePpMIHAX M08 Ha acumnmomuky. Hasederno makoxc Oesaki Heobxio-
HI T 00CMamHti YMO8U ICHYBAHHA MAKUX PO36°A3KI6 63 8UMOU MOHOMOHHOCMIE HEAIHIIIHO20 YAeHA.

1. Introduction. The study of difference equations has experienced a significant interest in the
past years, as they arise naturally in the modelling of real word phenomena [1-4]. Volterra
difference equation arise in the mathematical modelling of some real phenomena and also in
various procedures of numerical solution of some differential and integral equations. For appli-
cations of the Volterra difference equation in combinatorics and in epidemics, see [5]. In the
very recent paper [6], the authors gave a classification scheme for the eventually positive soluti-
ons and necessary as well as sufficient conditions for the existence of such solutions for the
following of two-dimensional Volterra nonlinear difference equations:

Axn - hnxn + Z an,if(@/i)v
=1

(1)

n
Ayn = PnYn + Z bn,ig(xi)y n > 0,
=1

where {a,, 1}, {bn i} are positive for n, £k > 0. The functions f and g are real-valued continuous
on the real line R. Also, the coefficients {h,,} and {p,} are positive sequences for n > 0 and
satisfy the condition

ihn<oo, ipn<oo. (2)
n=0 n=0

They improve many works contained in their references, such as 7 8]. However, the main tool
they used is Kanaster’s fixed point theorem for increasing operators, which needs monotonicity
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of the functions f and g. In this paper, we will use Schauder’s fixed point theorem to get the exi-
stence of the eventually positive solutions. We do not need any monotonicity for the nonlinear
terms f and g. Some necessary as well as sufficient conditions for the existence of such soluti-
ons are presented. Our results improve the results of [6]. Throughout this paper we assume that
f(x) > 0, g(x) > 0for x # 0 and (2) holds.

Definition 1 [6]. A pair of real-valued sequences {(z,, yn)} is said to be

1) a solution of system (1) if it satisfies (1) for n > 0;

2) eventually positive if both {x,} and {y,} are eventually positive;

3) nonoscillatory if both {x,} and {y, } are either eventually positive or eventually negative.

To simply notation, we use the notation of [6] and let

n—1 7

Ap = > ai ], 3)
i=0 \j=0
n—1 7

B, = bij | - 4)
i=0 \ j=0

Ay = lim A,, By = lim B,.

n—oo n—oo

Let C be the set of all continuous functions and define

Q= {{(xmyn)} € Clrp,yn > 0,n > O}-

By the equation (1) [6] gave the variation of parameters formula

=0
n—1 n
= (L4 hp) [(L4 b)) zp1 + Y an Fy) | + Y an;f(ys) = -
=0 =0
n n+l n
=[Ja+r)zo+> I +h) Zak_l,jf(yj) (6)
=0 k=1 i=k 7=0
and
n+l n
yn+1—H1+pz yO+ZH1+pz Zbk 1,]9 Ij (7)
k=1 i=k

where the notation [[_ ., = 1 is used. It is clear from (5) and (7) that {z,,} and {y,} are
positive provided that xg, yo > 0. Moreover, if hy,, p, > 0, then from (1) we have Ax,,
Ay, > 0. Now, for some positive constants «, 3, we define the set

K(a,8) = {{(zn,yn)} € Q| lim 2y = o, lim y, = 3},
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where « and 3 maybe considered to be infinite.

2. Classification of positive solutions and existence. In this section, we should classify positi-
ve solutions of (1) according to their limiting behavior and then provide necessary and sufficient
conditions for their existence in the cases (2), (3), and (4).

Theorem 1. Any solution {(x,,y,)} € Q of (1) belongs to one of the following subsets:

K(a,0), K(a,o), K(oco,3), K(oo,00).

Proof. Since {(zy,yn)} € 2, we have Az, Ay, > 0forn > 0. Thus {z,} and {y,} are
increasing. Hence, lim z, = o« > 0 or lim z, = oo, and lim y, = 6 > 0or lim y, = oco.
n—oo n—0o0 n—oo n—oo

The proof is complete.

In the following we state several theorems; each of the theorems is related to one of the
above mentioned cases.

Theorem 2. Suppose that Ao = 00, Boo = o0 and Ly, Lo are the lower bounds of the
functions f and g on R, respectively. If Ly > 0, Ly > 0, then any solution {(x,,y,)} € Q of
(1) belongs to the set K (oo, 00).

Proof. Let {(x,,y,)} € Q be asolution of system (1). Then Ax,,, Ay, > 0forn > 0. Thus
{z,,} and {y, } are increasing. As a consequence of this and (1), we arrive at

n—1 n—1 )
T, = Zg+ Z hiz; + Z Z amf(yj) >
i=0 i=0 \j=0

v

n—1 7
L1 E E CLZ'J :LlAn—>OO, n — oo,
=0 7=0

n—1 n—1 %
yn =vo+ > _piyi+ Y| D bijglx;) | =
=0

i=0 \ j=0

> L2 bi,j = L1 Bn — 0Q, n — oQ.

This shows that z,, — oc and y,, — 00, as n — oo. The proof is complete.

If L, is the lower bound of the function f on R, for ¢ > 0, we denote M; = sup f(t),
tele/2,c]
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then we have the following estimate formula for o € R and c :

j—1 j j-1 k-1
my = [+ ko + D[] +1i) D ar-1mLs <
i=0 k=11=k m=0
j—1 J g-1 k-1
< H(l + hi)xo + Z (1+ hy) Z ag—1,mf(Ym) <
=0 k=1 1=k m=0
j—1 j j—1 k—1
< H(1+hl)xo—|—z (1+ hy) Zakq mMy = M;
i=0 k=1 1=k m=0

Then we can choose ¢;j, & € [}, M;] such that

g(cj) = min_ g(t), g¢(c) = max_g(?).
7 te[my,M;) te[mij]

Theorem 3. Suppose that A, = 0, B, < 00 hold. Then a necessary condition for (1) to
have a solution {(x,,yn)} € Q which belongs to K (oo, (3) is that

S D bijale) | < oo, (8)

i=0 \ j=0

where c; is defined corresponding to ¢ = (3 and the first term xq of {x,}.

Proof. Let {(z,,yn)} € €, be a solution of system (1) which belongs to K (oo, 7). Then
Axy, Ay, > 0forn > 0. Thus {z,} and {y, } are increasing and yo < y,, < @ forn > 0. From
(5) we have

n n—1

H 1—|—h xo—i-ZH 1+h Zak 1,]f yj

k=1 i=k

Since lim y, = [, without loss of generality, we can assume that y,, € [3/2, 3] for any n > 0.
n—oo
[hen we have

n—1 n—1 7
B = yn =1yo+ Zpiyi + Z sz',jg(l’j) =
i=0 i=0 \ j=0

n—1 n—1 7—1 7 g—1 k—1
L S S zb,Jg(H (141 xo+znl+mzak_l,lf<yl>> >
=0 =0 =0

k=1 1=k =0
n—1 7
> D bigele)
i=0 \ j=0

ISSN 1562-3076. Heainitini koausarnns, 2006, m. 9, N2 1



THE EXISTENCE OF POSITIVE SOLUTION OF SYSTEMS OF VOLTERRA NONLINEAR DIFFERENCE EQUATIONS 41

By taking the limit at infinity in the above inequality we obtain (8). The proof is completed.

Theorem 4. Suppose that (2) holds, and A, = oo and B, < oo. Then a sufficient condition
for (1) to have an eventually positive solution {(x,,y,)} € Q which belongs to K (oo, (3) is that:
there exists ¢ > 0 such that

00 %

Z bij9(c5) | < oo, ©)
0

i=0 \ j=
where the ¢; is defined for c and xy = 0.

Proof. 1f (9) holds, we can choose an integer N large enough so that

e’} 7 c
Do bie@) | < (10)
i=N \ j=0
and
> 1
< =
sz < (11)
=N

Let X be the set of all bounded real-valued sequences {y,, } equipped with the norm
lyll = ig%\ynl-
Then X is Banach space. For ¢ > 0, define the subset 2. of X by
Q. = {{yn} € X ‘g <y, <c¢,n > N, {y,} is increasing}.

Then €. is a bounded, convex and closed subset of X. Now define the operator £ : Q. — X
by

i j—1

n—1 n—1 i k—1
(By)n = g Y piwi+ > D big <Z [Ta+n)>° ak—l,mf(?/m)) , (12)
i=N i=N =0 m=0

k=1 1=k
n—1
for y € Q. and we take here Y = 0for n < N. First, we note that £ maps €. into itself.
i=N

Indeed, if y € €., then

i i g1 k-1
Z bijg < H(l + hy) Z ak—1,mf(ym)) <
0 k

j= =11=1 m=0

i i j-1 k-1
> bijg ( [Ta+m)>" ak—l,mM1> <
0 k

j= =11=k m=0

n—1 n—1
C C
5 S (Ey)n = 5T Zpiyri- Z
i=N i=N

IA

c n—1 n—1
sHed Pt
=N =N

INA
|
+
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Next, we show that E is continuous. Let {3/} be a sequence in Q. such that
lim ||y —y|| = 0.
l—o0

Since €. is closed, y € €2.. Then by (12), we have

n—1 % ]—1 k—1
(Ey(l))n - (Ey)n = pzyz(l) b Jg 1+ hl) Z akl,mf(lJ#)))
1= N N k=1 l:k m=0
—_ — ’L ]—1 k*l
e z ,]g [Tasms akl,mf@m)) <
i=N =N k=1 l=k m=0

yz@ — Y

o0
< Z Di
=N

e’} 7
D PILE
i=N \ j=0

k=11l=k

_g(znml 30 mfym)').

k=11=k

i J—1 k—1
g < [Ta+m)Y " armf@d)
m=0

)_

By the continuity of f and g and the Lebesgue dominated convergence theorem, it follows that

lim sup )(Ey(l))n — (Ey)n

l—o00 n>0

= 0,

or
lim HEy(l) — E’yH = 0.

l—o0

This shows that £ is continuous.

Finally, we show that E), is precompact. Let {3/} be a sequence in €., then for each n,

()

{yn) } is a bounded number sequence. This shows that {y;,” } has a convergent subsequence. By
the diagonal process we can know that {y()} has a convergent subsequence in (2. Since F is
continuous, we know that { £y} has a convergent subsequence in ., this means that ES, is

precompact.
Now, by Schauder’s fixed point theorem, we conclude that there exists y € 2. such that
y = Ey. Set
n n—1
=>_[[a+n Zak 13 f(¥5).
k=1 i=k
Then
n
Al‘n = hnxn + Z an,if(yi)a
i=0
n n—1 k—1
S 9 ) ((RT5) SUEVIES 3} (RT3 Zak iLe
k=1 i=k j=0 k=1 i=k
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where L. = r[n}g }f( ). Since f(t) > 0fort¢ > 0, we have L. > 0. In view of Ao, = oo, we
t€lc/2,c

have

lim z, = oc.
n—oo

On the other hand,

k=11l=k

j—1 i g1
f+zpzyl+z zbug(n s ot ST+ 0 zaklmfym>

from which we obtain
lim y, = co,
n—oo
where ¢y is a constant. Hence, (z,, y,) is an eventually positive solution of (1) which belongs to

K (o0, 3). This completes the proof.

If L, is a lower bound of the function g on Ry, for ¢ > 0, denote M) = sup g(t). Then
tee/2,c]
we have the following estimate formula for yp and c :

Jj j—1

mvj/:H + i 3/0+ZH 1+ pi) Zbk 1ml2 <
=0

k=11=k

Jj j—1

H (1+p;) yo—l—ZH (1+pi) Zbk 1,m9(Tm)
1=

k=11=k

| A

Jj j—1

Jj—
H +pzy0+ZH1+pz Zbk 1mM2_
i=

k=11=k

IN

)
Then we can choose ¢;’, ¢’ € [m;’, M; ] such that

(&)= min_ f@).

vl M)
f(d) = max_ f(t).
tel ;|

The proof of the next theorems follow along the lines of the proof of Theorem 3 and Theorem 4,
hence we omit them.

Theorem 5. Assume that Ay, < 00, Boo = 00. Then a necessary condition for (1) to have a
solution {(zn,yn)} € Q which belongs to K (c, 00) is that

Z Zai,jf(ﬁ/) < o0,

i=0 \ j=0

where c;' is defined for c = o and the first term yo of {yn}-
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Theorem 6. Assume that Ay, < 00, Boo = 0. Then a sufficient condition for (1) to have an
eventually positive solution {(x,,yn)} € Q which belongs to K («, o0) is that: there exists ¢ > 0
such that

9] i
> aiif(@) | < oo
i=0 \ j=0
where ¢}’ is defined for c and yo = 0.

Theorem 7. Any solution {(zn,yn)} € Q of (1) belongs to the set K(«,3) if and only if
Ay < 0 and By < .

Proof. Let {(z,,,yn)} be asolution in 2 with lim z, = a > 0and lim y, = # > 0. Then

n—oo

there exists an integer N > 0 and two positive constants ¢; and ¢ such that ¢; < z, < a,
co < yp < Bforn > N.From system (1) we have for n > N that

n—1 n—1 )
tho=ay+ Y himi+ > | > aiif) |
i=N i=N \j=0

n—1 n—1 %
Un =yn+ > pvi+ Y[ D bijg(z))
i=N i=N \j=0

Let L, = min f(t)and Lg = min g¢(¢). Then we have L, > 0 and Lg > 0. Without loss of
t€fer,a] t€[cz,f]

generality, we can assume that¢; < z, < a,c2 < y, < Bforn > 0. Thus,

n—1 n—1 7
a>ay=an+ Yy hwit Y | D aigfly) | =
i=N i=N \ j=0

7

n—1 n—1
> xn +c Zhﬁ—z Zaz‘,jLa )
i=N i=N

7=0
n—1 n—1 A
B=yn=yn+ > pivi+ Y | bijglz;) | =
i=N i=N \j=0

n—1 n—1 %
> YN +C2 ZPHLZ Zbi,jLﬁ
i=N i=N \ j=0

So Ay < 00, By < 00.
Conversely, suppose that A,, < oo and By, < oo. First notice that for n > 0, the first
equation of (1) can be written as

n—1 n—1 7
Ty = xo—l-zhifﬂrl-z Zai,jf(yj)
i=0

i=0 \ j=0
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In a similar fashion, we obtain from the second equation of (1) that
yn—y0+§ pzyz"‘E § bz]ng
=0 \j=0
Next, forc > 0,d > 0, let

Mz = sup f(t), Mj;= sup g(t).
tee/2,c] teld/2,d]

We can choose an integer N large enough so that
i

oY es| < mp 2|2k <

i=N | j=0 i=N | j=0

w

and

»M»—‘
N

=N

Let X be the Banach space of all bounded real-valued sequences {(zy, y,)} endowed with the
norm

@yl = max{sup|xn| sup|yn|}.
>0 n>0

Define the subset €2, 4 of X by

d
Qc,al :{{(xnvyn)}EX’2 <z, < d, 5 <y <c¢n=>N,

{z,,} and {y,} are both increasing

L

Then €2, 4 is a bounded, convex and closed subset of X. Now define the operator £ : Q.4 — X
by

N

[ n—1 n—1 7 i
2 hiwi+ 3 <Z ai,jf(ﬂj))
i=N =N \j=0

S|
—~
< 8
~_
s

|
9}

_l_

Z Piyi + Z (Z bi ,gg(%)>

where (z,y) € €.q and we take here Z?;]}, = 0 for n < N. First, we note that £ maps €2 4
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into itself. Indeed, if (z,y) € Q. 4, then

n—1 n—1 7
< (Bx)n = g + > hiwi+ YD aiifyy) | <
=N =N \j=0

n— n—1 A

1
ngthiJngZ aij | <
i=N i=N \ j=0

IN

< S+

This is similar to showing that ¢/2 < (Ey),, < c.
Next, we show that E is continuous. Let {(z(), 4())} be a sequence in Q.. 4 such that

lim Hw,y(l)) - @;,y)H — 0.

l—o0

Since €2 4 is closed, (x,y) € € q. Then by the definition of E, we have

B@0,y "), = (B(a,y)

<

By the continuity of f and g and the Lebesgue dominated convergence theorem, it follows that

lim sup ’(E(x(l),y(l)))n — (E(z,y))n| =0,

l—o00 n>0

or

l—o00

This shows that £ is continuous.
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Finally, we show that EQ,. 4 is precompact. Let {(z("),y())} be a sequence in Q. 4, then

for each n, {y,(f )} is a bounded number sequence. This shows that {(:Jc,(f) , yg ))} has a convergent
subsequence. By the diagonal process we can know that {(z(), y(!)} has a convergent subseque-
nce in Q4. Since E is continuous, we know that E{(z(),4())} has a convergent subsequence
in £, 4. This means that E<). ; is precompact.

Now, by Schauder’s fixed point theorem, we conclude that there exists {(z,y)} € Q4 such
that (z,y) = E(x,y). Thatis

d n—1 n—1 7
Tn =5+ Z hizi +- Z Zaz’,jf(yj) :
i=N 1=N j:0

n—1 n—1 %
Cc
yn =5+ szyz + 2 Z bijg(z;)
=N i=N \j=0

from which we obtain

lim z, = dy, lim y, = co,
n—oo n—oo

where ¢, dy are positive constants. Hence {(x,,y,)} is an eventually positive solution of (1)
which belongs to K («, 3). The proof is completed.
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