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In this paper, a classification scheme for the eventually positive solutions of a class of two-dimensional
Volterra nonlinear difference equations is given in terms of asymptotic magnitudes. Some necessary as
well as sufficient conditions for the existence of such solutions are provided, without any monotonicity
conditions on the nonlinear term.

Для згодом додатних розв’язкiв деякого класу двовимiрних вольтеррiвських нелiнiйних рiвнянь
наведено класифiкацiйну схему в термiнах умов на асимптотику. Наведено також деякi необхiд-
нi i достатнi умови iснування таких розв’язкiв без вимоги монотонностi нелiнiйного члена.

1. Introduction. The study of difference equations has experienced a significant interest in the
past years, as they arise naturally in the modelling of real word phenomena [1 – 4]. Volterra
difference equation arise in the mathematical modelling of some real phenomena and also in
various procedures of numerical solution of some differential and integral equations. For appli-
cations of the Volterra difference equation in combinatorics and in epidemics, see [5]. In the
very recent paper [6], the authors gave a classification scheme for the eventually positive soluti-
ons and necessary as well as sufficient conditions for the existence of such solutions for the
following of two-dimensional Volterra nonlinear difference equations:

4xn = hnxn +
n∑

i=1

an,if(yi),

(1)

4yn = pnyn +
n∑

i=1

bn,ig(xi), n ≥ 0,

where {an,k}, {bn,k} are positive for n, k ≥ 0. The functions f and g are real-valued continuous
on the real line R. Also, the coefficients {hn} and {pn} are positive sequences for n ≥ 0 and
satisfy the condition

∞∑
n=0

hn < ∞,
∞∑

n=0

pn < ∞. (2)

They improve many works contained in their references, such as [7, 8]. However, the main tool
they used is Kanaster’s fixed point theorem for increasing operators, which needs monotonicity
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of the functions f and g. In this paper, we will use Schauder’s fixed point theorem to get the exi-
stence of the eventually positive solutions. We do not need any monotonicity for the nonlinear
terms f and g. Some necessary as well as sufficient conditions for the existence of such soluti-
ons are presented. Our results improve the results of [6]. Throughout this paper we assume that
f(x) > 0, g(x) > 0 for x 6= 0 and (2) holds.

Definition 1 [6]. A pair of real-valued sequences {(xn, yn)} is said to be
1) a solution of system (1) if it satisfies (1) for n ≥ 0;
2) eventually positive if both {xn} and {yn} are eventually positive;
3) nonoscillatory if both {xn} and {yn} are either eventually positive or eventually negative.

To simply notation, we use the notation of [6] and let

An =
n−1∑
i=0

 i∑
j=0

ai,j

 , (3)

Bn =
n−1∑
i=0

 i∑
j=0

bi,j

 , (4)

A∞ = lim
n→∞

An, B∞ = lim
n→∞

Bn.

Let C be the set of all continuous functions and define

Ω =
{
{(xn, yn)} ∈ C|xn, yn > 0, n ≥ 0

}
.

By the equation (1) [6] gave the variation of parameters formula

xn+1 = (1 + hn)xn +
n∑

j=0

an,jf(yj) = (5)

= (1 + hn)

(1 + hn−1)xn−1 +
n−1∑
j=0

an,jf(yj)

+
n∑

j=0

an,jf(yj) = . . .

. . . =
n∏

i=0

(1 + hi) x0 +
n+1∑
k=1

n∏
i=k

(1 + hi)
k−1∑
j=0

ak−1,jf(yj) (6)

and

yn+1 =
n∏

i=0

(1 + pi) y0 +
n+1∑
k=1

n∏
i=k

(1 + pi)
k−1∑
j=0

bk−1,jg(xj), (7)

where the notation
∏n

k=n+1 = 1 is used. It is clear from (5) and (7) that {xn} and {yn} are
positive provided that x0, y0 ≥ 0. Moreover, if hn, pn > 0, then from (1) we have 4xn,
4yn > 0. Now, for some positive constants α, β, we define the set

K(α, β) =
{
{(xn, yn)} ∈ Ω| lim

n→∞
xn = α, lim

n→∞
yn = β

}
,
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where α and β maybe considered to be infinite.

2. Classification of positive solutions and existence. In this section, we should classify positi-
ve solutions of (1) according to their limiting behavior and then provide necessary and sufficient
conditions for their existence in the cases (2), (3), and (4).

Theorem 1. Any solution {(xn, yn)} ∈ Ω of (1) belongs to one of the following subsets:

K(α, β), K(α,∞), K(∞, β), K(∞,∞).

Proof. Since {(xn, yn)} ∈ Ω, we have 4xn, 4yn > 0 for n ≥ 0. Thus {xn} and {yn} are
increasing. Hence, lim

n→∞
xn = α > 0 or lim

n→∞
xn = ∞, and lim

n→∞
yn = β > 0 or lim

n→∞
yn = ∞.

The proof is complete.

In the following we state several theorems; each of the theorems is related to one of the
above mentioned cases.

Theorem 2. Suppose that A∞ = ∞, B∞ = ∞ and L1, L2 are the lower bounds of the
functions f and g on R+, respectively. If L1 > 0, L2 > 0, then any solution {(xn, yn)} ∈ Ω of
(1) belongs to the set K(∞,∞).

Proof. Let {(xn, yn)} ∈ Ω be a solution of system (1). Then 4xn,4yn > 0 for n ≥ 0. Thus
{xn} and {yn} are increasing. As a consequence of this and (1), we arrive at

xn = x0 +
n−1∑
i=0

hixi +
n−1∑
i=0

 i∑
j=0

ai,jf(yj)

 ≥

≥ L1

n−1∑
i=0

 i∑
j=0

ai,j

 = L1 An → ∞, n → ∞,

yn = y0 +
n−1∑
i=0

piyi +
n−1∑
i=0

 i∑
j=0

bi,jg(xj)

 ≥

≥ L2

n−1∑
i=0

 i∑
j=0

bi,j

 = L1 Bn → ∞, n → ∞.

This shows that xn → ∞ and yn → ∞, as n → ∞. The proof is complete.

If L1 is the lower bound of the function f on R+, for c > 0, we denote M1 = sup
t∈[c/2,c]

f(t),
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then we have the following estimate formula for x0 ∈ R and c :

m̃j =
j−1∏
i=0

(1 + hi)x0 +
j∑

k=1

j−1∏
l=k

(1 + hi)
k−1∑
m=0

ak−1,mL1 ≤

≤
j−1∏
i=0

(1 + hi)x0 +
j∑

k=1

j−1∏
l=k

(1 + hi)
k−1∑
m=0

ak−1,mf(ym) ≤

≤
j−1∏
i=0

(1 + hi)x0 +
j∑

k=1

j−1∏
l=k

(1 + hi)
k−1∑
m=0

ak−1,mM1 = M̃j .

Then we can choose cj , cj ∈ [m̃j , M̃j ] such that

g(cj) = min
t∈[fmj ,fMj ]

g(t), g(cj) = max
t∈[fmj ,fMj ]

g(t).

Theorem 3. Suppose that A∞ = ∞, B∞ < ∞ hold. Then a necessary condition for (1) to
have a solution {(xn, yn)} ∈ Ω which belongs to K(∞, β) is that

∞∑
i=0

 i∑
j=0

bi,jg(cj)

 < ∞, (8)

where cj is defined corresponding to c = β and the first term x0 of {xn}.

Proof. Let {(xn, yn)} ∈ Ω, be a solution of system (1) which belongs to K(∞, β). Then
4xn,4yn > 0 for n ≥ 0. Thus {xn} and {yn} are increasing and y0 ≤ yn ≤ β for n ≥ 0. From
(5) we have

xn =
n−1∏
i=0

(1 + hi)x0 +
n∑

k=1

n−1∏
i=k

(1 + hi)
k−1∑
j=0

ak−1,jf(yj).

Since lim
n→∞

yn = β, without loss of generality, we can assume that yn ∈ [β/2, β] for any n ≥ 0.

Then we have

β ≥ yn = y0 +
n−1∑
i=0

piyi +
n−1∑
i=0

 i∑
j=0

bi,jg(xj)

 =

= y0 +
n−1∑
i=0

piyi +
n−1∑
i=0

 i∑
j=0

bi,jg

(
j−1∏
l=0

(1 + hl)x0 +
j∑

k=1

j−1∏
l=k

(1 + hl)
k−1∑
l=0

ak−1,lf(yl)

) ≥

≥
n−1∑
i=0

 i∑
j=0

bi,jg(cj)

 .
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By taking the limit at infinity in the above inequality we obtain (8). The proof is completed.

Theorem 4. Suppose that (2) holds, and A∞ = ∞ and B∞ < ∞. Then a sufficient condition
for (1) to have an eventually positive solution {(xn, yn)} ∈ Ω which belongs to K(∞, β) is that:
there exists c > 0 such that

∞∑
i=0

 i∑
j=0

bi,jg(cj)

 < ∞, (9)

where the cj is defined for c and x0 = 0.

Proof. If (9) holds, we can choose an integer N large enough so that

∞∑
i=N

 i∑
j=0

bi,jg(cj)

 ≤ c

4
, (10)

and
∞∑

i=N

pi ≤
1
4
. (11)

Let X be the set of all bounded real-valued sequences {yn} equipped with the norm

‖y‖ = sup
n≥0

|yn|.

Then X is Banach space. For c > 0, define the subset Ωc of X by

Ωc =
{
{yn} ∈ X

∣∣∣ c
2
≤ yn ≤ c, n ≥ N, {yn} is increasing

}
.

Then Ωc is a bounded, convex and closed subset of X. Now define the operator E : Ωc → X
by

(Ey)n =
c

2
+

n−1∑
i=N

piyi +
n−1∑
i=N

 i∑
j=0

bi,jg

(
i∑

k=1

j−1∏
l=k

(1 + hl)
k−1∑
m=0

ak−1,mf(ym)

) , (12)

for y ∈ Ωc and we take here
n−1∑
i=N

= 0 for n ≤ N. First, we note that E maps Ωc into itself.

Indeed, if y ∈ Ωc, then

c

2
≤ (Ey)n =

c

2
+

n−1∑
i=N

piyi +
n−1∑
i=N

 i∑
j=0

bi,jg

(
i∑

k=1

j−1∏
l=1

(1 + hl)
k−1∑
m=0

ak−1,mf(ym)

) ≤

≤ c

2
+ c

n−1∑
i=N

pi +
n−1∑
i=N

 i∑
j=0

bi,jg

(
i∑

k=1

j−1∏
l=k

(1 + hl)
k−1∑
m=0

ak−1,mM1

) ≤

≤ c

2
+

c

4
+

c

4
= c.
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Next, we show that E is continuous. Let {y(l)} be a sequence in Ωc such that

lim
l→∞

‖y(l) − y‖ = 0.

Since Ωc is closed, y ∈ Ωc. Then by (12), we have

∣∣∣(Ey(l))n − (Ey)n

∣∣∣ =

∣∣∣∣∣∣
n−1∑
i=N

piy
(l)
i +

n−1∑
i=N

 i∑
j=0

bi,jg

(
i∑

k=1

j−1∏
l=k

(1 + hl)
k−1∑
m=0

ak−1,mf(y(l)
m )

) −

−
n−1∑
i=N

piyi −
n−1∑
i=N

 i∑
j=0

bi,jg

(
i∑

k=1

j−1∏
l=k

(1 + hl)
k−1∑
m=0

ak−1,mf(ym)

)∣∣∣∣∣∣ ≤
≤

∞∑
i=N

pi

∣∣∣y(l)
i − yi

∣∣∣+ ∞∑
i=N

 i∑
j=0

bi,j

∣∣∣∣∣g
(

i∑
k=1

j−1∏
l=k

(1 + hl)
k−1∑
m=0

ak−1,mf(y(l)
m )

)
−

− g

(
i∑

k=1

j−1∏
l=k

(1 + hl)
k−1∑
m=0

ak−1,mf(ym)

)∣∣∣∣∣
)

.

By the continuity of f and g and the Lebesgue dominated convergence theorem, it follows that

lim
l→∞

sup
n≥0

∣∣∣(Ey(l))n − (Ey)n

∣∣∣ = 0,

or
lim
l→∞

∥∥∥Ey(l) − Ey
∥∥∥ = 0.

This shows that E is continuous.
Finally, we show that EΩc is precompact. Let {y(l)} be a sequence in Ωc, then for each n,

{y(l)
n } is a bounded number sequence. This shows that {y(l)

n } has a convergent subsequence. By
the diagonal process we can know that {y(l)} has a convergent subsequence in Ωc. Since E is
continuous, we know that {Ey(l)} has a convergent subsequence in Ωc, this means that EΩc is
precompact.

Now, by Schauder’s fixed point theorem, we conclude that there exists y ∈ Ωc such that
y = Ey. Set

xn =
n∑

k=1

n−1∏
i=k

(1 + hi)
k−1∑
j=0

ak−1,jf(yj).

Then

4xn = hnxn +
n∑

i=0

an,if(yi),

xn =
n∑

k=1

n−1∏
i=k

(1 + hi)
k−1∑
j=0

ak−1,jf(yj) ≥
n∑

k=1

n−1∏
i=k

(1 + hi)
k−1∑
j=0

ak−1,jLc,,
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where Lc = min
t∈[c/2,c]

f(t). Since f(t) > 0 for t > 0, we have Lc > 0. In view of A∞ = ∞, we

have
lim

n→∞
xn = ∞.

On the other hand,

yn =
c

2
+

n−1∑
i=N

piyi +
n−1∑
i=N

 i∑
j=0

bi,jg

(
j−1∏
l=0

(1 + hl)x0 +
i∑

k=1

j−1∏
l=k

(1 + hl)
k−1∑
m=0

ak−1,mf(ym)

)
from which we obtain

lim
n→∞

yn = c0,

where c0 is a constant. Hence, (xn, yn) is an eventually positive solution of (1) which belongs to
K(∞, β). This completes the proof.

If L2 is a lower bound of the function g on R+, for c > 0, denote M ′
2 = sup

t∈[c/2,c]
g(t). Then

we have the following estimate formula for y0 and c :

m̃j
′ =

j−1∏
i=0

(1 + pi)y0 +
j∑

k=1

j−1∏
l=k

(1 + pi)
k−1∑
m=0

bk−1,mL2 ≤

≤
j−1∏
i=0

(1 + pi)y0 +
j∑

k=1

j−1∏
l=k

(1 + pi)
k−1∑
m=0

bk−1,mg(xm) ≤

≤
j−1∏
i=0

(1 + pi)y0 +
j∑

k=1

j−1∏
l=k

(1 + pi)
k−1∑
m=0

bk−1,mM ′
2 = M̃j

′
.

Then we can choose cj
′, cj

′ ∈ [m̃j
′, M̃j

′
] such that

f(c′j) = min
t∈[fmj

′,fMj
′
]

f(t),

f(c′j) = max
t∈[fmj

′,fMj
′
]

f(t).

The proof of the next theorems follow along the lines of the proof of Theorem 3 and Theorem 4,
hence we omit them.

Theorem 5. Assume that A∞ < ∞, B∞ = ∞. Then a necessary condition for (1) to have a
solution {(xn, yn)} ∈ Ω which belongs to K(α,∞) is that

∞∑
i=0

 i∑
j=0

ai,jf(cj
′)

 < ∞,

where cj
′ is defined for c = α and the first term y0 of {yn}.
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Theorem 6. Assume that A∞ < ∞, B∞ = ∞. Then a sufficient condition for (1) to have an
eventually positive solution {(xn, yn)} ∈ Ω which belongs to K(α,∞) is that: there exists c > 0
such that

∞∑
i=0

 i∑
j=0

ai,jf(cj
′)

 < ∞,

where cj
′ is defined for c and y0 = 0.

Theorem 7. Any solution {(xn, yn)} ∈ Ω of (1) belongs to the set K(α, β) if and only if
A∞ < ∞ and B∞ < ∞.

Proof. Let {(xn, yn)} be a solution in Ω with lim
n→∞

xn = α > 0 and lim
n→∞

yn = β > 0. Then

there exists an integer N ≥ 0 and two positive constants c1 and c2 such that c1 ≤ xn ≤ α,
c2 ≤ yn ≤ β for n ≥ N. From system (1) we have for n ≥ N that

xn = xN +
n−1∑
i=N

hixi +
n−1∑
i=N

 i∑
j=0

ai,jf(yj)

 ,

yn = yN +
n−1∑
i=N

piyi +
n−1∑
i=N

 i∑
j=0

bi,jg(xj)

 .

Let Lα = min
t∈[c1,α]

f(t) and Lβ = min
t∈[c2,β]

g(t). Then we have Lα > 0 and Lβ > 0. Without loss of

generality, we can assume that c1 ≤ xn ≤ α, c2 ≤ yn ≤ β for n ≥ 0. Thus,

α ≥ xn = xN +
n−1∑
i=N

hixi +
n−1∑
i=N

 i∑
j=0

ai,jf(yj)

 ≥

≥ xN + c1

n−1∑
i=N

hi +
n−1∑
i=N

 i∑
j=0

ai,jLα

 ,

β ≥ yn = yN +
n−1∑
i=N

piyi +
n−1∑
i=N

 i∑
j=0

bi,jg(xj)

 ≥

≥ yN + c2

n−1∑
i=N

pi +
n−1∑
i=N

 i∑
j=0

bi,jLβ

 .

So A∞ < ∞, B∞ < ∞.
Conversely, suppose that A∞ < ∞ and B∞ < ∞. First notice that for n ≥ 0, the first

equation of (1) can be written as

xn = x0 +
n−1∑
i=0

hixi +
n−1∑
i=0

 i∑
j=0

ai,jf(yj)

 .
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In a similar fashion, we obtain from the second equation of (1) that

yn = y0 +
n−1∑
i=0

piyi +
n−1∑
i=0

 i∑
j=0

bi,jg(xj)

 .

Next, for c > 0, d > 0, let

M3 = sup
t∈[c/2,c]

f(t), M ′
3 = sup

t∈[d/2,d]
g(t).

We can choose an integer N large enough so that

∞∑
i=N

 i∑
j=0

ai,j

 ≤ d

4M3
,

∞∑
i=N

 i∑
j=0

bi,j

 ≤ c

4M ′
3

and
∞∑

i=N

pi ≤
1
4
,

∞∑
i=N

hi ≤
1
4
.

Let X be the Banach space of all bounded real-valued sequences {(xn, yn)} endowed with the
norm

‖(x, y)‖ = max
{

sup
n≥0

|xn|, sup
n≥0

|yn|
}

.

Define the subset Ωc,d of X by

Ωc,d =

{
{(xn, yn)} ∈ X

∣∣∣∣d2 ≤ xn ≤ d,
c

2
≤ yn ≤ c, n ≥ N,

{xn} and {yn} are both increasing

}
.

Then Ωc,d is a bounded, convex and closed subset of X. Now define the operator E : Ωc,d → X
by

E

(
x
y

)
n

=


d

2

c

2

+


n−1∑
i=N

hixi +
n−1∑
i=N

(
i∑

j=0
ai,jf(yj)

)

n−1∑
i=N

piyi +
n−1∑
i=N

(
i∑

j=0
bi,jg(xj)

)
 ,

where (x, y) ∈ Ωc,d and we take here
∑n−1

i=N = 0 for n ≤ N. First, we note that E maps Ωc,d
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into itself. Indeed, if (x, y) ∈ Ωc,d, then

d

2
≤ (Ex)n =

d

2
+

n−1∑
i=N

hixi +
n−1∑
i=N

 i∑
j=0

ai,jf(yj)

 ≤

≤ d

2
+ d

n−1∑
i=N

hi + M3

n−1∑
i=N

 i∑
j=0

ai,j

 ≤

≤ d

2
+

d

4
+

d

4
= d.

This is similar to showing that c/2 ≤ (Ey)n ≤ c .
Next, we show that E is continuous. Let {(x(l), y(l))} be a sequence in Ωc,d such that

lim
l→∞

∥∥∥(x(l), y(l))− (x, y)
∥∥∥ = 0.

Since Ωc,d is closed, (x, y) ∈ Ωc,d. Then by the definition of E, we have∣∣∣E(x(l), y(l))n − (E(x, y))n

∣∣∣ ≤
≤

∣∣∣∣∣∣
n−1∑
i=N

hix
(l)
i +

n−1∑
i=N

 i∑
j=0

ai,jf(y(l)
j )

− n−1∑
i=N

hixi −
n−1∑
i=N

 i∑
j=0

ai,jf(yj)

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
n−1∑
i=N

piy
(l)
i +

n−1∑
i=N

 i∑
j=0

bi,jg(x(l)
j )

− n−1∑
i=N

piyi −
n−1∑
i=N

 i∑
j=0

bi,jg(xj)

∣∣∣∣∣∣ ≤
≤

∞∑
i=N

hi

∣∣∣x(l)
i − xi

∣∣∣+ ∞∑
i=N

 i∑
j=0

ai,j

∣∣∣f(y(l)
j )− f(yj)

∣∣∣
+

∞∑
i=N

pi

∣∣∣y(l)
i − yi

∣∣∣+
+

∞∑
i=N

 i∑
j=0

bi,j

∣∣∣g(x(l)
j )− g(xj)

∣∣∣
 .

By the continuity of f and g and the Lebesgue dominated convergence theorem, it follows that

lim
l→∞

sup
n≥0

∣∣∣(E(x(l), y(l)))n − (E(x, y))n

∣∣∣ = 0,

or

lim
l→∞

∥∥∥E(x(l), y(l))− E(x, y)
∥∥∥ = 0.

This shows that E is continuous.
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Finally, we show that EΩc,d is precompact. Let {(x(l), y(l))} be a sequence in Ωc,d, then

for each n, {y(l)
n } is a bounded number sequence. This shows that {(x(l)

n , y
(l)
n )} has a convergent

subsequence. By the diagonal process we can know that {(x(l), y(l))} has a convergent subseque-
nce in Ωc,d. Since E is continuous, we know that E{(x(l), y(l))} has a convergent subsequence
in EΩc,d. This means that EΩc,d is precompact.

Now, by Schauder’s fixed point theorem, we conclude that there exists {(x, y)} ∈ Ωc,d such
that (x, y) = E(x, y). That is

xn =
d

2
+

n−1∑
i=N

hixi +
n−1∑
i=N

 i∑
j=0

ai,jf(yj)

 ,

yn =
c

2
+

n−1∑
i=N

piyi +
n−1∑
i=N

 i∑
j=0

bi,jg(xj)


from which we obtain

lim
n→∞

xn = d0, lim
n→∞

yn = c0,

where c0, d0 are positive constants. Hence {(xn, yn)} is an eventually positive solution of (1)
which belongs to K(α, β). The proof is completed.
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