THE EXISTENCE OF POSITIVE SOLUTION OF SYSTEMS OF VOLTERRA NONLINEAR DIFFERENCE EQUATIONS ІСНУВАННЯ ДОДАТНИХ РОЗВ'ЯЗКІВ СИСТЕМ ВОЛЬТЕРРІВСЬКИХ РІЗНИЦЕВИХ РІВНЯНЬ

Jiang Zhu, Xiaolan Liu

Xuzhou Normal Univ.
Xuzhou 221116, People's Republic of China
e-mail: jzhuccy@yahoo.com.cn

In this paper, a classification scheme for the eventually positive solutions of a class of two-dimensional Volterra nonlinear difference equations is given in terms of asymptotic magnitudes. Some necessary as well as sufficient conditions for the existence of such solutions are provided, without any monotonicity conditions on the nonlinear term.

Для згодом додатних розв’язків деякого класу двовимірних вольтеррівських нелінійних рівнянь наведено класифікаційну схему в термінах умов на асимптотику. Наведено також деякі необхідні і достатні умови існування таких розв’язків без вимоги монотонності нелінійного члена.

1. Introduction. The study of difference equations has experienced a significant interest in the past years, as they arise naturally in the modelling of real word phenomena [1-4]. Volterra difference equation arise in the mathematical modelling of some real phenomena and also in various procedures of numerical solution of some differential and integral equations. For applications of the Volterra difference equation in combinatorics and in epidemics, see [5]. In the very recent paper [6], the authors gave a classification scheme for the eventually positive solutions and necessary as well as sufficient conditions for the existence of such solutions for the following of two-dimensional Volterra nonlinear difference equations:

$$
\begin{gather*}
\triangle x_{n}=h_{n} x_{n}+\sum_{i=1}^{n} a_{n, i} f\left(y_{i}\right) \tag{1}\\
\triangle y_{n}=p_{n} y_{n}+\sum_{i=1}^{n} b_{n, i} g\left(x_{i}\right), \quad n \geq 0
\end{gather*}
$$

where $\left\{a_{n, k}\right\},\left\{b_{n, k}\right\}$ are positive for $n, k \geq 0$. The functions f and g are real-valued continuous on the real line R. Also, the coefficients $\left\{h_{n}\right\}$ and $\left\{p_{n}\right\}$ are positive sequences for $n \geq 0$ and satisfy the condition

$$
\begin{equation*}
\sum_{n=0}^{\infty} h_{n}<\infty, \quad \sum_{n=0}^{\infty} p_{n}<\infty . \tag{2}
\end{equation*}
$$

They improve many works contained in their references, such as [7, 8]. However, the main tool they used is Kanaster's fixed point theorem for increasing operators, which needs monotonicity
of the functions f and g. In this paper, we will use Schauder's fixed point theorem to get the existence of the eventually positive solutions. We do not need any monotonicity for the nonlinear terms f and g. Some necessary as well as sufficient conditions for the existence of such solutions are presented. Our results improve the results of [6]. Throughout this paper we assume that $f(x)>0, g(x)>0$ for $x \neq 0$ and (2) holds.

Definition 1 [6]. A pair of real-valued sequences $\left\{\left(x_{n}, y_{n}\right)\right\}$ is said to be

1) a solution of system (1) if it satisfies (1) for $n \geq 0$;
2) eventually positive if both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are eventually positive;
3) nonoscillatory if both $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are either eventually positive or eventually negative.

To simply notation, we use the notation of [6] and let

$$
\begin{gather*}
A_{n}=\sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} a_{i, j}\right), \tag{3}\\
B_{n}=\sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} b_{i, j}\right), \tag{4}\\
A_{\infty}=\lim _{n \rightarrow \infty} A_{n}, \quad B_{\infty}=\lim _{n \rightarrow \infty} B_{n} .
\end{gather*}
$$

Let C be the set of all continuous functions and define

$$
\Omega=\left\{\left\{\left(x_{n}, y_{n}\right)\right\} \in C \mid x_{n}, y_{n}>0, n \geq 0\right\} .
$$

By the equation (1) [6] gave the variation of parameters formula

$$
\begin{align*}
x_{n+1} & =\left(1+h_{n}\right) x_{n}+\sum_{j=0}^{n} a_{n, j} f\left(y_{j}\right)= \tag{5}\\
& =\left(1+h_{n}\right)\left[\left(1+h_{n-1}\right) x_{n-1}+\sum_{j=0}^{n-1} a_{n, j} f\left(y_{j}\right)\right]+\sum_{j=0}^{n} a_{n, j} f\left(y_{j}\right)=\ldots \\
\ldots & =\prod_{i=0}^{n}\left(1+h_{i}\right) x_{0}+\sum_{k=1}^{n+1} \prod_{i=k}^{n}\left(1+h_{i}\right) \sum_{j=0}^{k-1} a_{k-1, j} f\left(y_{j}\right) \tag{6}
\end{align*}
$$

and

$$
\begin{equation*}
y_{n+1}=\prod_{i=0}^{n}\left(1+p_{i}\right) y_{0}+\sum_{k=1}^{n+1} \prod_{i=k}^{n}\left(1+p_{i}\right) \sum_{j=0}^{k-1} b_{k-1, j} g\left(x_{j}\right), \tag{7}
\end{equation*}
$$

where the notation $\prod_{k=n+1}^{n}=1$ is used. It is clear from (5) and (7) that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are positive provided that $x_{0}, y_{0} \geq 0$. Moreover, if $h_{n}, p_{n}>0$, then from (1) we have $\triangle x_{n}$, $\Delta y_{n}>0$. Now, for some positive constants α, β, we define the set

$$
K(\alpha, \beta)=\left\{\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega \mid \lim _{n \rightarrow \infty} x_{n}=\alpha, \lim _{n \rightarrow \infty} y_{n}=\beta\right\},
$$

where α and β maybe considered to be infinite.
2. Classification of positive solutions and existence. In this section, we should classify positive solutions of (1) according to their limiting behavior and then provide necessary and sufficient conditions for their existence in the cases (2), (3), and (4).

Theorem 1. Any solution $\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega$ of (1) belongs to one of the following subsets:

$$
K(\alpha, \beta), \quad K(\alpha, \infty), \quad K(\infty, \beta), \quad K(\infty, \infty) .
$$

Proof. Since $\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega$, we have $\triangle x_{n}, \triangle y_{n}>0$ for $n \geq 0$. Thus $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are increasing. Hence, $\lim _{n \rightarrow \infty} x_{n}=\alpha>0$ or $\lim _{n \rightarrow \infty} x_{n}=\infty$, and $\lim _{n \rightarrow \infty} y_{n}=\beta>0$ or $\lim _{n \rightarrow \infty} y_{n}=\infty$. The proof is complete.

In the following we state several theorems; each of the theorems is related to one of the above mentioned cases.

Theorem 2. Suppose that $A_{\infty}=\infty, B_{\infty}=\infty$ and L_{1}, L_{2} are the lower bounds of the functions f and g on R_{+}, respectively. If $L_{1}>0, L_{2}>0$, then any solution $\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega$ of (1) belongs to the set $K(\infty, \infty)$.

Proof. Let $\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega$ be a solution of system (1). Then $\triangle x_{n}, \triangle y_{n}>0$ for $n \geq 0$. Thus $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are increasing. As a consequence of this and (1), we arrive at

$$
\begin{aligned}
x_{n} & =x_{0}+\sum_{i=0}^{n-1} h_{i} x_{i}+\sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} a_{i, j} f\left(y_{j}\right)\right) \geq \\
& \geq L_{1} \sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} a_{i, j}\right)=L_{1} A_{n} \rightarrow \infty, \quad n \rightarrow \infty \\
y_{n} & =y_{0}+\sum_{i=0}^{n-1} p_{i} y_{i}+\sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(x_{j}\right)\right) \geq \\
& \geq L_{2} \sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} b_{i, j}\right)=L_{1} B_{n} \rightarrow \infty, \quad n \rightarrow \infty
\end{aligned}
$$

This shows that $x_{n} \rightarrow \infty$ and $y_{n} \rightarrow \infty$, as $n \rightarrow \infty$. The proof is complete.
If L_{1} is the lower bound of the function f on R_{+}, for $c>0$, we denote $M_{1}=\sup _{t \in[c / 2, c]} f(t)$,
then we have the following estimate formula for $x_{0} \in R$ and c :

$$
\begin{aligned}
\widetilde{m_{j}} & =\prod_{i=0}^{j-1}\left(1+h_{i}\right) x_{0}+\sum_{k=1}^{j} \prod_{l=k}^{j-1}\left(1+h_{i}\right) \sum_{m=0}^{k-1} a_{k-1, m} L_{1} \leq \\
& \leq \prod_{i=0}^{j-1}\left(1+h_{i}\right) x_{0}+\sum_{k=1}^{j} \prod_{l=k}^{j-1}\left(1+h_{i}\right) \sum_{m=0}^{k-1} a_{k-1, m} f\left(y_{m}\right) \leq \\
& \leq \prod_{i=0}^{j-1}\left(1+h_{i}\right) x_{0}+\sum_{k=1}^{j} \prod_{l=k}^{j-1}\left(1+h_{i}\right) \sum_{m=0}^{k-1} a_{k-1, m} M_{1}=\widetilde{M}_{j} .
\end{aligned}
$$

Then we can choose $\underline{c_{j}}, \overline{c_{j}} \in\left[\widetilde{m_{j}}, \widetilde{M_{j}}\right]$ such that

$$
g\left(\underline{c_{j}}\right)=\min _{t \in\left[\widetilde{m_{j}}, \widetilde{M_{j}}\right]} g(t), \quad g\left(\overline{c_{j}}\right)=\max _{t \in\left[\widetilde{m_{j}}, \widetilde{M_{j}}\right]} g(t) .
$$

Theorem 3. Suppose that $A_{\infty}=\infty, B_{\infty}<\infty$ hold. Then a necessary condition for (1) to have a solution $\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega$ which belongs to $K(\infty, \beta)$ is that

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left(\sum_{j=0}^{i} b_{i, j} g \underline{\left(c_{j}\right)}\right)<\infty \tag{8}
\end{equation*}
$$

where c_{j} is defined corresponding to $c=\beta$ and the first term x_{0} of $\left\{x_{n}\right\}$.
Proof. Let $\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega$, be a solution of system (1) which belongs to $K(\infty, \beta)$. Then $\triangle x_{n}, \Delta y_{n}>0$ for $n \geq 0$. Thus $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are increasing and $y_{0} \leq y_{n} \leq \beta$ for $n \geq 0$. From (5) we have

$$
x_{n}=\prod_{i=0}^{n-1}\left(1+h_{i}\right) x_{0}+\sum_{k=1}^{n} \prod_{i=k}^{n-1}\left(1+h_{i}\right) \sum_{j=0}^{k-1} a_{k-1, j} f\left(y_{j}\right)
$$

Since $\lim _{n \rightarrow \infty} y_{n}=\beta$, without loss of generality, we can assume that $y_{n} \in[\beta / 2, \beta]$ for any $n \geq 0$. Then we have

$$
\begin{aligned}
\beta \geq y_{n} & =y_{0}+\sum_{i=0}^{n-1} p_{i} y_{i}+\sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(x_{j}\right)\right)= \\
& =y_{0}+\sum_{i=0}^{n-1} p_{i} y_{i}+\sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(\prod_{l=0}^{j-1}\left(1+h_{l}\right) x_{0}+\sum_{k=1}^{j} \prod_{l=k}^{j-1}\left(1+h_{l}\right) \sum_{l=0}^{k-1} a_{k-1, l} f\left(y_{l}\right)\right)\right) \geq \\
& \geq \sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(\underline{c_{j}}\right)\right)
\end{aligned}
$$

By taking the limit at infinity in the above inequality we obtain (8). The proof is completed.
Theorem 4. Suppose that (2) holds, and $A_{\infty}=\infty$ and $B_{\infty}<\infty$. Then a sufficient condition for (1) to have an eventually positive solution $\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega$ which belongs to $K(\infty, \beta)$ is that: there exists $c>0$ such that

$$
\begin{equation*}
\sum_{i=0}^{\infty}\left(\sum_{j=0}^{i} b_{i, j} g\left(\overline{c_{j}}\right)\right)<\infty \tag{9}
\end{equation*}
$$

where the $\overline{c_{j}}$ is defined for c and $x_{0}=0$.
Proof. If (9) holds, we can choose an integer N large enough so that

$$
\begin{equation*}
\sum_{i=N}^{\infty}\left(\sum_{j=0}^{i} b_{i, j} g\left(\overline{c_{j}}\right)\right) \leq \frac{c}{4}, \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=N}^{\infty} p_{i} \leq \frac{1}{4} \tag{11}
\end{equation*}
$$

Let X be the set of all bounded real-valued sequences $\left\{y_{n}\right\}$ equipped with the norm

$$
\|y\|=\sup _{n \geq 0}\left|y_{n}\right| .
$$

Then X is Banach space. For $c>0$, define the subset Ω_{c} of X by

$$
\Omega_{c}=\left\{\left\{y_{n}\right\} \in X \left\lvert\, \frac{c}{2} \leq y_{n} \leq c\right., n \geq N,\left\{y_{n}\right\} \text { is increasing }\right\} .
$$

Then Ω_{c} is a bounded, convex and closed subset of X. Now define the operator $E: \Omega_{c} \rightarrow X$ by

$$
\begin{equation*}
(E y)_{n}=\frac{c}{2}+\sum_{i=N}^{n-1} p_{i} y_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(\sum_{k=1}^{i} \prod_{l=k}^{j-1}\left(1+h_{l}\right) \sum_{m=0}^{k-1} a_{k-1, m} f\left(y_{m}\right)\right)\right) \tag{12}
\end{equation*}
$$

for $y \in \Omega_{c}$ and we take here $\sum_{i=N}^{n-1}=0$ for $n \leq N$. First, we note that E maps Ω_{c} into itself. Indeed, if $y \in \Omega_{c}$, then

$$
\begin{aligned}
\frac{c}{2} \leq(E y)_{n} & =\frac{c}{2}+\sum_{i=N}^{n-1} p_{i} y_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(\sum_{k=1}^{i} \prod_{l=1}^{j-1}\left(1+h_{l}\right) \sum_{m=0}^{k-1} a_{k-1, m} f\left(y_{m}\right)\right)\right) \leq \\
& \leq \frac{c}{2}+c \sum_{i=N}^{n-1} p_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(\sum_{k=1}^{i} \prod_{l=k}^{j-1}\left(1+h_{l}\right) \sum_{m=0}^{k-1} a_{k-1, m} M_{1}\right)\right) \leq \\
& \leq \frac{c}{2}+\frac{c}{4}+\frac{c}{4}=c .
\end{aligned}
$$

Next, we show that E is continuous. Let $\left\{y^{(l)}\right\}$ be a sequence in Ω_{c} such that

$$
\lim _{l \rightarrow \infty}\left\|y^{(l)}-y\right\|=0
$$

Since Ω_{c} is closed, $y \in \Omega_{c}$. Then by (12), we have

$$
\begin{aligned}
\left|\left(E y^{(l)}\right)_{n}-(E y)_{n}\right| & =\mid \sum_{i=N}^{n-1} p_{i} y_{i}^{(l)}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(\sum_{k=1}^{i} \prod_{l=k}^{j-1}\left(1+h_{l}\right) \sum_{m=0}^{k-1} a_{k-1, m} f\left(y_{m}^{(l)}\right)\right)\right)- \\
& -\sum_{i=N}^{n-1} p_{i} y_{i}-\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(\sum_{k=1}^{i} \prod_{l=k}^{j-1}\left(1+h_{l}\right) \sum_{m=0}^{k-1} a_{k-1, m} f\left(y_{m}\right)\right)\right) \leq \\
& \leq \sum_{i=N}^{\infty} p_{i}\left|y_{i}^{(l)}-y_{i}\right|+\sum_{i=N}^{\infty}\left(\sum_{j=0}^{i} b_{i, j} \mid g\left(\sum_{k=1}^{i} \prod_{l=k}^{j-1}\left(1+h_{l}\right) \sum_{m=0}^{k-1} a_{k-1, m} f\left(y_{m}^{(l)}\right)\right)-\right. \\
& \left.-g\left(\sum_{k=1}^{i} \prod_{l=k}^{j-1}\left(1+h_{l}\right) \sum_{m=0}^{k-1} a_{k-1, m} f\left(y_{m}\right)\right) \mid\right) .
\end{aligned}
$$

By the continuity of f and g and the Lebesgue dominated convergence theorem, it follows that

$$
\lim _{l \rightarrow \infty} \sup _{n \geq 0}\left|\left(E y^{(l)}\right)_{n}-(E y)_{n}\right|=0
$$

or

$$
\lim _{l \rightarrow \infty}\left\|E y^{(l)}-E y\right\|=0
$$

This shows that E is continuous.
Finally, we show that $E \Omega_{c}$ is precompact. Let $\left\{y^{(l)}\right\}$ be a sequence in Ω_{c}, then for each n, $\left\{y_{n}^{(l)}\right\}$ is a bounded number sequence. This shows that $\left\{y_{n}^{(l)}\right\}$ has a convergent subsequence. By the diagonal process we can know that $\left\{y^{(l)}\right\}$ has a convergent subsequence in Ω_{c}. Since E is continuous, we know that $\left\{E y^{(l)}\right\}$ has a convergent subsequence in Ω_{c}, this means that $E \Omega_{c}$ is precompact.

Now, by Schauder's fixed point theorem, we conclude that there exists $y \in \Omega_{c}$ such that $y=E y$. Set

$$
x_{n}=\sum_{k=1}^{n} \prod_{i=k}^{n-1}\left(1+h_{i}\right) \sum_{j=0}^{k-1} a_{k-1, j} f\left(y_{j}\right) .
$$

Then

$$
\begin{gathered}
\triangle x_{n}=h_{n} x_{n}+\sum_{i=0}^{n} a_{n, i} f\left(y_{i}\right), \\
x_{n}=\sum_{k=1}^{n} \prod_{i=k}^{n-1}\left(1+h_{i}\right) \sum_{j=0}^{k-1} a_{k-1, j} f\left(y_{j}\right) \geq \sum_{k=1}^{n} \prod_{i=k}^{n-1}\left(1+h_{i}\right) \sum_{j=0}^{k-1} a_{k-1, j} L_{c,},
\end{gathered}
$$

where $L_{c}=\min _{t \in[c / 2, c]} f(t)$. Since $f(t)>0$ for $t>0$, we have $L_{c}>0$. In view of $A_{\infty}=\infty$, we have

$$
\lim _{n \rightarrow \infty} x_{n}=\infty
$$

On the other hand,

$$
y_{n}=\frac{c}{2}+\sum_{i=N}^{n-1} p_{i} y_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(\prod_{l=0}^{j-1}\left(1+h_{l}\right) x_{0}+\sum_{k=1}^{i} \prod_{l=k}^{j-1}\left(1+h_{l}\right) \sum_{m=0}^{k-1} a_{k-1, m} f\left(y_{m}\right)\right)\right)
$$

from which we obtain

$$
\lim _{n \rightarrow \infty} y_{n}=c_{0},
$$

where c_{0} is a constant. Hence, $\left(x_{n}, y_{n}\right)$ is an eventually positive solution of (1) which belongs to $K(\infty, \beta)$. This completes the proof.

If L_{2} is a lower bound of the function g on R_{+}, for $c>0$, denote $M_{2}^{\prime}=\sup _{t \in[c / 2, c]} g(t)$. Then we have the following estimate formula for y_{0} and c :

$$
\begin{aligned}
\widetilde{m}_{j}^{\prime} & =\prod_{i=0}^{j-1}\left(1+p_{i}\right) y_{0}+\sum_{k=1}^{j} \prod_{l=k}^{j-1}\left(1+p_{i}\right) \sum_{m=0}^{k-1} b_{k-1, m} L_{2} \leq \\
& \leq \prod_{i=0}^{j-1}\left(1+p_{i}\right) y_{0}+\sum_{k=1}^{j} \prod_{l=k}^{j-1}\left(1+p_{i}\right) \sum_{m=0}^{k-1} b_{k-1, m} g\left(x_{m}\right) \leq \\
& \leq \prod_{i=0}^{j-1}\left(1+p_{i}\right) y_{0}+\sum_{k=1}^{j} \prod_{l=k}^{j-1}\left(1+p_{i}\right) \sum_{m=0}^{k-1} b_{k-1, m} M_{2}^{\prime}=\widetilde{M}_{j}^{\prime} .
\end{aligned}
$$

Then we can choose $\underline{c_{j}},{\overline{c_{j}}}^{\prime} \in\left[\widetilde{m_{j}}, \widetilde{M}_{j}^{\prime}\right]$ such that

$$
\begin{aligned}
& f\left(\underline{c_{j}^{\prime}}\right)=\min _{t \in\left[\widetilde{m_{j}^{\prime}}, \widetilde{M_{j}^{\prime}}\right]} f(t), \\
& f\left(\overline{c_{j}^{\prime}}\right)=\max _{t \in\left[\widetilde{m_{j}^{\prime}}, \widetilde{M_{j}^{\prime}}\right]} f(t) .
\end{aligned}
$$

The proof of the next theorems follow along the lines of the proof of Theorem 3 and Theorem 4, hence we omit them.

Theorem 5. Assume that $A_{\infty}<\infty, B_{\infty}=\infty$. Then a necessary condition for (1) to have a solution $\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega$ which belongs to $K(\alpha, \infty)$ is that

$$
\sum_{i=0}^{\infty}\left(\sum_{j=0}^{i} a_{i, j} f\left(\underline{c_{j}^{\prime}}\right)\right)<\infty
$$

where ${\underline{c_{j}}}^{\prime}$ is defined for $c=\alpha$ and the first term y_{0} of $\left\{y_{n}\right\}$.

Theorem 6. Assume that $A_{\infty}<\infty, B_{\infty}=\infty$. Then a sufficient condition for (1) to have an eventually positive solution $\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega$ which belongs to $K(\alpha, \infty)$ is that: there exists $c>0$ such that

$$
\sum_{i=0}^{\infty}\left(\sum_{j=0}^{i} a_{i, j} f\left(\overline{c_{j}^{\prime}}\right)\right)<\infty
$$

where $\overline{c_{j}}{ }^{\prime}$ is defined for c and $y_{0}=0$.
Theorem 7. Any solution $\left\{\left(x_{n}, y_{n}\right)\right\} \in \Omega$ of (1) belongs to the set $K(\alpha, \beta)$ if and only if $A_{\infty}<\infty$ and $B_{\infty}<\infty$.

Proof. Let $\left\{\left(x_{n}, y_{n}\right)\right\}$ be a solution in Ω with $\lim _{n \rightarrow \infty} x_{n}=\alpha>0$ and $\lim _{n \rightarrow \infty} y_{n}=\beta>0$. Then there exists an integer $N \geq 0$ and two positive constants c_{1} and c_{2} such that $c_{1} \leq x_{n} \leq \alpha$, $c_{2} \leq y_{n} \leq \beta$ for $n \geq N$. From system (1) we have for $n \geq N$ that

$$
\begin{aligned}
& x_{n}=x_{N}+\sum_{i=N}^{n-1} h_{i} x_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} a_{i, j} f\left(y_{j}\right)\right), \\
& y_{n}=y_{N}+\sum_{i=N}^{n-1} p_{i} y_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(x_{j}\right)\right) .
\end{aligned}
$$

Let $L_{\alpha}=\min _{t \in\left[c_{1}, \alpha\right]} f(t)$ and $L_{\beta}=\min _{t \in\left[c_{2}, \beta\right]} g(t)$. Then we have $L_{\alpha}>0$ and $L_{\beta}>0$. Without loss of generality, we can assume that $c_{1} \leq x_{n} \leq \alpha, c_{2} \leq y_{n} \leq \beta$ for $n \geq 0$. Thus,

$$
\begin{aligned}
\alpha \geq x_{n} & =x_{N}+\sum_{i=N}^{n-1} h_{i} x_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} a_{i, j} f\left(y_{j}\right)\right) \geq \\
& \geq x_{N}+c_{1} \sum_{i=N}^{n-1} h_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} a_{i, j} L_{\alpha}\right), \\
\beta \geq y_{n} & =y_{N}+\sum_{i=N}^{n-1} p_{i} y_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(x_{j}\right)\right) \geq \\
& \geq y_{N}+c_{2} \sum_{i=N}^{n-1} p_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} L_{\beta}\right) .
\end{aligned}
$$

So $A_{\infty}<\infty, B_{\infty}<\infty$.
Conversely, suppose that $A_{\infty}<\infty$ and $B_{\infty}<\infty$. First notice that for $n \geq 0$, the first equation of (1) can be written as

$$
x_{n}=x_{0}+\sum_{i=0}^{n-1} h_{i} x_{i}+\sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} a_{i, j} f\left(y_{j}\right)\right) .
$$

In a similar fashion, we obtain from the second equation of (1) that

$$
y_{n}=y_{0}+\sum_{i=0}^{n-1} p_{i} y_{i}+\sum_{i=0}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(x_{j}\right)\right)
$$

Next, for $c>0, d>0$, let

$$
M_{3}=\sup _{t \in[c / 2, c]} f(t), \quad M_{3}^{\prime}=\sup _{t \in[d / 2, d]} g(t)
$$

We can choose an integer N large enough so that

$$
\sum_{i=N}^{\infty}\left[\sum_{j=0}^{i} a_{i, j}\right] \leq \frac{d}{4 M_{3}}, \quad \sum_{i=N}^{\infty}\left[\sum_{j=0}^{i} b_{i, j}\right] \leq \frac{c}{4 M_{3}^{\prime}}
$$

and

$$
\sum_{i=N}^{\infty} p_{i} \leq \frac{1}{4}, \quad \sum_{i=N}^{\infty} h_{i} \leq \frac{1}{4}
$$

Let X be the Banach space of all bounded real-valued sequences $\left\{\left(x_{n}, y_{n}\right)\right\}$ endowed with the norm

$$
\|(x, y)\|=\max \left\{\sup _{n \geq 0}\left|x_{n}\right|, \sup _{n \geq 0}\left|y_{n}\right|\right\}
$$

Define the subset $\Omega_{c, d}$ of X by

$$
\begin{aligned}
\Omega_{c, d}= & \left\{\left\{\left(x_{n}, y_{n}\right)\right\} \in X \left\lvert\, \frac{d}{2} \leq x_{n} \leq d\right., \frac{c}{2} \leq y_{n} \leq c, n \geq N\right. \\
& \left.\left\{x_{n}\right\} \text { and }\left\{y_{n}\right\} \text { are both increasing }\right\}
\end{aligned}
$$

Then $\Omega_{c, d}$ is a bounded, convex and closed subset of X. Now define the operator $E: \Omega_{c, d} \rightarrow X$ by

$$
E\binom{x}{y}_{n}=\left[\begin{array}{l}
\frac{d}{2} \\
c \\
\frac{d}{2}
\end{array}\right]+\left[\begin{array}{c}
\sum_{i=N}^{n-1} h_{i} x_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} a_{i, j} f\left(y_{j}\right)\right) \\
\sum_{i=N}^{n-1} p_{i} y_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(x_{j}\right)\right)
\end{array}\right]
$$

where $(x, y) \in \Omega_{c, d}$ and we take here $\sum_{i=N}^{n-1}=0$ for $n \leq N$. First, we note that E maps $\Omega_{c, d}$ ISSN 1562-3076. Нелінійні коливання, 2006, т. 9, № 1
into itself. Indeed, if $(x, y) \in \Omega_{c, d}$, then

$$
\begin{aligned}
\frac{d}{2} \leq(E x)_{n} & =\frac{d}{2}+\sum_{i=N}^{n-1} h_{i} x_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} a_{i, j} f\left(y_{j}\right)\right) \leq \\
& \leq \frac{d}{2}+d \sum_{i=N}^{n-1} h_{i}+M_{3} \sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} a_{i, j}\right) \leq \\
& \leq \frac{d}{2}+\frac{d}{4}+\frac{d}{4}=d
\end{aligned}
$$

This is similar to showing that $c / 2 \leq(E y)_{n} \leq c$.
Next, we show that E is continuous. Let $\left\{\left(x^{(l)}, y^{(l)}\right)\right\}$ be a sequence in $\Omega_{c, d}$ such that

$$
\lim _{l \rightarrow \infty}\left\|\left(x^{(l)}, y^{(l)}\right)-(x, y)\right\|=0
$$

Since $\Omega_{c, d}$ is closed, $(x, y) \in \Omega_{c, d}$. Then by the definition of E, we have

$$
\begin{aligned}
& \left|E\left(x^{(l)}, y^{(l)}\right)_{n}-(E(x, y))_{n}\right| \leq \\
& \leq\left|\sum_{i=N}^{n-1} h_{i} x_{i}^{(l)}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} a_{i, j} f\left(y_{j}^{(l)}\right)\right)-\sum_{i=N}^{n-1} h_{i} x_{i}-\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} a_{i, j} f\left(y_{j}\right)\right)\right|+ \\
& +\left|\sum_{i=N}^{n-1} p_{i} y_{i}^{(l)}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(x_{j}^{(l)}\right)\right)-\sum_{i=N}^{n-1} p_{i} y_{i}-\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(x_{j}\right)\right)\right| \leq \\
& \leq \sum_{i=N}^{\infty} h_{i}\left|x_{i}^{(l)}-x_{i}\right|+\sum_{i=N}^{\infty}\left(\sum_{j=0}^{i} a_{i, j}\left|f\left(y_{j}^{(l)}\right)-f\left(y_{j}\right)\right|\right)+\sum_{i=N}^{\infty} p_{i}\left|y_{i}^{(l)}-y_{i}\right|+ \\
& +\sum_{i=N}^{\infty}\left(\sum_{j=0}^{i} b_{i, j}\left|g\left(x_{j}^{(l)}\right)-g\left(x_{j}\right)\right|\right) .
\end{aligned}
$$

By the continuity of f and g and the Lebesgue dominated convergence theorem, it follows that

$$
\lim _{l \rightarrow \infty} \sup _{n \geq 0}\left|\left(E\left(x^{(l)}, y^{(l)}\right)\right)_{n}-(E(x, y))_{n}\right|=0,
$$

or

$$
\lim _{l \rightarrow \infty}\left\|E\left(x^{(l)}, y^{(l)}\right)-E(x, y)\right\|=0
$$

This shows that E is continuous.

Finally, we show that $E \Omega_{c, d}$ is precompact. Let $\left\{\left(x^{(l)}, y^{(l)}\right)\right\}$ be a sequence in $\Omega_{c, d}$, then for each $n,\left\{y_{n}^{(l)}\right\}$ is a bounded number sequence. This shows that $\left\{\left(x_{n}^{(l)}, y_{n}^{(l)}\right)\right\}$ has a convergent subsequence. By the diagonal process we can know that $\left\{\left(x^{(l)}, y^{(l)}\right)\right\}$ has a convergent subsequence in $\Omega_{c, d}$. Since E is continuous, we know that $E\left\{\left(x^{(l)}, y^{(l)}\right)\right\}$ has a convergent subsequence in $E \Omega_{c, d}$. This means that $E \Omega_{c, d}$ is precompact.

Now, by Schauder's fixed point theorem, we conclude that there exists $\{(x, y)\} \in \Omega_{c, d}$ such that $(x, y)=E(x, y)$. That is

$$
\begin{aligned}
& x_{n}=\frac{d}{2}+\sum_{i=N}^{n-1} h_{i} x_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} a_{i, j} f\left(y_{j}\right)\right) \\
& y_{n}=\frac{c}{2}+\sum_{i=N}^{n-1} p_{i} y_{i}+\sum_{i=N}^{n-1}\left(\sum_{j=0}^{i} b_{i, j} g\left(x_{j}\right)\right)
\end{aligned}
$$

from which we obtain

$$
\lim _{n \rightarrow \infty} x_{n}=d_{0}, \quad \lim _{n \rightarrow \infty} y_{n}=c_{0}
$$

where c_{0}, d_{0} are positive constants. Hence $\left\{\left(x_{n}, y_{n}\right)\right\}$ is an eventually positive solution of (1) which belongs to $K(\alpha, \beta)$. The proof is completed.

1. Agarwal R. P. Difference equations and inequalities theory. Methods and applications, seconded. - New York: Dekker, 2000.
2. Agarwal R. P., Wong P. J. Y. Advanced topics in difference equations. - Dordrecht: Kluwer Acad., 1997.
3. Agarwal P. R., O’Regan D. A coupled system of difference equations // Appl. Math. and Comput. - 2000. 114. - P. 39-49.
4. Shi Y., Chen S. Spectral theory of second order vector difference equations // J. Math. Anal. and Appl. 1999. - 239. - P. 195-212.
5. Babai L., Lengyel T. A convergence for recurrent sequences with application to the partition lattice // Analysis. - 1992. - 12. - P. 109-119.
6. Li W. T., Raffoul Y. N. Classificition and existence of positive solutions of systems of Volterra nonlinear difference equations // Appl. Math. and Comput. - 2004. - 155. - P. 469-478.
7. Agarwal R. P., Li W. T., and Pang P. Y. H. Asymptotic behavior of nonlinear differential systems // Ibid. 2003. - 140. - P. 719 - 728.
8. Li W. T. Classification schemes for nonoscillatory solutions of nonlinear two-dimensional difference systems // Comput. Math. Appl. - 2001. - 42. - P. 341-355.
9. Agarwal R. P., Li W. T., and Pang P. Y. H. Asymptotic behavior of nonlinear differential systems // Appl. Math. and Comput. - 2003. - 140. - P. 719-728.
10. Li W. T. Classification schemes for nonoscillatory solutions of nonlinear two-dimensional difference systems // Comput. Math. Appl. - 2001. - 42. - P. 341-355.
