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IMPLICIT DIFFERENCE METHODS FOR FIRST ORDER PARTIAL
DIFFERENTIAL FUNCTIONAL EQUATIONS

HEABHI PIBHUIIEBI METOIU
A JINPEPEHIHIA/IBHO-OYHKIIOHAJ/IBHUX PIBHAHD
HNEPHIOIO ITOPAIKY
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We present a new class of numerical methods for quasilinear first order partial functional differential
equations. The numerical methods are difference schemes which are implicit with respect to time vari-
able. We give a complete convergence analysis for the methods and we show by an example that the new
methods are considerably better than the explicit schemes. The proof of the stability is based on a compari-
son technique with nonlinear estimates of the Perron type for given operators with respect to the functional
variable.

Pozenanymo Hosuill kaac 4UCEAbHUX MemMOOI8 OAf KBIIIAIHIUHUX (PYHKUIOHAAbHO-0UGDepEeHUIANbHUX
PIBHAHb NEPULO20 NOPAOKY 3 HACMUHHUMU NOXIOHUMU. Po32aanymi wuceabHi memoou € pisHuyesumu
cxemamu, o 3a0arombCa Hesa8HO 8IOHOCHO 4aco80l 3minHol. Hasedeno nosrutl ananis 36ixcrocmi me-
mo0ois i NpUKAAO, W0 NOKAIYE 3HAUHY Nepesazy HOBUX Memo0i6 HAO ASHUMU cXxemamu. [lo8edeH A cmili-
Kocmi 6a3yembca Ha MeXHIUL NOPIBHAHHA 3 HEAIHIIHOI OUIHKOIO NEPPOHIBCLKO20 MUNY 044 3a0aH020
onepamopa 8iOHOCHO PYHKUIOHAAbHOL 3MIHHOL.

1. Introduction. For any metric spaces X and Y we denote by C'(X, Y) the class of all continuous
functions from X to Y. We will use vectorial inequalities with the understanding that the same
inequalities hold between their corresponding components.

We consider the sets

e = [0,a] x (=b,b), D = [~do,0] x [~d, d]

where a > 0,b = (b1,...,by),d = (d1,...,dy),andd; > 0,b; > Ofor1 < i < n,d € R},
Ry = (0,+c0). Letc = (¢1,...,¢,) = b+ dand

Ey = [=do,0] x [—c,c], OoE = [0,a] x ([—¢,c]\ (=b,D)).

Put Q = EyU E U QyE. For a function z : Q — R and for a point (¢,x) € [0,a] x [—b,b] we
define the function z(; ;) : D — R as follows:

z(t,a:)(‘svy) = Z(t+8,[l}+y), (Svy) € D.

The function 2, ;) is the restriction of z to the set [t — do,t] x [z — d, = + d] and this restriction
is shifted to the set D. For a function w € C(D, R) we write

|wlp = max{|w(t,x)| : (t,z) € D}.
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202 A. KEPCZYNSKA

Suppose that
f:ExC(D,R) — R", f=/(fi,--,[n),

g: ExC(D,R) - R, ¢:EyUQE — R

are given functions. We will deal with the quasilinear differential functional equation

8tz(t> .%') = Z fi(t7 €L, Z(t,a:))a’tiz(tv .TC) + g(tv x, Z(t,x)) (1)
=1

and the initial boundary condition
z(t,x) = p(t,z) on EygUdhE. (2)

A function v : Q — R is a classical solution of (1), (2) provided:

(i) v € C(Q, R) and the partial derivatives d;v, d,v = (O, v, ..., 03,v) exist on E,

(ii) v satisfies (1) on E and condition (2) holds.

We are interested in establishing a method of approximation of solutions to problem (1),
(2) by means of solutions of associated difference functional equations and in estimating the
difference bet ween the exact and approximate solutions.

In resent years, a number of papers concerning numerical methods for initial or initial
boundary-value problems related to first order partial functional differential equations have
been published.

Difference approximations of nonlinear equations with initial boundary conditions were
considered in [1, 2]. The convergence result for a general class of difference methods related
to initial problems and solutions defined on unbounded domain can be found in [3]. Error esti-
mates implying the convergence results for initial problems on the Haar pyramid were consi-
dered in [4-6].

All this considerations have the following property: the main question in the investigations
of numerical methods is to find a difference functional equation which is stable and satisfies a
consistency condition with respect to the original problem. The method of difference inequali-
ties and theorems on recurrence inequalities are used in the investigation of the stability. The
convergence results are based also on a general theorem on error estimates of approximate
solutions to functional difference equations of the Volterra type with initial or initial boundary
condition. The monograph [7] contains an exposition of the theory of difference methods for
nonlinear hyperbolic functional differential problems.

In the paper we start the investigation of implicit difference methods for quasilinear functi-
onal differential equations. We prove that under natural assumptions on given functions and
on the mesh there is a class of implicit difference schemes for (1), (2) which is convergent. The
stability of the methods is investigated by using the comparison technique. It is important in
our considerations that we assume the nonlinear estimates of the Perron type for given functi-
ons with respect to the functional variable. Our results are based on general ideas for finite
difference equations which were introduced in [8, 9].

The paper is organized as follows. In Section 2 we formulate an implicit difference functi-
onal problem corresponding to (1), (2) and we prove that there is exactly one solution of a di-
fference scheme. In Section 3 we prove a theorem on the error estimate for implicit difference
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IMPLICIT DIFFERENCE METHODS FOR FIRST ORDER... 203

functional problems. Section 4 deals with a convergence result and an error estimate for the
method. A numerical example is given in Section 5.

We list below examples of equations which can be obtained from (1) by specializing the
operators f and g.

Example 1. Suppose that
f:ExR—R" f=(f,....fn), §:ExR—R
and
a:E— R o= (xad), o=(u,.. a),
are given functions, and
—do < op(t,x) =t <0, —d<d(t,x)—x<d, (tx) € E.

Write

flt,z,w) = f(t,r,w(ag(t,z) —t, (t,z) — x)),
g(t,z,w) = g(t,z,wlap(t,z) —t, o/ (t,x) — 1)),

where (t,z,w) € E x C(D, R). Then equation (1) reduces to the equation with deviated vari-
ables,

Oz(t,x) = Z f;(t,x, z(a(t,x)))@xiz(t,x) +9(t,z, z(a(t,x))).
i=1

Example 2. For the above fand g we put

ftzw) = [ o, / w(s,y)dyds | |

g(t.z,w) = J [ t.a, / ws, y)dyds
D

Then (1) is the differential integral equation

Oz(t,x) = Z fi /z(t + s, +y)dyds | Oy, z(t,x) + ¢ /z(t + s, +y)dyds
=1 D D
Existence results for mixed problems (1), (2) can be found in [7 10, 11].

2. Difference functional equations. We will denote by F'(X,Y’) the class off all functions
defined on X and taking values in Y where X and Y are arbitrary sets. For z, y € R", z =

= (x1,...,2n),y = (Y1,...,Yyn) We write

n

HxH = Z|x1’7 Ty = (x1y1,---,wnyn)-
i=1
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204 A. KEPCZYNSKA

We define a mesh on the set Q in the following way. Let (hg, h’), i’ = (hq,...,h,), stand
for steps of the mesh. Let us denote by H the set of all h = (hg, h’) such that there are Ky € Z
and K = (K3,...,K,) € N" with the properties Kohg = dy and K o h’ = d. For h € H and
(r,m) € Z*" where m = (my,...,m,), we define nodal points as follows:

t0) = rhy, 2™ =mob, 2™ = (x(ml), e 7x(m")) .
Let Ny € N be defined by the relations Nohy < a < (Ny + 1)hg. Write
R,ll+" = {(t(r),:c(m)> :(rym) € ZH"}

and
Ey,=ENR™, Eno=ENR"™, D,=DNR"",

QE, = WENRT™, Q =QnR

Moreover we put
E,, = E,N ([—do,t(r)} X Rn>

where 0 < r» < Ny and

E;, = {(t(r),:p(m)> cebp:0<r< Nofl},

I, = {t<”> L0<r< Ng}, I, = I\ {t(N0>}.

For a function z : €, — R we write 2" = z(t"), (™). For the above z and for a point
(™), (M) ¢ Ej, we define the function Zjpm] ¢ Dn — R by the formula

Zpm] (T, 8) = 2 (t(r) + 7, 2™ 4 s) , (7,8) € Dy,
The function zj,.,,, is the restriction of z to the set
(W ~do] % [z™ — 4, x(m)d]> N R

and this restriction is shifted to the set Dy. Lete; = (0,...,0,1,0,...,0) € R", 1 standing on
the i-th place, 1 < ¢ < n. Suppose that the functions

fo: By X F(Dp, R) — R™, fo = (fa1,---s frn),

agp : E']/1 X F(Dh,R) — R, op: Eh,ouf)th — R

are given. We consider the difference functional equation

502 (™M) = Zn: fri <t(r),x(m), Z[r,m}> 62T TLm gy (t(r)#‘f(m)’ Z[nm}) 3)
i=1
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with the initial boundary condition
(rm) _  _(rm)
z = ¥y on Eh70 U o Ep,.
The difference operators dp and § = (41, ..., d,) are defined in the following way. Put

50z(7”m) = i (Z(T-f—lam) _ Z(T,m))

ho
and
5 ) _ ; (Z(r,m—i-ei) B Z(mn)) it S (t(m,m(m),zwm}) >0,
5;2(rm) — li (z(’"’m) - z(r’m*ei)> it fhi <t(7“)7w(m)’z[nm]> <0

where 1 < i < n.
Let us consider the explicit difference equation corresponding to (3)

1) Z(Tvm) = Y f K t(r)glﬂ(m)azr,m (SiZ(T+1’m)+g t(r)yx(m)7zr,m .
0 ; h ( [ ]) h( [ ]>

205

(4)

)

(6)

()

(®)

It is clear that the difference problem (4), (8) with dy and § given (5)-(7) has exactly one

solution wy, : , — R.

We prove that under natural assumptions on f; and gy, there exists exactly one solution uy, :
Qn, — R of the implicit difference functional problem (3), (4). We will approximate classical

solutions of (1), (2) with solutions of (3), (4).

We first prove a maximum principle for difference inequalities generated by (3), (4). Write

B = (_b7 b)a B* = [_Cv 6]7
and R} = {z(™) . m € Z"}. We consider the sets

B, = BNR}, Bi=DB"'NR}, 0B, = Bj\DBy.

Theorem 1. Suppose that h € H, f, : E; x F(Dy,R) — R"and 0 < r < Ny — 1, is fixed.

1L If z, : Ey 1 — Rsatisfies the implicit difference inequality
Z}(LTJrl,m) < ho Z fh,i (t(r)v x(m)’ (Zh)[r,m]> 5iZ}(ZT+Lm)
i=1

for (™ € B, and p € Z", jp = (pa, ..., jin), is such that z}(LTH’“) = M, where

M = max{z,(LT+1’m) 2™ e B,’;} and M > 0,
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then (W) ¢ OoBy,.
2. If zy, : By 41 — R satisfies the implicit difference inequality

Z’(Zr+1,m) > ho thﬂ. (t(r)7x(m)’ (Zh)[r,m]> 5iz}(:+1,m)
=1

for ™ € By, and [i € Z" is such that z,(fﬂ’m = ]\7, where

M = min{z}(lrﬂ’m) 2™ e BZ} and M < 0,

then z(B) ¢ Oy By,

Proof. Consider the case 1. Write

A. KEPCZYNSKA

T 2] = {Z 1<i<n and fu, (t(’"),x(m),(Zh)[r,m}) > 0}, (10)
T ) = {1, nd \ T ). (11)
Suppose that z(*) ¢ Bj,. Then
r 1 r r e; r+1,
Z}(l L0 < po Z ﬁfh,i (t( ), W), (Zh)[r,m}> [ZI(1 Flute) Z;(L +1 u)} 4
i€l z]
1 r r —e;
+ ho Z th’i (75(707:,3(#)7 (Zh)[r,m}) [Zf(L +Lp) Z}(l +1p )] .
i€ "™ (2]
This gives
T - 1 T
Zl(z k) 1+ ho Z hﬁ fh,i (t( )7 x(ﬂ)’ (Zh)[r,u]) ’] <
i=1 "
1 T (r+1,,u,+e¢)
< ho Z th,i (t( )a x(#)a (Zh)[r,,u]) Zp -
i€ "™ [z
1 r —e;
- hO Z th,i <t(r)7 :L‘(H)v (Zh)[r,u]> Z}(L ) <
i€ d ™) 2]
n 1 .
< hoMZ w ‘fh,z‘ (75( ), W), (Zh)[r”u]>‘ :
i=1 "
We thus get zﬁf“’” )" < 0 which contradicts (15). Then () € 8yBj, which is our claim. In a

similar way we prove that () € 9y B,, in the case 2. This completes proof.
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Lemma 1. If h € H, f, : E} x F(Dy,R) — R" and g, : Ej, x F(Dp,R) — R" then
difference functional problem (3), (4) with éqg and § defined by (5)—(7) has exactly one solution
up : Qp — R.

Proof. Suppose that 0 < r < Ny — 1is fixed and up, : Ej, — R is known. Then (3), (4) is

a linear system, which allows to calculate ugﬂ’m) for (™ ¢ By,. The homogeneous problem
corresponding to (3), (4) has the from

Z(T—H’m) = ho Z fh,i (t(r) ) x(m)v Z[r,m]) 6iz(T+17m)y (12)
=1

Lr+lm) — g on EnoU oLy, (13)

It follows from Theorem 1 that system (12), (13) has exactly one zero solution. Therefore the

problem (3), (4) has exactly one solution for any choice of the function g, : E}, x F(Dy,R) —

— R. Then the numbers ugﬂ’m), (™ € B, exist and they are unique. Since uy, is given on

E}, o, the proof is completed by induction.

3. Approximate solutions of difference functional equations. Let us denote by Fj, the Ni-
emycki operator corresponding to (3), i.e.,

Fh[z] (rm) = i fh,i <t(r); x(m)’ Z[r,m]) 6iz(r+l7m) + 9n <t(r)7$(m)7 z[r,m]) :
i=1

Then we consider the difference functional equation
802" = F [z (14)

with initial boundary condition (4). Suppose that v;, : ;, — Rand~, oy : H — R, are such
functions that

do0f™ = Filon) ™| < (k) on B, (15)
‘@Ezﬂ,m) . U}(Zr,m)‘ < ao(h) on Eh,O UOyE), (16)

1 m — 1 m — .

The function vy, satisfying the relations (15), (16) is considered as an approximate solution of
problem (4), (14). We give a theorem on the estimate of the difference between the exact and
approximate solutions of (4), (14).
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208 A. KEPCZYNSKA

Assumption H|f,, g5]. 1. The function o, : I} x Ry — Ry satisfies the following conditions:
(i) on(t,-) : R+ — R4 is continuous and nondecreasing for each t € I7;
(ii) o1 (¢,0) = Ofor t € I}, and for each ¢ > 1 the difference problem

0™+ = 00 4 hozo, (tm,nm) ., 0<r<Ny—1, (17)

n® =0 (18)
is stable in the following sense: if v, ag : H — R are such functions that

lim v(h) = li h) =
lim~(h) =0, lim ag(h) =0,

and 7, : I, — R is a solution of the problem

77(T+1) = U(T) + hDEUh (t(r)777(r)) + hO’Y(h)v 0 <r< NO - 17

1'% = ag(h),

then there is a : H — R, such that m(f) < a(h) for0 < r < Np and }lLin% ap(h) = 0.
2. The functions fj, : E} x F(D,R) — R", g, : E} x F(Dy, R) — R satisfy the estimates

Hfh(t,fﬂ,ﬂ)) - fh(t,l‘,@)” < Uh(t7 Hw _mHDh)a

|gh(t7 x, U)) - gh(tu J,‘,w” < Gh(t7 ||w - wHDh)
on £2y,.
Theorem 2. Suppose that the Assumption H|f, gp| is satisfied and
1) on: Epo U OoEy — R and the function uy, : Q) — R is a solution of the problem (4), (14);

2) h € H and the functions vy, : 0, — R, are such that the estimates (15), (16) are satisfied;
3) there is ¢y € Ry such that the estimate

57;1),(;’7%)‘ < ¢, (t(r),:r(m)> € By, (19)

is satisfied for 1 < i < n.
Then there exists a function o : H — R such that

‘uﬁj’"” —v,(LT’m)‘ <a(h) on E, (20)
and
li = 0.
lim a(h) =0

Proof. LetT'), : E; — R be the function defined in the relation

Sool™™ = Fy o)™ 4 1™, (21)
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IMPLICIT DIFFERENCE METHODS FOR FIRST ORDER... 209

It follows from (15) that |F§:’m)| < v(h) on E},. Since uy, satisfies (4), (14), we have

1
(up, — vp) ™) 1+h02h7 i (t(r)7$(m)7(uh)[r7m]>‘] = (up — vp) "™+
L Lo () pm) _ ) Lmen)
+ho Y o (87,2 (Uh)rm) ) (un = va)
i€ T [uy) ‘

1 .
— hy Z th,i (t(r)’{[;(m)’ (uh)[r,m}) (uh _ ,Uh)(r—&-l,m—ez)_'_

i€ ™ [uy)

n

+ hg Zli (fh,i <1£(T),a;(m)7 (uh)[r,m}) — s (t(r)’ 2(m), (”h)[r,m}>) 5iv,(lr+1’m)+

=1

+ ho (gh (t(”, z(m), (uh)[r,m]> — gn (t(r), z(m, (Uh)[r,m]>> — hol'\"™,
where JJ(:’m) [up,] and J""™ [uy] are given by (10), (11). Write
55:) = max{](uh —p)M K <m < K} for r=0,...,Ng.
Then we get the following difference inequality:
5§lTH) < max {sg) + ho(1 4+ co)oy, (t("), 55;)) + hoy(h), ao(h)} .
Let us consider now the difference problem

" = 9™ 4 ho(1 + co)an (t(r)ﬂ];(:)) +hoy(h), 0<r < Ng—1,

0™ = ag(h),

and its solution 7. It follows from the above considerations that
85;) = ngr), 0 <r<Np.

Now we obtain the assertion of Theorem 2 from the stability of problem (17), (18).

4. Convergence of implicit difference methods. We consider a class of difference problems
(3), (4) where f; and g, are superpositions of f and g with a suitable interpolating operator.

Assumption H|[T}]. Suppose that the operator 7}, : F(Dy,R) — F(D,R) satisfies the
following conditions:

1)if w, w € F(Dy, R) then Ty[w], T [w] € C(D, R) and

[Th[w] = Thlwl[[p < [lw = wl|p,,
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210 A. KEPCZYNSKA

2)ifw : D — Ris of class C' then thereisy : H — R, such that

[Th[w] —w|p < ~(h) and lim =0,

—0

where wy, is the restriction of w to the set Dy,.
We will approximate solutions of (1), (2) with solutions of the difference functional equation

502" Z fl( z Thz[rm]>52(”1 m>+g( #0), (m),Thz[nm]) 22)

with initial boundary condition (4).

Assumption H|f,g]. 1. The functions f : E x F(D,R) — R"andg : E x F(D,R) — R
are continuous.

2. Thereis o : [0,a] x Ry — R, such that

(i) o is continuous and nondecreasing with respect to both variables;

(ii) o(t,0) = Ofor ¢t € [0,a] and each ¢ > 1, > 0, and the maximal solution w(-, ¢) of the
Cauchy problem

w'(t) = co(t,w(t)) +e, w(0) =c¢, (23)

is defined on [0, a] and w(t,0) = 0 for ¢ € (0, a);
(iii) the estimates

1f(t 2, w) = f(t,2,0)]| < ot [w—w][p),
l9(t, x,w) — g(t, z,w)| < o(t, [w—w|p)
are satisfied on E x F(D, R).

Theorem 3. Suppose that Assumptions H[T},] and H|f, glare satisfied and
1) h € H and the function uy, : Qp — R is a solution of (4), (22) and there is acpH — R
such that

‘cp“*m) - <p§j’m)( < aolh) on EngUdEn and lim ao(h) = 0 (24)

2)v: Q — Risasolution of (1), (2) and v is of class C* on Q.
Then there is o« : H — R such that

™ o™ < a(h) and Jim a(h) = 0. (25)

—0
Proof. We prove that the functions

fh(tax’w) = f(t7mvTh[w])> gh(t,l',w) = g(tv$vTh[wD

satisfy all the assumptions of Theorem 2. We first show that problem (17), (18) is stable in the
sense of Assumption H|f, g,]. Let the functions ag, v : H — R, be such that

li =0, 1 .
lim ag(h) =0, lim~(h) =0
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Let us consider the difference problem

N = () 4 hozo, (t(”,n(”) +hoy(h), 0<r<K-1, (26)

n© = ag(h), (27)

and its solution 7, : I, — Ry. Denote by wy, : [0,a) — R4 the maximal solution of the
problem

w'(t) = eo(t,w) + v(h), (28)

w(t) = ap(h). (29)
It is easily seen that n,(li) < w,(f) for 0 < 7 < Ny and

}llin%) w(t) = 0 uniformly on [0,al.

Then we have 77}(5) < wp(a) for 0 < i < Ny and problem (28), (29) with e = 0 is stable.
Moreover we have

Hfh(t7$7w) - fh(t7$7E)H = Hf(t,x,Th[UJ]) - f(t,x,Th[@])H <
< o (t|[Thlw —wl|p) < on(t,2,[|w—wlp,).
In the same way we get the inequality

lgn(t; , w) = gn(t, 2, W)|| < on (¢, |w —W|[p,) -

Then the assertion of Theorem 3 follows from Theorem 2.

Remark 1. There are the following consequences of Theorem 3. In classical theorems concer-
ning difference methods for quasilinear functional differential problems it is assumed that

"1
1—hozﬁ|fi(t,x,w)|20 on ExC(D,R), (30)

=1

see [3]. It is important in our considerations that we have omitted the above assumption.

Now we give an example of the operator T}, satisfying Assumption H[T}]. Put
Sy ={(4,s) : 5 € {0,1}, s = (s1,...,8n), 5; € {0,1} for 1 <i<n}.
Letw € F(Dy, R) and (t,x) € D. There exists (¢, z(™) € Dy, such that

1) < p < g0 pm) <y < x(m-{—l)’ <t(r+l)’x(m+1)) € Dy

ISSN 1562-3076. Heainitini koausarnns, 2005, m. 8, N2 2
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We define
(4,8) 1—(4,s)
. Yy —y(m) y —y(rm)
_ (r+jm+s) [ £ — 4 7 =y
(Thw)(t, z) AZ w ( - ) (1 -
(7,5) €S+
where ' 4
y —yem \U oY 7 (2= N
h - ho k=1 h

and

N ) N AR ETUA R S
h - ho Pt hy

and we take 0° = 1 in the above formulas.

Lemma 2. Suppose that the function w : D — Ris of class C? and denote by wy, the restricti-
on of w to the set Dy,. Let C be a constant such that

’att(t,flf” < 5’7 ‘atwj(ta CC)} < 5’7 ‘axlxj(ta :II){ < 6 on D7

where 1 < i, 5 < n. Then

| Thw] —wlp < C |hg+2ho Y hi+ Y hjhi
i=1 jii=1

The proof of the above lemma can found in [7], Chapter 5. We omit details.
Now we give an error estimate for method (4), (22).

Theorem 4. Suppose that

1) all the assumptions of Theorem 3 are satisfied with o(t,p) = Lp and the solution v : Q —
— R of differential problem (1), (2) is of class C?;

2) the constant C e R is such that

Ouo(t,z)| < C,  |d,v(t,2)] < C,  |dpa,o(t,z)| < C on Q
where 1 < i, j < n, and there exists d € R such that
|filt,z,p)| <d, 1<i<n.
Then

L) _ rm) < ~(r) 31
h h n,

where
(I 4+ hoeLl)" -1

) = ao(h)(1+ hoeL)" +(h)* =2,
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1~ _ 1 ~—
(k) = 5Cho + (1+ co)L(h) + QdC; hi,

3(h) = +2h02h+2hh

7,4=1

Proof. The difference operators dp and 0 satisfy the conditions

]501)’“”” awm‘< = Chy,

1 ~
‘Siv(r’m) - inv(’”’m)’ < §C’hi, 1 <3< n.

It follows from above estimates and from Assumption H[T}] that

’Fgm)’ < ’500(T’m) — 8tv(r’m)’ +

< ™ (Th[v]) o, ))Mrﬂm Zﬂ( T

+ ‘ g (t(”,x(m), o)) — 0 (19209 v | <

1~ 1~ —
§Cho+(1+co)L’y )+§dC’Zhi.

The function 7, is a solution of the problem

Nt = (14 hotL) + hoy(h), 0<i<Ny—1 n©

rm)) axiv(r-i-l,m)

= ag(h),

213

_l’_

which is equivalent to (26), (27) for o(t,p) = Lp. Then from Theorem 3 we get the assertion

(31).

5. Numerical examples. For n = 2 we put

E=[0,1x[-1,1] x [-1,1], Eo = {0} x [~1,1] x [~1,1].

Consider the quasilinear differential equation

Ozt x,y) = xy?0pz(t, x,y) + yx*oyz(t,z,y) + f(t, z,y)z(t, z,y)+

+ Z(t7075(y - $),0,5(.§U + y)) + Z(t,075(l‘ + y),O,E)(.T - y)) - eitw - 6ty7

where
ftz,y) = (2 —y)(1 + tay),
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with the initial boundary conditions
20,0y) = 1, (2,9) € [-1,1] x [-1,1],
2(t,—1,y) = 1Y)t e0,1), y € [-1,1],
2(t,1,y) = 7Y te0,1], y € [-1,1], (33)
2(t,x,—1) = @Dt e0,1], x € [-1,1],
2tz 1) = @D e 0,1], z e [-1,1].

The solution of the above problem is given by v(t, z) = e"®~% Put h = (hg, h1, hy) and assume
that h1 = hg.
Write
Ep, ={({t", 2™, y"™):0<r < Ny, —K <my,ms < K}

where Nohy < 1 < (Ng + 1)ho, Khy = Khy = 1. Let us denote by z;, : Ej, — R the solution
of the implicit difference problem corresponding to (32), (33). We consider also the function
Zn, + B — R which is a solution of the classical difference equation corresponding to (32),
(33). Write

n = 2K+1 Z Z ) ) gl

—K mo=—
~(7") )A{T mi,me) | (rmy,ma)
" 2K 4 1 ZKmZ v :
=K

The numbers n}(L ") and n(r) are the arithmetical mean of the errors with fixed ¢("). The values of

the functions ny, and 7, are listed in the table.

Table of errors (7, n,) for hg = 0,01, hy = he = 0,01 :
t=20,60 1,41414e+ 003 1,65029e — 003
t=20,70 4,06659¢ + 004 2,03410e — 003
t =0,80 1,10407e + 006 2,50142e — 003
t =0,90 2,91547¢ 4 007 3,07663e — 003

t=1,00 7,59963¢+ 008 3,78804e — 003

It follows that the results obtained by the implicit difference method are better than those
obtained by the classical scheme. This is due to the fact that we need the relation (30) for steps
of the mesh in the classical case. We do not need this assumption in our implicit difference
method.
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