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By using a new method, we improve some results from [Saker S. H. Oscillation criteria for a second-order
quasilinear neutral functional dynamic equation on time scales // Nonlin. Oscillations. – 2011. – 13, № 3. –
P. 407 – 428].

З використанням нового методу покращено деякi результати, одержанi в роботi [Saker S. H. Osci-
llation criteria for a second-order quasilinear neutral functional dynamic equation on time scales // Нелiн.
коливання. – 2010. – 13, № 3. – С. 379–399].

1. Introduction. In 2011, Saker [1] established some sufficient conditions for the oscillation of
the second-order quasilinear neutral functional dynamic equation(

p(t)
(
(y(t) + r(t)y(τ(t)))∆

)γ)∆
+ f(t, y(δ(t))) = 0, t ∈ [t0,∞)T, (1.1)

for which is assumed the following hypotheses:
(h1 ) γ > 0 is the quotient of odd positive integers, r and p are real-valued rd-continuous

positive functions defined on T, τ, δ : [t0,∞)T → T, τ(t) ≤ t, and limt→∞ τ(t) = limt→∞ δ(t) =
=∞;

(h2 ) 0 ≤ r(t) < 1;

(h3 ) f(t, u) : T × R → R is a continuous function such that uf(t, u) > 0 for all u 6= 0 and
there exists a positive rd-continuous function q(t) defined on T such that |f(t, u)| ≥ q(t)|uβ|,
where β > 0 is a ratio of odd positive integers.

Under the condition
∞∫
t0

1

p
1
γ (t)

∆t <∞ (1.2)
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and the assumptions

δ(t) ≤ τ(t) ≤ t, τ∆(t) ≥ 0, r∆(t) ≥ 0, (1.3)

Saker [1] obtained some new oscillation criteria for (1.1); see [1] (Section 3). In the last section
of the paper [1], the author posed a problem: How to present oscillation criteria for (1.1) when
condition (1.3) does not hold?

By a solution of (1.1), we mean a nontrivial real-valued function y satisfying (1.1) for
t ∈ T. We recall that a solution y of (1.1) is said to be oscillatory on [t0,∞)T if it is neither
eventually positive nor eventually negative; otherwise, the solution is said to be nonoscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory. Our attention is restricted
to those solutions y of (1.1) which are not eventually identically zero.

Our aim in this paper is to give an answer for the problem posed by [1].
In what follows, all functional inequalities considered in this note are assumed to hold

eventually, that is, they are satisfied for all t large enough.
2. Main results. Note that [1] (Eq. (3.7)) plays an important role in the obtained results

of [1] (Section 3). Hence, we will change it in order to renew results of [1]. Now we give the
following. We let

x(t) := y(t) + r(t)y(τ(t)), P (t) :=

∞∫
t

1

p
1
γ (s)

∆s, 1− r(t) P (τ(t))

P (t)
> 0.

Lemma 1. Let (1.2) hold, δ(t) ≤ t, and y be an eventually positive solution of (1.1). Assume
further that

(
p
(
x∆
)γ)∆

(t) < 0, x∆(t) < 0, x(t) > 0 for t ∈ [t0,∞)T. Then

(
p
(
x∆
)γ)∆

(t) + q(t)

(
1− r(δ(t)) P (τ(δ(t)))

P (δ(t))

)β
xβ(t) ≤ 0. (2.1)

Proof. From
(
p
(
x∆
)γ)∆

(t) < 0, we have

x∆(s) ≤ p
1
γ (t)

p
1
γ (s)

x∆(t), s ≥ t.

Integrating this from t to `, we obtain

x(`) ≤ x(t) + p
1
γ (t)x∆(t)

`∫
t

1

p
1
γ (s)

∆s.

Letting `→∞, we have
x(t) ≥ −P (t)p

1
γ (t)x∆(t).

Hence

( x
P

)∆
(t) =

x∆(t)P (t)− x(t)P∆(t)

P (t)P (σ(t))
=

x∆(t)P (t) +
x(t)

p
1
γ (t)

P (t)P (σ(t))
≥ 0,
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which yields

y(t) = x(t)− r(t)y(τ(t)) ≥ x(t)− r(t)x(τ(t)) ≥
(

1− r(t) P (τ(t))

P (t)

)
x(t).

Thus, from (1.1), we have(
p
(
x∆
)γ)∆

(t) + q(t)

(
1− r(δ(t)) P (τ(δ(t)))

P (δ(t))

)β
xβ(δ(t)) ≤ 0,

which follows from x∆(t) < 0 and δ(t) ≤ t that (2.1) holds. The proof is complete.
Following ideas of [1] (Theorem 3.1) and Lemma 1 in this note, we can renew [1] (Eq. (3.7))

by the following:

∞∫
T

 1

p(s)

s∫
T

g∗(u)P β(u)∆u

1
γ

∆s =∞, (2.2)

where
g∗(u) := q(u)

(
1− r(δ(u))

P (τ(δ(u)))

P (δ(u))

)β
.

Therefore, replacing [1] (Eq. (3.7)) and (1.3) with (2.2) and δ(t) ≤ t in this paper, we can
renew [1] (Theorem 3.1, Theorem 3.2, Theorem 3.3, Theorem 3.4, Theorem 3.5). The details are
left to the reader.
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