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In the paper the differential equation
u™(t) + p(t)ulr (1) Osignu(r(t)) = 0, (*)

is considered. Here, we assume thatn > 3,p € Lioc(R1;R_), p € C(R4;(0,400)), 7 € C(Ry;Ry),
7(t) < tfort € Ry and limy_, 1o, 7(t) = +o00. In case u(t) = const > 0, oscillatory properties of
equation () have been extensively studied, where as if u(t) # const, to the extent of authors’ knowledge,
the analogous questions have not been examined. In this paper, new sufficient conditions for the equation
(x) to have Property B are established.

Poszenanymo ougpepenyianvhe pigHAHHA
u () + p(t)u(r(t Usignu(T(t)) = *
™)(t) + p )u( ())‘“(f) ignu(r(t)) = 0, (*)

oen > 3,p € Ligc(Rt;R-), u € C(R4+;(0,400)), 7 € C(Ry;Ry), 7(t) < toaat € Ry ma
lim, oo 7(t) = 4o00. ¥ 6unaoky u(t) = const > 0 ocyuaayitini saacmueocmi pisHAHHA (%) Oya0
0emanvho 8ueueHo, mooi Ak 'y eunaoky p(t) # const, HACKIAbKU 8i00MO asmopam, noOiOHI NUMAHHA
He 6ya0 po3eaanymo. Y cmammi Ha8eO0eHO HOBL 00CMAMHI yMO8U 045 MO0, W00 PIBHAHHA (%) MAAO
eaacmusicmo B.

1. Introduction. This work deals with oscillatory properties of solutions of a functional dif-
ferential equations of the form

u(t) + p(t)u(r () Vsignu(r(t)) = 0, (L1)

* The work was supported by the Rustaveli Science Foundation (grant N 31/09).
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508 A. DOMOSHNITSKY, R. KOPLATADZE

where

n >3, p€ Le(Ri;R-), p€ C(Ry;(0,+00)), 7€ C(Ry;Ry),

(1.2)
< : _
T(t) <t for te€ R,y and t£+moo7_(t) +00.
It wiell always be assumed that the condition
p(t) <0 for te Ry (1.3)

is fulfilled.

Letty € Ri. A function u : [tp; +00) — R is said to be a proper solution of equation (1.1)
if it is locally absolutely continuous together with its derivatives up to order n — 1 inclusive,
sup{|u(s)| : s € [t,+00)} > 0fort > ¢y and there exists a function u € C(R4; R) such that
7(t) = u(t) on [tg, +00) and the equality @™ (t) + p(t)[w(7(t))|*Psign w(7(¢)) = 0 holds almost
everywhere for ¢ € [tp, +00). A proper solution u : [tg, +o0) — R of equation (1.1) is said to
be oscillatory if it has a sequence of zeros tending to +oco. Otherwise the solution w is said to be
nonoscillatory.

Definition 1.1. We say that equation (1.1) has Property A if any proper solution u is oscillatory
if n is even and is either oscillatory or satisfies

W) L0 as t1t 400, i=0,...,n—1, (14)

if nis odd.
Definition 1.2. We say that equation (1.1) has Property B if any proper solution u is either
oscillatory, satisfies (1.4), or satisfies

uD ()| + 400 as t1 400, i=0,...,n—1, (1.5)

if n is even, and is either oscillatory or satisfies (1.5) if n is odd.

Definition 1.3. We say that equation (1.1) is almost linear if the condition lim;_, 4, pu(t) = 1
holds, while if limsup,_, | . () # 1 or liminf, o pu(t) # 1, then we say that the equation is
an essentially nonlinear differential equation.

Oscillatory properties of almost linear and essentially nonlinear differential equation with
advanced argument are studied well enough in [1-6]. For Emden — Fowler differential equati-
ons with deviating arguments, an essential contribution was made in [7-13]. In the present
paper sufficient conditions are established for the equation (1.1) to have Property B. Analogous
results for Property A see in [14].

2. Some auxiliary lemmas. The following notation will be used throughout the work:
C" Y ([to, +00)) will denote the set of all function u : [ty, +00) — R, absolutely continuous on

loc
any finite subinterval of [ty, +00) along with their derivatives of order up to including n — 1;

o = if{u(t)t € Ry}, B = sup{u(t)t € Ry}, @1)
T—1)(t) =sup{s > 0; 7(s) < t}, Tp) = T(—1) O T(—(k—1)), Kk =2,3,.... (2.2)

Clearly, 7_y)(t) > t and 7(_; is nondecreasing and coincidence with the inverse of o when the
latter exists.
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ON HIGHER ORDER GENERALIZED EMDEN-FOWLER... 509

Lemma 2.1 [12]. Let u € C"}([tg, +00)), u(t) > 0, u™(t) > 0 fort > to and u™(t) # 0

in any neighborhood of +oco. Then there exists t; > toand { € {0,...,n} such that { + n is even
and

uD() >0 for t>t, i=0,...0—1,
(2.30)
(1) D) >0 for t>t, i=40...n

In the case / = 0 we mean that only the second inequality in (2.3) holds, while if { = n
only the first inequality holds and u™(t) > 0.
Lemma 2.2 [15]. Let u € C"7*([to, +00)), u™(t) > 0 and (2.3;) be satisfied for some

¢e{l,...,n—2}, where { + nis even. Then

+o0o
/ M (1) dt < +oo. (2.4)
to
Moreover, if
+00
/ M (4) dt = +o00, (2.5,)
to
then there exists t1 > tg such that
-1
u(t) > 7@6“—1)@) for t > ti, (2.6)
0@ | w0
u U .
prr !l pr T, i=0,...,0-1, (2.7))
and
+o0o 1 t
1)y > ¢t / n—t—1_ (n) / n—t_ (n)
u (L) > =D s u'™(s) ds + = 0) s\ (s) ds. (2.8)
t t1

Definition 2.1. Let tg € Ry. By Uy, we denote the set of all solutions of equation (1.1)
satisfying the condition (2.3;).

Lemma 2.3. Let the conditions (1.2), (1.3) be fulfilled, { € {1,...,n — 2}with { + n even
and equation (1.1) have positive proper solution u : [ty,+00) — (0,+00) such that u € Uyy,.
Moreover, let o > 1 and

400
/ (et OO () |dt = +oo for ¢ < (0,1], (2.9,.)

to
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then for any v € (1,+00) there exists t, > to such that for any k € N

uED () > o), (1) for t> T p(t), (2.10)
where
t —+o0o
A%, (1) = L1exp { (o) /' /gw%ﬂv@»““*W@WQN@ds, 2.11y)
T(—1)(ts) S
1 t “+o0
(c) _ n—~f—1 (L=1)p(6)
0 = e e [ [ e e
T(—1)(ts) S
1 (a) M(f)
< (@) I@ldas, i =2k @.12)
S if a=1
vla) =24 tm—or 7“7 5 (2.13))
vy if a>1,

o is given by first equality of (2.1).

Proof. Letty € Ry, ¢ € {1,...,n—2} with / + n even and u € Uy,,. According to (1.1),
(2.3¢) and (2.9;.) it is clear that condition (2.5,) is fulfilled. Indeed, by (2.3/) there exists t; > tg
and ¢ € (0, 1] such that

u(r(t)) > e(r())! for t > t.

Thus from (1.1) we have
t t "
/s"eu(")(s)ds > /s”f (07471(3)>M Ip(s)|ds for t > t;.
t1 t1

Passing to the limit in the latter inequality, by (2.9,.) we get (2.5;).
According to Lemma 2.2 there exists t2 > t; such that conditions (2.6) —(2.8) are fulfilled
fort > ¢y and

“+00

! /¢ZWM®WWWWH

ulD(t) > =0

t
/ S u(r () Olp(s)|ds for ¢ > T (ta).
t(—1y(t2)

(n—20)!
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Therefore, by (2.6) we get
t  +oo
W0z = [ [ e oo
(-1 (t2)

2
According to (2.7,-1) and (2.9;,.) choose t. > 7(_1)(t2) such that

tx +oo

©
(nig)! / / gn—f—l(T(§)>(€—1)M(f) <£1' u(£—1)<7(§))>u ’p(ﬁ)’d{ds AN

T(—n(t2) S
By (2.14) and (2.15) we have

t +oo

1
W0 = 04 ot [ [ e o)

ts

1 u(€)
X (wu“l)(T(g))) lp(&)|deds for t > t,.

Let o = 1. Since u*~ Y (t)/t is a nonincreasing function, from (2.16) we obtain

1 t +oo
=Dy > o1 = n—_{=2 14+(=1)pu(8)
W0 2 Ot g [ [ ) x
t*

x u=D(E)|p(&)|deds  for t > t,.

By the second condition of (2.7,_1), it is obviously that

, w0 (1) 7 n—t—2 LH(—1)u(e)
20> gy [ €70 p(6)1de,

where

t +oo

o) = 01+ gy [ [ €7 HE) IO (el s

tx S

Thus, according to (2.17), (2.18) and (2.19) we get

“+oo

P02 2 [ ey IOyl for > v

—ll(n—20)!

t
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Therefore, since z(t,) = ¢!, we have

t +oo
()>€'6XP{€, //5” =2 (g)) - Dr 5)p(f)alfals} for t > t,.

Hence by (2.16) and (2.19)

uED@) > ) (1) for ¢ >t (2.20)
where
t 400
o (0) = f'exp{ / / et 1+<“>“<f>p(£>d£ds}. (221)
Thus, by (2.14) and (2.20),
uED () > o), (1) for t> 7yt i=1,... .k (2.22)
where
1 t +00
W) =+ e [ [ e oo
T(—i)(ts) S
1 1) w(&) )
< (o0 ) Oldeds i =2k 2.23)

Now assume that o > 1 and v € (1,400). Since ul*~1(t) 1 +oc for t 1 +o0, without loss

1 a—1
of generality we can assume that <£‘ U(K_l)(T(t))> > (l(n— )y fort > t.. From (2.16)
we obtain

t +oo

u V(@) > 0+ / / () EVRO L () p(e)|deds  for ¢ > .. (2.24)

By (2.24), as above we can find that if « > 1, then

WD) > pl), (1) for > Ty (), (2.25)
where
i +oo
Py (£) = €1 exp {v / / £rE=2(p(£))HHEDRE)
T~ (ts) S
x |p(€)]dg ds} for ¢ > 7 y(t), (2.26)
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t +oo

pgfz?t* (t) =401+ (niﬁ)‘ / / M (r () hmE)

T(—iy(ts) 8
1 () 3] .
X <£, pil,@,t*(r(f))> p(E)ldeds for t > 7 y(t), i=2,... .k (227)

According to (2.20)—(2.23) and (2.25)—-(2.27) it is clear that forany « > 1, k € N,and v €
€ (1,400), there exists t, € Ry such that (2.10) holds, where ~y,(«) is given by (2.13;), which
proves the validity of the lemma.

Remark 2.1. 1t is obvious that, if 5 < 400 and (2.9¢,1) holds, then for any ¢ € (0, 1] the
condition (2.9, ) is fulfilled.

Remark 2.2, Condition (2.9, 1) is not suffices for condition (2.5) to be fulfilled. Therefore, in
this case, it can happen that Lemma 2.3 is not correct. Indeed, let § € (0, 1). Consider equation
(1.1), where n is odd and

n! ¢1o81/s ¢

T =t ) = G et

2
:U’(t) = 10g1/5 t, t= 5

1
It is clear that the function u(t) = ¢ — n is solution of the equation (1.1) and satisfies condition

2
(2.37) fort > 5 On the other hand condition (2.9, ;) holds, but condition (2.5;) is not fulfilled.

3. Necessary conditions for the existence of solutions of type (2.3,).
Theorem 3.1. Let ¢ € {1,...,n — 2} with { + n be even, conditions (1.2), (1.3), (2.9, ) and

—+00

/W*NWWW%ww=+m (3.10)
0

be fulfilled and for some ty € Ry, Uy, # @. Then there exists t,. > to such that, if o = 1, then,
forany k € N,

t +o00o

(8)
lim / /w*%@wﬂm(gﬁamw) p()ldds =0 (32)

t—+oo t
T—ky(tx) 8

and if « > 1, then, forany k € N,y € (1,+00) and 6 € (1,q],

+oo 400

nt-1-5 (1 (-0 (L@ He-e
: (7€) 71 Pha, (T(E)) Ip(€)|d€ ds < +o0, (3.3)

T(,.L') (t*) s

where « is defined by first equality of (2.1) and p,(cag)t* is given by (2.11)—(2.13).
Proof. Letty € Ry, ¢ € {1,...,n—2}, Uy, # @andy € (1,400). By definition (see

Definition 2.1) equation (1.1) has a proper solution v € Uy, satisfying condition (2.3,) with
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some t; > to. Due to (1.1), (2.3¢) and (2.9;,), it is obvious that condition (2.5,) holds. Thus,
by Lemma 2.2 there exists ¢; > to such that conditions (2.6), (2.7;) are fulfilled. On the other
hand, according to Lemma 2.3 (and its proof), there exist ¢o > ¢; and ¢, > to such that

t +oo

u<fl><t>2M/ [ e @) Ol ds for 1=t (34

S

and relation (2.10) is fulfilled. Without loss of generality we can assume that 7(t) > ty for
t > t,. Therefore, by (2.10), from (3.4) we get

_ 1 el D 1 _ (&)
A0z L [ [ e e (Fu @) ol 63)

Assume that & = 1. Then by (2.10) and (3.5) we have

t +oo
WO 2t [ e ey
T~y (ts) 8
1 1) w(&)
< (ol @) peldeds for 1z rpc). (o)

On the other hand, according to (2.7,_1) and (3.1;) it is obvious that
uV()/t L0 for t 1 +oo. (3.7)
Therefore by (3.7), from (3.6) we get

Lot w(&)
i [ [ ety (M{Z,m@))) p©ldeds =0, (38)

Now assume that « > 1 and § € (1, «a]. Then by (2.7,_1), (2.10) and (3.7) we obtain

t +oo
1
=1 (p) > n—t-5 SH+(e—1)(e)
O e i B ) x
T(—k)(t=) 8

1 (@) w(€)—a 1 (1) 0
<(FAnee) (Fu0©) boleds >

t 5 T
>oma | <g1!u<“><s>> [ e ey
(k) (tx) s
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ON HIGHER ORDER GENERALIZED EMDEN-FOWLER... 515

Thus we have

i +oo
1
P> s s n—l-1-8 (£ Di©)
(v(®))’ > (“(n_@!)5< / v (s)/g (7(¢)) 1(€) o
T(,k)(t*) S
1 () 1(€)—6 J
X <€! Pl i t. (ﬂf))) Ip(§)|dE ds |, (3.9)
L)
where v(t) = ik ().
By (3.1y), it is obvious that there exists t; > T(—k)(t«) such that

t

e n(§)-o
/ v (s) / I (7 (€))HIHE (j!p,&f?,t*wé))) x

’T(,;@(t*)
X |p(&)|d¢ds >0 for t > t;.

Therefore, from (3.9) we get

t t +oo
¢'(s)ds 1 =18 () O (E=1)a(€) o
t/ GG = W=y / / e
1 (@) w(§)—o
X (6' pk’“*(r(f))) Ip(&)|d¢ ds for t > tq, (3.10)
where
! o p(€)—6
et)= [ @) [ eSO (L, ) el ds
T(—k) (tx) s

From (3.10) we obtain

t +oo

n(€)—o
[ [t e (L o)) peldsas <
t1

S

_ oy — 01
< OOV (i) - i) < COZ o0 for 421
Hence,
+oo+o00 , 5 sl 1 (@) w(€)—a
/gn— “1-0(7(8)) +(=1)u(€) (E' Prit, (7—({))> Ip(§)|d€ ds < 4o0. (3.11)
t1 s
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According to (3.8) and (3.11) conditions (3.2) and (3.3) hold, with proves the validity of the
theorem.

Corollary 3.1. Let ¢ € {1,...,n — 1} with { + n be even, f < +oo, conditions (1.2), (1.3),
(2.901), (3.1y) be fulfilled and for some ty € Ry, Uy, # . Then for any v > 1 there exists
t. > tosuch thatif o = 1, forany k € N, (3.2) holds and if o« > 1, then, for any k € N and
0 € (1,a], (3.3) holds, where o and  are defined by (2.1) and p\(}}, _is given by (2.11) ~ (2.13).

Proof. According to Remark 2.1, it suffices to note that, since § < +o0, by (2.9, ), for any
c € (0, 1] conditions (2.9, ) is fulfilled.

4. Sufficient conditions for nonexistence of solutions of the type (2.3,).

Theorem 4.1. Let ¢ € {1,...,n — 2} with { + n be even, conditions (1.2), (1.3), (2.9, ) and
(3.1y) be fulfilled and if o = 1 for large t. € R, and for some k € N,

Lot (&)
tmsupy [ [ e <€1!p§§2,t*<7<5>>) p©ldgds > 0, (41))

t——+o0
T(—k)(ts) S

orifa > 1, forsomek € N and 6 € (1,a],
n(§)—6
[ [t e (L0, @) ©ldeds =+ (420

Then for any to € Ry we have U, = @, where o is defined by the first equality of (2.1), and
P\ is given by (2.11)—(2.13).

" Proof. Assume the contrary. Let there exist ty € R, such that Uy;, # @ (see Definition
2.1). Then equation (1.1) has a proper solution u : [tg, +00) — R satisfying condition (2.3;).
Since the conditions of Theorem 3.1 are fulfilled, there exists ¢, > to such thatifa = 1 (a > 1)
condition (3.2) (condition (3.3)) holds, which contradicts (4.1¢) ((4.2¢)). The obtained contradi-
ction proves the validity of the theorem.

Theorem 4.1'. Let ¢ € {1,...,n — 2} with { + n be even, conditions (1.2), (1.3), (2.9¢1) and
(3.1;) be fulfilled and B < +o0o. Moreover, if o« = 1, « > 1, for any large t. € R, and for some
k € N (for some k € N and 6 € (1,a]), (4.1;) holds ((4.2¢) holds), then Uy, = &, where «
and ( are given by (2.1).

Proof. 1If suffices to note that, since § < +oo, by (2.94;) for any ¢ € (0, 1] the condition
(2.9¢,c) is fulfilled. Therefore all the conditions of Theorem 4.1 hold, which proves the validity
of the theorem.

Corollary 4.1. Let ¢ € {1,... ,n—2} with {+n be even, « = 1, conditions (1.2), (1.3), (2.9;.)
and (3.1;4) be fulfilled and

t—4o0o L
0

lim sup ~ / / £n=E1(7(€)) -V p(e) de ds > 0. (430)

Then for any ty € Ry, Uy, = O, where « is defined by the first equality of (2.1).
Proof. Since
pglg . (7(t)) > £ forlarge t,
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it is suffices to note that by (4.3,) for « = 1 and k£ = 1 condition (4.1;) ise fulfilled.

Corollary 4.1'. Let ¢ € {1,...,n — 2} with { + n be even, conditions (1.2), (1.3), (4.3y) and
(3.1¢) be fulfilled. Moreover, if « = 1 and < +o0, then for any ty € Ry, Uy, = @, where «
and [ are given by (2.1).

Proof. To prove the corollary it is suffices to note that, since § < +o0, by (4.3,) condition
(2.9¢,c) holds.

Corollary 4.2. Let ¢ € {1,...,n — 2} with { + n even, conditions (1.2), (1.3) and (2.9 .) be
fulfilled, « = 1 and

“+o00
lim inf ¢ / s"E2(7(s)) DG |p(€)|ds = 4 > 0. (4.4))

t——+o0
t

Moreover, if for some ¢ € (0,7)

t +oo

imsup1 [ [ (@) O ) g e as > o 45
0 s

t—+o00

then forany ty € Ry, Uy, = &, where a is given by the first equality of (2.1).
Proof. Let ¢ € (0,7). According to (4.4y), (2.11) and (2.13) it is clear that pfg’t* (t(t)) >

>/ !(T(t))ﬁj‘)! for large ¢. Therefore, by (4.5/), for & = 1, (4.1y) holds, which proves the
validity of the corollary.

Corollary 4.2'. Let ¢ € {1,...,n — 2} with { 4+ n even, conditions (1.2), (1.3), (3.1;), (4.4¢)
and (4.5¢) be fulfilled. Moreover, if « = 1 and B < +oo, then forany ty € R, Uy, = &, where
« and (3 are given by (2.1).

Proof. To prove the corollary, it is suffices to note that, since § < +oo by (4.4/) the condition
(2.9¢,c) holds.

Corollary 4.3. Let ( € {1,...,n—2} with {+n even, conditions (1.2), (1.3), (2.94) and (3.1;)
be fulfilled. Moreover, if « > 1 and, for some § € (1, q],

“+00 +00

/ / gnféflfé(T(g))ﬁ(@*l)#(f) Ip(&)|d¢ ds = +o0. (4.60)

0 s

Then for any to € Ry, Uy, = O, where « is defined by the first condition of (2.1).
Proof. By (4.6/), for k = 1 condition (4.2/) holds, which proves the validity of the corollary.
Corollary 4.3'. Let ¢ € {1,...,n — 2} with { + n even, conditions (1.2), (1.3), (3.1;), (2.9,1)
and (4.6¢) be fulfilled. Moreover, if « > 1 and 3 < +o0, then forany to € Ry, Uy = &, where
« and (3 are given by (2.1).
Proof. According to Corollary 4.3, it is suffices to note that, since 5 < 400 by (2.9) for
any ¢ € (0, 1], condition (2.9, ) hold.
Corollary 44. Let { € {1,...,n — 2} with { + n even, conditions (1.2), (1.3), (2.9,.), (3.1),
(4.44) and (4.64) be fulfilled. Moreover, if « > 1 and there exists m € N such that
lim inf ™)
t—+o00 t

>0, (4.7)
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518 A.DOMOSHNITSKY, R. KOPLATADZE
then for any to € Ry, Uy, = &, where o is given by the first condition of (2.1).

Proof. By (4.4y) there exists ¢ > 0 and ¢; € Ry such that

/ €2 (@) DO () g > ¢ for 1> 1. (“48)

d(m—1
(m = 1) . Then by (4.8) and (2.26), there exists ¢, > t; such that

14+«
L = —
etd (a0

and mg =

P (8) > ¢ for ¢ > t,.

Therefore, for large ¢t we have

(0 )™ (4 ()

1 T(t HM o [T 0
(Y (e

Thus, by (4.7) and (4.6¢) it is obvious that (4.2,) holds, which proves the corollary.

Corollary 4.4'. Let ¢ € {1,...,n — 2} with { + n be even and conditions (1.2), (1.3), (3.1;),
(4.6¢) and (4.7) be fulfilled. Moreover, if &« > 1 and 3 < +oo, then forany to € Ry, Uy, = &,
where o and ( are given by (2.1).

Proof. Since 3 < +o0, it suffices to note that all conditions of Corollary 4.4 are satisfied.

Quite similarly one can prove the following corollary.

Corollary 4.5. Let ( € {1,...,n—2} with {+n even, conditions (1.2), (1.3), (3.1;) and (2.9, )
be fulfilled and o > 1. Moreover, if

lim inf ¢ Int / 2 () HEDHE () |de > 0 (4.9/)

and for some 6 € (1,a] and m € N

+oo

+oo
/ / 5n_e—1—6(7_(5))%(!—1)#(5)(1I17(5))Tfl|p(§)|d§ ds = +o0, (4.100)
0

then for any ty € Ry we have Uy, = &, where « is defined by the first equality of (2.1).

Corollary 4.5'. Let { € {1,...,n — 2} with { + n even, conditions (1.2), (1.3), (2.9,1), (4.9¢)
and (4.10;) be fulfilled. Moreover, if « > 1 and 3 < +oo, then for any to € Ry we have
Uy, = D, where acand [ are given by (2.1).
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Corollary 4.6. Let o« > 1,0 € {1,...,n — 2} with { + n even, conditions (1.2), (3.1;) and
(2.94,c) be fulfilled. Moreover, assume there exist v € (0,1) and r € (0,1) such that

+00
fimint ¢ [ €771 r(€) O p(e) dg > . (411)
t
limint 28 5 (4.12)
t—+oo tT
and at last one of the conditions
ra>1 (4.13)
orra < 1 holds, and for some e > 0and 0 € (1,«),
+00 +00
r(l— a—4§
[ [ oy O ds = oo, (414)
0 s

is fulfilled. Then for any ty € Ry, Uy, = O, where « is defined by first equality of (2.1).
Proof. 1t suffices to show that condition (4.2) is satisfied for some & € N. Indeed, according
to (4.11y) and (4.12) there exist y € (0,1),r € (0,1),¢ > 0 and ¢t; € R4 such that

+oo
£ / ()R pe)|de > ¢ for t >t (4.15)
t

and
7(t) > ct” for t > t. (4.16)

By (2.124), (2.11;) and (4.15) we have

t 1—y _ 1=

p(a) (t) > ¢ / s 7ds = ‘ (t " )(t*)> for t > 7_1)(ts).

266370 = (n = p)] (n— )11 —7) =0
T(—1)(t«)

Choose t2 > 7(_1)(t«) and ¢; € (0, ¢) such that
Py (1) > e tl™7 for >t
Therefore, by (4.15) and (4.16) we can find t3 > ¢2 and c2 € (0, ¢1) such that from (2.12) we get
(@) (1) > e tENAFar)  for ¢ > ¢y,

P3 ot
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Hence for any ky € N, there exist ¢, and ci,—1 > 0 such that

Pi(;;,)e,t* () > cpog tANAFarTt (@) for g > gy (4.17)
Assume that (4.13) is fulfilled. Choose kg € N such that kg — 1 > 0 . Then by
rla—=06)(1—-7)

(4.16), (4.17) and (2.9,,1) condition (4.2,) holds for k = k.
In this case, the validity of the corollary has already been proved.
Assume now that ar < 1 and for some ¢ € (0,(1 — vy(a — 9)r), (4.14,) is fulfilled. Choose

ko € N suchthat 1 +ar+...+ (ar)?=2 > —ar (1= 7); o Then by (4.14/), (4.16)

and (4.17) it is obvious that (4.2,) holds for k£ = k. The proof the corollary is complete.

5. Differential equations with property B.

Theorem 5.1. Let conditions (1.2) and (1.3) be fulfilled and for any ¢ € {1,...,n} with{+n
even, conditions (2.9 ), (3.1y) and, for even n, (2.91 ) hold. Moreover, let for any large t, € R,
and ¢ € {1,...,n — 2} with { + n even for some k € N, condition (4.1;) hold, when o = 1, or
forsomek € N,~v € (1,+00) and ¢ € (1,a| (4.2¢) hold when o > 1. Then equation (1.1) has
Property B, where « is defined by the first condition of (2.1) and P:)e ., Is given by (2.11) - (2.13).

Proof. Let equation (1.1) have a proper nonoscillatory solution u : [to, +o0) — (0,+00)
(the case u(t) < 0 is similar). Then by (1.2), (1.3) and Lemma 2.1 there exists £ € {1,...,n}
such that ¢ + n is even and condition (2.3;) holds. Since for any ¢ € {1,...,n — 2}, with/ +n
even, the conditions of Theorem 4.1 are fulfilled, we have ¢ ¢ {1,...,n —2}. Let { = n. Then
by (2.3,,) it is clear that there exists ¢ € (0,1] such that for large ¢, u(7(t)) > cr™"1(¢). Thus
from (1.1) by (2.9, ) we have

t
u("_l)(t) > /(CTn—l(S))lt(S) |p(8)|d8 — +oo for t — +oo,

t1

where ¢ is a sufficiently large number. That is, condition (1.4) is fulfilled. Now assume that ¢ = 0
and n is even and there exists ¢ € (0, 1] such that u(t) > cfor ¢ > to, where t5 is a sufficiently
large number. According to (2.3() from (1.1) we get

n—1 ¢

> (n—i—1)t|u? ()] > /sn_lc“(s)|p(s)|ds for t > t.
i=0 H

The last inequality contradicts conditions (2.9 ). The obtained contradiction proves that condi-
tion (1.5) holds, that is equation (1.1) has Property B.

Theorem 5.1'. Let conditions (1.2), (1.3) be fulfilled and for any £ € {1,...,n} with { +n
even, conditions (2.9,1), (3.1y) and, for even n, (2.911) hold. Moreover, let 3 < +oc and for
any large t. € Ry and ¢ € {1,...,n — 2} with { + n even for some k € N, condition (4.1y) be
fulfilled, when o« = 1 or for some k € N,y € (1,+00)and 6 € (1,a] (4.2¢) hold, when o > 1.
Then the equation (1.1) has Property B, where o and 3 are defined by the first condition of (2.1)
and p\"),is given by (2.11;)~ (2.13y).
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Proof. Since 3 < 400, by (2.9¢) for any ¢ € {1,...,n} with ¢ + n even, condition (2.9, )
holds. That is conditions of Theorem 5.1 are fulfilled, which proves the validity of the theorem.
Theorem 5.2. Let o > 1, conditions (1.2), (1.3), (2.91,c), (3.11) be fulfilled and

(r(t)""

ltlin_&&f > 0. (5.1)
Moreover, if for some § € (1, )
+00 +00
| [ e @y s as = +oc, (52)
0 s
when n is odd and
“+00 +00
| [ e @O ds = +oc, (53)
0 s

when n is even, then equation (1.1) has Property B, where « is given by the first condition of (2.1).

Proof. According to (2.9; ), (3.11) and (5.1) it is obvious that for any ¢ € {1,...,n} conditi-
ons (2.9;.) and (3.1y) hold. On the other hand by (5.1), (5.2) and (5.3), forany ¢ € {1,...,n—2}
with ¢+ n even condition (4.2/) holds. That is if &« > 1, then all conditions of Theorem 5.1 hold,
which proves the validity of the theorem.

Theorem 5.2’. Let o > 1 and f < +oo, conditions (1.2), (1.3), (2.91.1), (3.11) and (5.1)
be fulfilled. Moreover, let for some § € (1,«], the condition (5.2) hold when n is odd and the
condition (5.3) hold, when n is even. Then equation (1.1) has Property B, where o and 3 are
given by (2.1).

Proof. Since f < +00, by (2.911) it is obvious that for any ¢ € (0, 1] condition (2.9; .) holds.
That is all conditions of Theorem 5.2 are fulfilled, which proves the validity of the theorem.

Corollary 5.1. Let o > 1, conditions (1.2), (1.3), (2.91), (3.11) and (5.1) be fulfilled and

+0o0

C— n—3

ltlgﬁ&ft / s"721(s)|p(s)|ds > 0. (5.4)
t

Moreover, if for some § € (1,a]and~y > 0

—+00 +00

/ /gn—Q—é(T(g))Hv(u(&)—‘s)’p(g)‘dg ds = 400, (5.5)
0 s

then equation (1.1) has Property B, where « is defined by the first condition of (2.1).

Proof. Since o > 1. By (5.4), (2.111) and (2.13;) for any v > 0, there exists t, € R, such
that p&?ﬂt* (t) > £'t7 for t > t,. Therefore, by (5.4), (5.5) and (5.1) forany ¢ € {1,...,n —
—2} condition (4.2) holds. That is for @« > 1 all conditions of Theorem 5.1’ hold. Therefore
according to the same theorem, equation (1.1) has Property B.
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By Corollary 5.1, Theorem 5.2’ can be proved similarly.

Corollary 5.1'. Let « > 1 and < +o0, conditions (1.2), (1.3), (2.911), (3.11), (5.1) and
(5.4) be fulfilled. Moreover, if for some ¢ € (1,a] and v > 0 condition (5.5) holds, then equation
(1.1) has Property B, where o and 3 are given by (2.1).

Corollary 5.2. Let o > 1, conditions (1.2), (1.3), (2.91), (3.11), (5.1) and (5.4) be fulfilled
and there exist m € N such that condition (4.7) holds. Then equation (1.1) has Property B, where
o is defined by the first condition of (2.1).

Proof. By (5.1), (2.91,¢), (3.11) and (5.4) it is obvious that for any ¢ € {1,...,n} conditions
(2.9@10), (314) and (465) hold.

Let equation (1.1) have a nonoscillatory proper solution u : (g, +00) — (0, 4+00). Then by
(1.2), (1.3) and Lemma 2.1, there exists £ € {1,...,n} such that £ + n is even and the condition
(2.3¢) holds. By Corollary 4.4, ¢ ¢ {1,...,n—2}.If £ = n (if nis even and ¢ = 0) by (2.9,¢)
((2.91,¢)) analogously to Theorem 5.1, we show that condition (1.4) (condition (1.5)) holds, that
is equation (1.1) has Property B.

Corollary 5.2'. Let « > 1 and < +o0, conditions (1.2), (1.3), (2.911), (3.11), (5.1) and
(5.4) be fulfilled. Moreover, if there exists m € N such that condition (4.10) holds, then equation
(1.1) has Property B, where o and 3 are given by (2.1).

Corollary 5.3. Let o > 1, conditions (1.2), (1.3), (2.91,), (3.11) and (5.1) be fulfilled. Assume,
moreover, that there exist v € (0,1) and r € (0,1) such that conditions (4.141) and (4.15) hold
and at least one of the conditions (4.16) or r « < 1 and for somee > 0and § € (1,«) (4.17,) are
fulfilled. Then equation (1.1) has Property B, where « is defined by the first condition of (2.1).

Proof. Let equation (1.1) have a proper nonoscillatory solution u : (tg, +o0) — (0, +00).
Then by (1.2), (1.3) and Lemma 2.1, there exists ¢ € {1,...,n} such that ¢/ + n is even and
condition (2.3;) holds. Since by (2.91.), (3.11), (4.14;) and (5.1) for any ¢ € {1,...,n — 2},
conditions (2.9, .), (3.1¢) and (4.14,) are fulfilled, then according to Corollary 4.6, we have ¢ ¢
¢ {1,...,n—2}. On the other hand analogously to Theorem 5.1, we show thatif £ = 0 (¢ = n)
the condition (1.4) ((1.5)) is fulfilled, that is the equation (1.1) has Property B.

Corollary 5.3'. Let « > 1 and < +oo, conditions (1.2), (1.3), (2.911), (3.11) and (5.1)
be fulfilled and for some v € (0,1) and r € (0,1), conditions (4.141) and (4.15) hold. Then
equation (1.1) has Property B, where o« and (3 are given by (2.1).

Theorem 5.3. Let o« > 1, conditions (1.2), (1.3), (2.9,,.) and (3.1,,—1) be fulfilled and

®)
limsupm < +00. (5.6)
t——+4o00 t
Moreover, if for some 6 € (1, q]
+00 +00
| [ €9 peja ds = +oc, (57)
0 s

then equation (1.1) has Property B, where « is given by the first condition of (2.1).

Proof. According to (2.9,.), (3.1,-1) and (5.6) it is obvious that for any ¢ €
€ {1,...,n— 1} the conditions (2.9¢.) and (3.1) hold. On the other hand by (5.6) and (5.7) for
any ¢ € {1,...,n — 2}, with £ + n even the condition (4.2,) holds. That is, if « > 1, then all
conditions of Theorem 5.1 hold, which proves the validity of the theorem.
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Theorem 5.3'. Let o > 1 and < +oo, conditions (1.2), (1.3), (2.9,.1), (3.1,—1), (5.6) and
for some 6 € (1, «) condition (5.7) be fulfilled. Then equation (1.1) has Property B, where o and
B are given by (2.1).

Proof. Since § < 400, by (2.9,, 1) it is obvious that for any ¢ € (0, 1] conditions (2.9, ) hold.
That is all conditions of Theorem 5.3 are fulfilled, which proves the validity of the theorem.

Corollary 5.4. Let o > 1, conditions (1.2), (1.3), (2.9,.c), (3.1,—1) and (5.6) be fulfilled and

+oo
lim inf ¢ / (7(5)) 036 [p(s)|ds > 0. (5.8)

t—+00
t

Moreover, if for some § € (1,a] and vy > 0

“+o00 +o0o

/ /5—1—6(7(5))6+(n—3)u(5)+w(u(£)—5)|p(5)|d§d5 = +o0, (5.9)
0 S

then equation (1.1) has Property B, where o is given by the first condition of (2.1).

Proof. Since o > 1, by (5.8), (2.11,,_2) and (2.13,,_2), for any v > 0 there exists ¢, €
€ R, such that pgog_Q .. (t) > £1t7 for t > t,. Therefore by (5.6), (5.8) and (5.9) for any ¢ €
e{l,...,n—2} the conditions (4.2¢) hold. Therefore, according to the same theorem, equation
(1.1) has Property B.

Corollary 5.4'. Let « > 1 and < o0, conditions (1.2), (1.3), (2.9,1), (3.1,-1), (5.8) and
(5.9) be fulfilled. Then equation (1.1) has Property B, where o and 3 are given by (2.1).

By (5.6), repeating the arguments given in Corollary 5.3, we easily ascertain that the corollary
below is true.

Corollary 5.5. Let o« > 1, conditions (1.2), (1.3), (2.9,.), (3.1,—1) and (5.6) be fulfilled.
Moreover, let there exist v € (0,1) and r € (0,1) such that conditions (4.14,,_3), (4.15) and at
last one of the conditions (4.16) or ra < 1 and for some ¢ > 0and 6 € (1,qa], (417,-2) be
fulfilled. Then equation (1.1) has Property B, where « is defined by the first condition of (2.1).

Corollary 5.5'. Let o« > 1 and 5 < +o0, conditions (1.2), (1.3), (2.9,,.1), (3.1,—1) and (5.6) be
fulfilled. Moreover, let there exist v € (0,1) and r € (0, 1) such that conditions (4.14,,_3), (4.15)
and at last one of conditions (4.16) or r o < 1 and for some e > 0and ¢ € (1,a], (4.17,-2) be
fulfilled. Then equation (1.1) has Property B, where . and (3 are given by (2.1).

Theorem 5.4. Let o = 1, conditions (1.2), (1.3), (2.91,c), (3.11) and (5.1) be fulfilled. Moreover,

if
1 t +o0
lim sup — / / E"2p(€)|dé ds > 0, (5.10)
t—+o00 t
0 s
when n is odd and
1 t 400
tmsup [ [ €€ Op(ldgds > o (511)
t——+o0 0
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when n is even, then equation (1.1) has Property B, where « is given by the first condition of (2.1).

Proof. According to (2.91.), (3.11) and (5.1) for any ¢ € {1,...,n} conditions (2.9, .) and
(3.1¢) holds. On the other hand by (5.1), (5.10) and (5.11) forany ¢ € {1,...,n— 2}, with /+n
even condition (4.1;) holds. That is, if @« = 1, then all conditions of Theorem 5.1 hold, which
proves the validity of the theorem.

Theorem 5.4'. Let o = 1 and < +oo, conditions (1.2), (1.3), (2.911), (3.11), (5.1), (5.10)
and (5.11) be fulfilled. Then equation (1.1) has Property B, where o and (3 are defined by (2.1).

Proof. Since < +oo, by (2.9 1), for any ¢ € (0,1] condition (2.9 ) holds. That is all
conditions of Theorem 5.4 are fulfilled, which proves the validity of the theorem.

Theorem 5.5. Let o = 1, conditions (1.2), (1.3), (2.91,c), (3.11) and (5.1) be fulfilled. Moreover,

if
t +oo (l( g)'
n— 3 n—t: —
ltlglgft/ /f |p(&)|dEds > max( = Le{l,2,...,n 2}> (5.12)
and
t +oo
lim sup — //f” o ©|p(&)|de ds > 0, (5.13)
t—+00

then equation (1.1) has Property B, where

¢ )u(t)
w = liminf (5.14)
t—+o00
Proof. By (5.12), (5.14) and (2.11,) it is obvious that for large ¢t we have
P ()= 0, cefl,... ,n—2} (5.15)

sty bk

On the other hand according to (2.91.), (3.11), (5.1), (5.14), (5.15) and (5.13) for any ¢ €
€ {1,...,n — 1}, conditions (2.9, .), (3.1;) and (4.1;) hold. That is if « = 1, then all condi-
tions of Theorem 5.1 hold, which proves the validity of the theorem.

The proof of Theorem 5.4 has been a guide for us in proving Theorem 5.4 /. In the same way
we will be guided by the proof of Theorem 5.5 to show that the next theorem is valid.

Theorem 5.5'. Let « = 1 and 8 < +oo, conditions (1.2),(1.3), (2.911), (3.11), (5.1), (5.12)
and (5.13) be fulfilled. Then equation (1.1) has Property B, where w is defined by condition (5.14).

Theorem 5.6. Let o« = 1, conditions (1.2), (1.3), (2.9,¢), (3.1,—1) and (5.6) be fulfilled.
Moreover, if

t +oo

lim sup — / / E(r (€)@ |p(&)|de ds > 0, (5.16)

t—-+o0
then equation (1.1) has Property B, where . is given by the first condition of (2.1).
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Proof. According to (2.9, ), (3.1,—1) and (5.6) forany ¢ € {1,...,n— 1} conditions (2.9, .)
and (3.1¢) hold. On the other hand by (5.6) and (5.16) for any ¢ € {1,...,n — 2}, with £ + n
even condition (4.1,) holds. That is, if « = 1, then all conditions of Theorem 5.1 hold, which
proves the validity of the theorem.

Theorem 5.6'. Let o = 1 and < +oo, conditions (1.2), (1.3), (2.9,.1), (3.1,—1), (5.6) and
(5.16) be fulfilled. Then equation (1.1) has Property B, where o and (3 are given by (2.1).

Proof. Since < +o0, it suffices to show that by (2.9,, 1), for any ¢ € (0, 1] condition (2.9,, )
hold.

Theorem 5.7. Let o = 1, conditions (1.2), (1.3), (2.9,.c), (3.1,—1) and (5.6) be fulfilled.
Moreover, if

t +oo
|
ltlgnmft// JLHO=3(E) |y (¢)|dE ds > max <“”/;)e e 1,2, n—2}>, (5.17)
then the condition
t +oo
lim sup — //g =2 | p(€)|de ds > 0, (5.18)
t—4o00

is sufficient for equation (1.1) to have Property B, where

. t

Proof. By (5.17), (5.19) and (2.11) it is obvious that for large ¢ condition (5.15) holds.

On the other hand according to (2.9, ), (3.1,,—1), (5.6), (5.15), (5.18) and (5.19) for any
¢ e {1,...,n—1}, conditions (2.9,.), (3.1;) and (4.1/) hold. That is, if « = 1, then all conditions
of Theorem 5.1 hold, which proves the validity of the theorem.

Theorem 5.7'. Let « = 1 and < +o0, conditions (1.2), (1.3), (2.9,.1), (3.1,—1) and (5.6)
be fulfilled. Moreover, if conditions (5.17) and (5.18) hold, then equation (1.1) has Property B,
where o, 3 and w are given by (2.1) and (5.19).

Proof. Since § < +o0, it suffices to show that by (2.9, 1), for any ¢ € (0,1] conditions
(2.9;,c) hold.
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