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In this paper, a fixed point theorem due to Schaefer combined with a selection theorem due to Bressan
and Colombo for lower semicontinuous multivalued operators with nonempty closed and decomposable
values is used to investigate the existence of solutions for first and second order impulsive functional di-
fferential inclusions with variable times.

3 0onomozoto meopemu lllepepa npo Hepyxomy mouky, a maxox meopemu bpeccarna i Koaombo npo
8UOIP 045 HUNCHBO HANIBHENEPePBHUX 6A2aMO3HAYHUX ONEPAMOPI6 I3 HENOPOICHIMU 3AMKHEHUMU DO3-
KAAOHUMU 3HAYEHHAMU BUBHEHO NUMAHHA ICHY8AHHA PO36’A3KI8 (PYHKUIOHAAbHO-OUhepeHUianbHUX
BKAIOYEHb NEPULO20 MaA OPY2020 NOPAOKIB 31 3MIHHUM YACOM.

1. Introduction. In this paper, we are concerned with the existence of solutions to some classes
of initial value problems for first and second order impulsive functional and neutral functional
differential inclusions. Initially, in Section 3, we will consider the first order impulsive functional
differential inclusion

y'(t) € Ft,y), ae. teJ:=[0,T], t+#my),
y(t") = L(y(t™)), t=m(yt), k=1,...,m, (1.1)
y(t) = ¢(t)’ t e [_Ta O]a

where F' : J x D — P(IR) is a multivalued map with nonempty compact values, D = {1 :
[—r,0] — IR;1) is continuous everywhere except for a finite number of points ¢ at which ¢ (¢~
and ¢ (t7) existand () = ¥(f)}, ¢ € D,0 < r < o0, 7 : IR = IR, I, : IR — IR, k =
= 1,2,...,m, are given functions satisfying some assumptions that will be specified later.

For any function y defined on [—r, 7] and any ¢ € J, we denote by y,; the element of D
defined by

y(0) = y(t+0), 6 ¢€[-r0.
Here y,(-) represents the history of the state from time ¢ — r up to the present time ¢. Later, in
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Section 4, we study the second order impulsive functional differential inclusion of the form

y' € F(t,y), ae.t € J:=[0,T], t# m(y(t)),

(12)

where F, I, and ¢ are as in problem (1.1), I, € C(IR,IR) and € IR. Sections 5 and 6
are devoted to the existence of solutions for initial value problems for first and second order

impulsive neutral functional differential inclusions. More precisely, in these last sections, we
consider the IVPs

S0~ ot )] € Flt,w), ae.t € T = [0,T), t # my(t),

y(t") = I(y(t™)), t = m(y(t), k=1,....m, (1.3)

y(t) = o(t), t € [=r,0],

where F I}, are as in problem (1.1), g : J x D — IR is a given function, and

WO~ glty) € Fly). ae t€J=0T]t % nly(),

(1.4)

where F, I, ¢, g, n and I, are as in the above cited problems.

The theory of impulsive differential equations have become more important in recent years
in some mathematical models of real processes and phenomena studied in physics, chemical
technology, population dynamics, biotechnology and economics. There has been a significant
development in impulse theory, in recent years, especially in the area of impulsive differential
equations with fixed moments; see the monographs of Bainov and Simeonov [1], Lakshmi-
kantham et al. [2], and Samoilenko and Perestyuk [3] and the references therein. The theory
of impulsive differential equations with variable times is relatively less developed due to the
difficulties created by the state-dependent impulses. Recently, some interesting extensions to
impulsive differential equations with variable times have been done by Bajo and Liz [4], Fri-
gon and O’Regan [5-7], Kaul et al. [8], Kaul and Liu [9, 10] Lakshmikantham et al. [11, 12],
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Liu and by Ballinger [13] and Vatsala and Vasundara Devi [14, 15]. Very recently, by mean
of Schaefer’s theorem and the concept of upper and lower solutions, Benchohra et al. [16—
18] have considered different classes of impulsive functional differential equations. The same
tools have been applied to a variety of impulsive functional differential inclusions with convex
valued right-hand side by the same authors [19, 20]. The main theorems of this paper extend
those considered by Benchohra et al. [19, 20]. Our approach here is based on the Schaefer’s
fixed point theorem [21, p. 29] combined with a selection theorem due to Bressan and Colombo
[22] for lower semicontinuous multivalued operators with nonempty closed and decomposable
values.

2. Preliminaries. In this section, we introduce notations, definitions, and preliminary facts
from multivalued analysis which are used throughout this paper.

By C(J,IR) we denote the Banach space of all continuous functions from J into IR with the
norm

[Ylloo == sup{ly(?)| : t € J}.
For ¢ € D the norm of ¢ is defined by

[¢llp = sup{[¢(®)] - 6 € [-r,0]}.

L'([0,T],IR) denotes the Banach space of measurable functions y : J — IR which are
Lebesgue integrable normed by

T
gl = /|y(t)ydt forall y € L'(J,IR).
0

AC([0,T],IR) is the space of i-times differentiable functions y : [0,7] — IR, whose ith deri-
vative, y(i), is absolutely continuous.

Let Abe asubset of [0, 7] xD. Ais L& B measurable if A belongs to the o-algebra generated
by all sets of the form 7 x D, where J is Lebesgue measurable in J and D is Borel measurable
in D. A subset A of L'([0, 7], IR) is decomposable if for all u,v € Aand J C [0, T] measurable,
the function ux 7 + vxs—7 € A, where x; stands for the characteristic function of J. Let E be
a Banach space, X a nonempty closed subset of £ and G : X — P(F) a multivalued operator
with nonempty closed values. G is lower semi-continuous (l.s.c.) if the set {z € X : G(z)NB #
# @} is open for any open set B in E. G has a fixed point if there is z € X such that z € G(z).
For more details on multivalued maps we refer to the books of Deimling [23], Gorniewicz [24]
and Hu and Papageorgiou [25].

Definition 2.1. Let Y be a separable metric space and let N : Y — P(L'([0,T],IR)) be a
multivalued operator. We say N has property (BC) if

1) N is lower semi-continuous (Ls.c.);

2) N has nonempty closed and decomposable values.

Let ' : J x D — P(IR) be a multivalued map with nonempty compact values. Assign to
F' the multivalued operator

F: C([-r,T],IR) — P(L([0,T],IR))
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by letting
F(y) = {w € L'([0,T],R) : w(t) € F(t,y;) forae. tec[0,T]}.

The operator F is called the Niemytzki operator associated with F.

Definition 2.2. Let F' : J x D — P(IR) be a multivalued function with nonempty compact
values. We say F is of lower semi-continuous type (l.s.c. type) if its associated Niemytzki operator
F is lower semi-continuous and has nonempty closed and decomposable values.

Next, we state a selection theorem due to Bressan and Colombo in [22].

Theorem 2.1. Let Y be a separable metric space and let N : Y — P(L'([0,T], IR)) be
a multivalued operator which has property (BC). Then N has a continuous selection; i.e., there
exists a continuous function (single-valued) g : Y — L'(J,IR) such that g(y) € N(y) for every
yevy.

Let us introduce the following hypotheses which are assumed hereafter:

(Hy) F : [0,T] x D — P(IR) is a nonempty, compact-valued, multivalued map such that:
a) (t,u) — F(t,u)is L ® B measurable;

b) u — F(t,u) is lower semi-continuous for a.e. t € [0,T];

(Hs) for each r > 0, there exists a function h, € L*([0, 7], IR") such that

|F(t,u)|lp :=sup{|v| : v € F(t,u)} < hy(t) forae. te[0,T];

and for v € D with [Ju|p < r.
The following lemma is crucial in the proof of our main theorem:

Lemma 2.1 [26]. Let F : [0,T] x D — P(IR) be a multivalued map with nonempty, compact
values. Assume (Hy) and (H3) hold. Then F is of Ls.c. type.

3. First order impulsive FDIs. The main result of this section concerns the IVP (1.1). Before
stating and proving this one, we give the definition of a solution of the IVP (1.1). We shall
consider the space

Q={y:[0,7] — IR : thereexist0 < t; < ... < ty, < T such thatt;, = 74,(y(tx)),
yp € C(Jy,IR),k = 0,...,m, and there exist y(t; ) and y(t; ),k = 1,...,m,
with y(t,7) = y(tx)}-
Here yx == y/j,, k = 0,...,m, Ji = (ty,tkq1], to = Oand t; 1 = T.
PC={y:[-rnT] - IR:y € DNQ}.

Definition 3.1. A function y € PC NU;_yAC((t, tk+1), IR) is said to be a solution of (1.1)
if there exists v(t) € F(t,y;) a.e. t € [0,T] such that y'(t) = v(t) a.e. t € [0,T], t # 7(y(t)),

We are now in a position to state and prove our existence result for the problem (1.1). We
first list the following additional hypotheses.
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(H3) The functions 7, € C'(IR,IR) for k = 1,..., m. Moreover,
0<7(z)<...<Tp(x) <T forall z € IR.
(H4) There exist constants ¢ > 0 such that
[Ix(z)] < ¢, foreach z IR, k=1,...,m.

(Hs) There exists a continuous nondecreasing function ¢ : [0,4+00) — (0,+00), and
p € L'([0,7],IR,) such that

|E(t,u)||lp < pt)Y(||lul|p) for ae. we€[0,7] andeach w € D

i

(Hg) For all (t,z) € [0,7] x IR and for all y, € D we have

with

(x)v(t) #1 for k=1,...,m, forall v e F(y).
(H7) Forallz € IR

T(Ig(2)) < 1(2) < 71 (Ix(x)) for k=1,...,m—1.

Theorem 3.1. Suppose that hypotheses (H;)— (H~), are satisfied. Then the impulsive initial
value problem (1.1) has at least one solution.

Proof. (H;) and (H2) imply, by Lemma 2.1, that F' is of lower semi-continuous type. Then
from Theorem 2.1 there exists a continuous function f : C([-r,T],IR) — L([0,T],IR) such
that f(y) € F(y) forally € PC.

Step 1. Consider the problem,

y'(t) = f(y), tel0,T],
3.1)
y(t) = ¢(t), te [-r0]

It is obvious that if y € C([—r,T],IR) is a solution of the problem (3.1), then y is a solution
to the problem (1.1). Transform the problem into a fixed point problem. Consider the operator
N : C([-r,T],IR) — C([-r,T],IR) defined by:
o(t) ift € [—-r,0],
N()(t) = / |
0) + / Fly)ds it € [0.7).
0

ISSN 1562-3076. Heainitini koausarnns, 2007 m. 10, N> 4



448 A.BELARBI, M. BENCHOHRA, A. OUAHAB

We shall show that NV is a continuous and completely continuous operator.
Claim 1. N is continuous.

Let {y, } be a sequence such that y, — y in C'([—r,T],IR). Then

t T
N (nl6) = NGO < [ 1) = Fwlds < [ 1) = 100)lds.
0 0

Since the function f is continuous, then

IN(yn) = NW)lloo < [1f(yn) = fW)llr — 0 as n — oo.

Claim 2. N maps bounded sets into bounded sets in C([—r,T], IR).

Indeed, it is enough to show that for any ¢ > 0 there exists a positive constant ¢ such that,
foreachy € B, := {y € C([-r,T],IR) : ||y|lc < ¢}, we have ||[N(y)||sc < ¢. From (Hz) and
(Hs) we have

t
IN(y)(D)] < H¢IID+/|f(ys)|d8 < [[8llp + [lhgllLr = ¢
0

Claim 3. N maps bounded sets into equicontinuous sets of C([—r,T], IR).
Let r,m € [0,T], 1 < 72, and B, be a bounded set of C([—r,T],IR). Lety € B,. Then

T2

LMM@—N@MNS/%@@

T1

As 79 — 71 the right-hand side of the above inequality tends to zero. The equicontinuity
for the cases 1 < < 0and r; < 0 < 74 is obvious.

As a consequence of Claims 1 to 3, together with the Arzela— Ascoli theorem, we conclude
that N := C(|-r,T],IR) — C([—r,T],IR) is continuous and completely continuous.

Claim 4. Now it remains to show that the set
EN) ={yeC(-r,T],IR) : y=AN(y) forsome 0< X< 1}

is bounded.

Lety € E(N). Theny = AN(y) for some 0 < A < 1. Thus
t
o(t) = 3 [00) + [ fw)ds| . te0.7)
0
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This implies by (Hj5) that for each ¢ € [0,7] we have

|wmsuwp+/MQmmmm@. (32)
0

We consider the function p defined by

Let t* € [—r,t] be such that u(t) = |y(t*)|. If t* € J, by inequality (3.2) we have for ¢t € J

MﬂSHMD+/M$MM$M& (33)
0

If t* € [—r,0] then pu(t) = ||¢||p and the inequality (3.3) holds. Let us take the right-hand side
of the inequality (3.3) as v(t). Then we have

c= U(O) = ||¢”Da :U(t) < ’U(t), ted
and
v'(t) = p)¥(u(t), tel[0,T].
Using the nondecreasing character of ¢) we get
V(t) < pt)y(v(t), te[0,T]
By using (H;) this implies for each ¢ € [0, 7] that

v(t)

T
JZ) < /p(s)ds < +o0.

v(0) 0

This inequality implies that there exists a constant K such that v(¢) < K, ¢ € J, and hence
wu(t) < K, t € [0,T]. Since for every t € [0,T], |y:||p < u(t), we have

Iyl < K" := max{|¢]lp, K},
where K’ depends only on 7" and on the functions p and . This shows that £(N) is bounded.
Set X := C([-r,T],IR). As a consequence of Schaefer’s theorem (see [21, p. 29]), we
deduce that N has a fixed point y which is a solution to problem (3.1). Denote this solution by
Yi1-
Define the function

rr1(t) = (yi(t)) —t for t > 0.
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(Hs) implies that
rr,1(0) #0 for k=1,...,m.
If
rp1(t) #0 on [0,7] for k=1,...,m,
i.e.,

t # mx(y1(t)) on [0,7] andfor k=1,...,m,

then y; is a solution of the problem (1.1).
It remains to consider the case when

r11(t) =0 forsome ¢t € [0,7].

Now since
r1,1(0) # 0
and r; ; is continuous, there exists ¢t > 0 such that
7‘171(151) = 0, and Tl,l(t) 75 0 forall te [0, tl).
Thus by (Hs) we have

rr1(t) #0 forall te€[0,¢), and k=1,...,m.

Step 2. Consider now the following problem:

y'(t) = fly), ae. te€[t,T], (3.4)

y(t) = wi(t), telti—rtl, yit]) = L))
Set
c* = C([tl — T‘,tl],IR) NnCy,
where
C1={y e C((t1,T),IR) : y(t) exists}.

Transform the problem (3.4) into a fixed point problem. Consider the operator N; : C* — C*
defined by

yl(t) ift € [tl — T,tl],

N = /
1(y)(t) I1(y1(t1))+/f(ys)d8 ift € (t,T].

As in Step 1 we can show that V; is continuous and completely continuous. Now we prove only
that the set

E(N) :={y e C*: y=ANy(y) forsome 0 < A< 1}
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is bounded.
Lety € £(Ny). Theny = AN;(y) for some 0 < A < 1. Thus

t
o(t) = A | + [ f)ds| . te 7).
t1
This implies by (H4) and (H5) that for each ¢t € [¢;,7T] we have

()] < e+ / p(s)6(|lysl|p)ds.

We consider the function ¢ defined by

w(t) :=sup{ly(s)| : t1 —r <s<t}, t1 <t<T.

451

(3.5)

Lett* € [r —t1,t] be such that u(t) = |y(t*)]. If t* € [t; — r, T}, by inequality (3.5) we have for

t e [tl —T,T}

t

pit) < er + / p()(u(5))ds.

t1

(3.6)

If t* € [ty — r,t1] then u(t) = ||y1]c and the inequality (3.6) holds. Let us take the right-hand

side of the inequality (3.6) as v(t). Then we have
e = (1) = cr, p(t) <o), tel[t,T]

and

V(t) = p@)P(u), t € [t,T].
Using the nondecreasing character of ¢ we get

V(t) < py(u(t), e [t T
By using (H5) this implies for each ¢ € [t1, T that

v(t)

( T
d
/ ¢(:) < /p(s)ds < +00.
’U(tl) 0

This inequality implies that there exists a constant K such that v(t) < K, t € [t1,T], and

hence pu(t) < Ky, t € [t1,T]. Since for every t € [t1,T], ||y|lp < p(t), we have
[Ylleo < Ko := max{|[y1[loo, K1},
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where K> depends only on 7" and on the functions p, ¥; and 1. This shows that £(N;) is
bounded.

Set X := C([t1 —r,T],IR). As a consequence of Schaefer’s theorem we deduce that N; has
a fixed point y which is a solution to problem (3.4). Denote this solution by y,. Define

rr2(t) = T(y2(t)) —t for t > t;.

If
rr2(t) #0 on (t1,7] andforall k=1,....,m

then

if
J(6) = { yi(t) ift € [0,41],

yg(t) ift € (tl,T],

is a solution of the problem (1.1).
It remains to consider the case when

roo(t) =0 forsome t e (¢1,7T].
By (H7) we have
ra(t) = m(ye(t]) —t1 = (Li(yi(t))) —t1 > mi(yi(tr)) —t1 = ra(t) = 0.
Since r9 o is continuous, there exists to > t; such that
ro2(t2) = 0,

and
7’272(75) 75 0 forall te (tl,tg).

It is clear by (Hj3) that
rr2(t) # 0 forall t € (t1,t2), k=2,...,m.
Suppose now that there is 5 € (t1,t2] such that
r1,2(5) = 0.

From (H7) it follows that

ri2(ty) = nety) —ti = n(li(yi(t))) =t < ni(yi(t)) =t = ra(t) = 0.
Thus the function r; o attains a nonnegative maximum at some point s; € (¢, 7. Since

Ya(t) = f(y2.),
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we have
ra(s1) = Ti(y2(s1))ys(s) =1 = 0.
Therefore
71 (y2(51))-f (y2,,) = 1,
which contradicts (Hg).

Step 3. We continue this process and taking into account that y,,4+1 1= y is a solution

to the problem
y'(t) = fly), ae teE (tm,T),
y(t) = ym(t), t € [t —ritm],  y(th) = In(ym(t))-
The solution y of the problem (1.1) is then defined by

([ y1(t) ift € [—r,t1],

yg(t) ift € (tl, tg],

4. Second order impulsive FDIs. In this section we give an existence result for the IVP (1.2).
Let us start by defining what we mean by a solution of problem (1.2).

Definition 4.1. A function y € PC NUJqAC'((t,tx11), IR) is said to be a solution of (1.2)
if there exists v(t) € F(t,y:) a.e. t € [0,T] such that y"(t) = v(t) a.e. on [0,T1,t # 7(y(t)),
y(t%) = Lyt ), t = m(y(®), ¥t = Tyt ), t = a(y(®), k = 1,...,m, y(t) = (t),
t € [-r,0] and y'(0) = n.

Theorem 4.1. Assume (H1) - (Hz) and the condition
(Hg) there exist constants dj, > 0 such that

In(y)| < dp foreach ye IR, k=1,...,m,

are satisfied. Then the IVP (1.2) has at least one solution.

Proof. (H;) and (H,) imply, by Lemma 2.1, that F is of lower semi-continuous type. Then
from Theorem 2.1 there exists a continuous function f : C([-r,T],IR) — L'([0,T],IR) such
that f(y) € F(y) forally € C([-r,T],IR).

Step 1. Consider the following problem:

y'(t) = f(ye), t€0,T],
(4.1)
y(t) = ¢(t), t € [-r,0], ¥'(0) = 7.
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Consider the operator N : C([-r,T],IR) — C([-r,T],IR) defined by

o(t) itt € [-r 0],
$(0) +tn+/(t— O f(ys)ds ift e [0,T].
0

Asin Theorem 3.1 we can show that N is continuous and completely continuous. Now we prove
only that the set

EN) :={y € O([-r,T],IR) : y = AN(y) forsome 0 < X\ < 1}

is bounded. Lety € £(N). Theny = AN(y) for some 0 < A < 1. Thus

t
y(t) = A {qb(m i+ / (t - S)f(ys)dS] |
0

This implies by (Hs) and (Hg) that for each ¢t € J we have

t

@] < ll¢llo + T +/(T— $)p(s)¢(llys|l)ds. (4.2)

Let t* € [—r,t] be such that u(t) = |y(t*)|. If t* € J, by the inequality (4.2) we have fort € J

t

@) < li¢llp + Tlnl + /(T — 5)p(s)¥(u(s))ds. (4.3)

0

If t* € [—r,0] then u(t) = ||¢|| and the inequality (4.3) holds. Let us take the right-hand side of
inequality (4.3) as v(¢). Then we have

v(0) = [|¢llp + TInland ' (t) = (T — )p(t)¥(u(t)), t € [0, T].
Using the nondecreasing character of ¢) we get
v(t) < (T —t)p(t)y(v(t), t € [0,T].
This implies together with (Hj) for each ¢ € [0, 7] that
v(t)

dr
<

(r) ~

v(0)

Tt~

T
(T — s)p(s)ds < T/p(s)ds < +00.
0
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This inequality implies that there exists a constant b such that v(¢t) < b, ¢ € [0,7], and hence
wu(t) < b,t € J.Since for every t € [0, 7], [|y]lp < p(t), we have

[Ylleo < max{l|¢|lp, b},

where b depends only on T and on the functions p and 1. This shows that £(V) is bounded.

Set X := C([-r,T],IR). As a consequence of Schaefer’s theorem we deduce that N has a
fixed point y which is a solution to problem (4.1). Denote this solution by y; and continue as in
Theorem 3.1.

Step 2. Consider the following problem:

y'(t) = fly), ae te€[t,T],
y(t) = yu(t), telti—nrt], yit7) = L)), (4.4)

y(t7) = I (ty)-
Consider the operator, Ny : C* — C* defined by

yl(t) ift € [tl -, tl],
Nl t) .= o !
W Li(yi(t)) + ta(ya(t1)) +/(t —5)f(ys)ds ift € (t1,T].

t1

As in Theorem 3.1 we can show that N is continuous and completely continuous. Now we
prove only that the set

E(Np) :=={y € C* : y = AN4(y) forsome 0 < X\ < 1}

is bounded. Lety € £(Ny). Theny = AN (y) for some 0 < A < 1. Thus

o) = A [ B E0) + i) + [ (0= 5)F(w.)ds

t1

This implies by (Hy), (Hs) and (Hg) that for each ¢ € J we have

t

W) < 1+ Tdy + / (T — )p(s)b(|lsl]) ds. (4.5)

t1

We consider the function ¢ defined by
w(t) :=sup{ly(s)| : t1 —r < s <t}, t; <t <T.
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Lett* € [t; — r,t] be such that u(t) = |y(t*)|. If t* € [t1,T], by the inequality (4.5) we have for
tc [tl,T]

()] < er + Ty + / (T — 5)p(s)(u(s))ds. (4.6)
0

If t* € [t; — r,t1] then u(t) = ||y1]l and the inequality (4.6) holds. Let us take the right-hand
side of inequality (4.6) as v(t). Then we have

v(t1) = c1 +Tdy, and v'(t) = (T —t)p(t)P(u(t), t € [tr,T].
Using the nondecreasing character of ¢) we get
V(1) < (T =t)p@)¥(v(t), te€ [t T].
This implies together with (Hj) for each ¢ € [¢;, T that

T T

v/(t) 1/)62:) : /(T_ s)p(s)ds < T/p(S)ds < +00.
v(t1)

t1 t1

This inequality implies that there exists a constant b such that v(t) < b, ¢ € [t1,T], and hence
wu(t) < b,t € [t1,T]. Since for every t € [t1,T], ||ye]lp < u(t), we have

[Ylloe < max{{ly1]lo, b},

where b depends only on 7" and on the functions p, and .

Set X := C*. As a consequence of Schaefer’s theorem [21] we deduce that N; has a fixed
point y which is a solution to problem (4.4). Denote this one by y2 and continue as in Step 2 of
the Theorem 3.1.

Step 3. We continue this process and taking into account that y,,,+1 := y is a solution

my

to the problem

y”(t) = f(yt)a a.e. t ¢ (tm,T)a
Y(t) = ym(t), t € [tm — 1 tm], y(tﬁz) = In(ym (),

Y () = T (Ym-1(t))-
The solution y of the problem (1.2) is then defined by
(y1(t) ift € [—r,t1],
ya2(t) ift € (t1,12),
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5. First order impulsive neutral FDIs. In this section we are concerned with the existence
of solutions for problem (1.3).

Definition 5.1. A function y € QN UL AC((tg, tk+1), IR) is said to be a solution of (1.3)
if there exists v(t) € F(t,y:) a.e. t € [0,T] such that % [y(t) —g(t,y:)] = v(t) ae t € [0,T],
t # me(y(®), y(t*) = L(y(t7)), t = m(y(t), k = 1,...,m,and y(t) = ¢(t),t € [-r,0].

We first list the following hypotheses:

(A1) the function g is completely continuous and for any bounded set B in C([—r,T],IR),
the set {t — g¢(t,y) : y € B} is equicontinuous in C([0,7],IR) and there exist constants
0 < d; < 1andds > 0such that

gt w) < dillulp+ds, te[0.T],ueD, k=1,... m

(A2) g is a nonnegative function;
(As3) 71 is a nonincreasing function and

Iy(z) <z forall ze€ R k=1,...,m;
(Ag) forallz € IR
Ti(x) < Tpp1(Ip(z)) fork = 1,...,m;

(As) for all t € [0,7] and for all y; € D we have

T (y(t) — g(t,ye))v(t) # 1fork = 1,...,m forall v € F(y).

Theorem 5.1. Assume that hypotheses (H1) — (Hs) and (A1) — (A4) hold, then the IVP (1.3)
has at least one solution on [—r, T).

Proof. (H;) and (Hs) imply by Lemma 2.1 that F' is of lower semi-continuous type. Then
from Theorem 2.1 there exists a continuous function f : C([-r,T],IR) — L([0,T],IR) such
that f(y) € F(y) forally € C([-r,T],IR).

Step 1. Consider now the following problem:

%[y(t) —g(ty)] = fly), t €10,T],

(5.1)
y(t) - (b(t)? te [_T7 O}'
Consider the operator Ny : C([-r,T],IR) — C([-r,T],IR) defined by
o(t) ift € [-r,0],
Na(y)(t) = / j
6(0) = 9(0,0(0)) + gty + [ fu)ds it € 0.7)
0
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Clearly from (A1) Ny is a continuous and completely continuous operator. Now it remains to
show that the set

E(Ny) :={y € C([-r,T],IR) : y = ANa(y) for some X € (0,1)}

is bounded.
Lety € £(N3). Then ANy(y) = y for some 0 < A < 1 and

y(t) = A | 9(0) — 9(0,9(0)) + g(t, ye) +/f(ys)dS] :
0

This implies by (H5) and (A;) that for each ¢t € [0, 7] we have

ly(@®)] < [6(0)] + 19(0, #(0))] + lg (¢, )| +/p(8)¢(\|ysH)d8
0

or

@] < (1+d)l|llp + 2d2 + dalyl| + /p(S)@b(llysll)dS- (5.2)
0

We consider the function ¢ defined by
wu(t) == sup{ly(s)| : —r < s < t}, t €[0,7T].

Let t* € [—r,t] be such that u = |y(¢t*)|. If t* € [0,T], by the inequality (5.2), we have for
te0,T]

u(t) < (1+di)dllp + 2da + dup(t) + / p()0(u(s))ds.
0

Thus

O {(1 +ad)lolo + 2z + | p(sw(u(s))ds] . (53)
0

If t* € [—r,0] then u(t) = ||¢||p and the inequality (5.3) holds. Let us take the right-hand side
of the inequality (5.3) as v(t), then we have

o(0) = T (1 ) gllp + 2d5) and (1) = ple)((r)

Since 1 is nondecreasing we have
v'(t) = pt)Y(p(t) < pt)(v(t)) forall ¢ e [0,T].
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From this inequality, it follows that

O/ wq();((?)) ds < 0/ p(s)ds.

By using (H;) we then have

v(t) t T

/ JEZ) < /p(S)ds < /p(S) ds < +00.

v(0) 0 0

This inequality implies that there exists a constant b depending only on 7" and on the function p
such that

ly(t)] < b foreach ¢ e [0,7].

Hence
[~

This shows that £(Ny) is bounded, and hence N, has a fixed point y which is a solution to
problem (5.1).
Denote this solution by y;. Define the function

re1(t) = Te(y1(t)) —t for ¢ > 0.

(Hs) implies that
r,1(0) #0 for k=1,...,m.
It
re1(t) #0 on [0,7] for k=1,...,m,
i.e.,

t # m(y1(t)) on [0,7] andfor k =1,...,m,

then y; is a solution of the problem (1.3).
It remains to consider the case when

r11(t) =0 forsome ¢t € [0,7].

Now since
7“171(0) 75 0

and r; ; is continuous, there exists ¢t > 0 such that
T171(t1) =0 and 7‘1’1(15) 75 0 forall te [O,tl).
Thus by (Hs) we have

rp1(t) #0 forall ¢t e [0,t), k=1,...,m.
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Step 2. Consider now the following problem:

D10~ o(t.w0) = Fw), ae.t € [0,7],

(54)
y(t) = yi(t), t € [t —rta], y(t) = Ly (ty)).

Consider the operator N : C* — C* defined by

yl(t) ift € [tl—r,tl],

¢
Na(y)(t) = :
Li(yi(t) — 9t y1e) + 9(t ) + /f(ys)ds itt € [t1,T].
t1
As in Step 1 we can show that N is continuous and completely continuous, and the set
E(N3) :={y € C* : y = AN3(y) forsome 0 < \ < 1}

is bounded.

Set X := C*. As a consequence of Schaefer’s theorem we deduce that N3 has a fixed point
y which is a solution to problem (5.4). Denote this solution by y,. Define

Tra(t) = m(y2(t)) —t fort > t;.

If
rk2(t) # 0 on (t1,7] andforall k =1,...,m

then
yl(t) ift € [O,tl],

YO =9 ) it e (0.7,

is a solution of the problem (1.3). It remains to consider the case when
ro2(t) = 0 forsome ¢ € (t1,T].
By (A4) we have
ro2(t) = 7o(y2(t])) —t1 = (Li(y1(0))) —t1 > Ti(yi(t1)) =t = r11(t1) = 0.
Since r9 o is continuous, there exists to > t; such that
r2,2(t2) = 0,

and
7‘272(15) 75 0 forall ¢t € (tl,tg).
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It is clear by (Hj) that
rr2(t) # 0 forall t € (t1,t2), k=2,...,m.
Suppose now that there is 5 € (t1,t2] such that
r12(5) = 0.

Consider the function Ly (t) = 71(y2(t) — g(t,y2,)) — t.
From (A2)—(Ay) it follows that

L1(5) = m1(y2(5) = 9(5,92,)) =5 = T1(y2(5)) =5 = r12(5) = 0.

Thus the function L; attains a nonnegative maximum at some point s; € (t1,7]. Since

%[w(t) —g(t,y2,)] = f(y2,),

it follows that

Ei(51) = 7 (ya(s1) — g51,92,,) e 92(51) — 951,92, )]~ 1 = 0.

Therefore
71 (y2(s1) — 9(s1, 2., )] f (ya.,) = 1,
which contradicts (As).

Step 3. We continue this process and taking into account that y,,,4+; := y o is a solution
t77l1
to the problem

%[y(t) — gty = f(y), ae t€ (tm,T),

y(t) = ym(t), t € [tmo1 =7 tml,  Y(6h) = In(ym(ty))-
The solution y of the problem (1.3) is then defined by
( yl(t) ift € [—'l“, tl],

yz(t) ift € (tl, tg},

6. Second order impulsive neutral FDIs. In this section we study the initial value problem
(1.4). Its solution is defined in a similar maner. Let us introduce the following hypotheses:
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(Ag) for all (¢,5,2) € [0,7] x [0,7] x IR and for all y; € D we have

t

(x) | Te(y(3)) — 9(5,7s) + 9(t, yr) +/v(s)ds #1fork =1,...,m, forall v € F(y);

]

(A7) there exists a continuous nondecreasing function ¢ : [0,00) — (0,00) and p €
€ L'([0,7],IR,) such that

|f(t,w)| < p()Y(||u||p) forae. t € [0,T] and each u € D

with

oo

1

Theorem 6.1. Assume that hypotheses (H1) - (Hy), (H7)—(Hsg), (A1), and (Ag)— (A7) are
satisfied. Then the IVP (1.4) has at least one solution on [—r,T).

Proof. The details of the proof are left to the reader.
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