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We study the smoothness properties of relaxation function such that a linear viscoelastic material system
by Maxwell — Boltzmann can be considered of Kelvin — Voigt type; assuming that the relaxation function
and its derivative decrease rapidly, and that the infinitesimal strain history is an analytical function, the
Cauchy stress tensor of the linear viscoelasticity is well approximated by a constitutive functional of rate

type.

Busuaromuvcsa eaacmusocmi 24a0K0cmi peaakcayitinol pyHKYil 048 8UNAOKY, KOAU AHIIHO NPYICHA 3
Makceeasom — BoabUManom MamepiasbHa CUCIEMA MOXce PO32AA0AMUCH AK cucmema muny Keavai-
Ha — Boilema. Y npunywenni, wo peaaxcayiiina ¢ynxyia ma it noxioHa weuoko cnadaroms, a iH-
QinimesimanrvHa PyHKyia Oegpopmauyii € aHAAIMULHON, NOKA3AHO, W0 MeH30p HanpyxceHHa Kouwii 8
ATHIUHIT Meopil npy#cHOCHi 006pe anpoKCUMYEMbC CKAAO0BUM (KOHCMUMYMUSHUM) PYHKUIOHAAOM
Koegiyienmnoz0 muny.

1. As is posed in evidence in the study of the quasistatic problem in linear viscoelasticity
theory [1,2] the crucial point for a good and exaustive formulation of viscoelastic materials
theories [3,4] consists in the determination of general and physically admissible conditions [5]
so that materials with more fading or negligible memory effects can be classified by a good
approximation as particular viscoelastic materials; these conditions must be in accordance with
the structural properties [6, 7] of viscoelastic materials and with the pattern that describes them.

This problem is resolved partially in [5, 6], were have been formulated conditions, with the
above properties, so that materials of linear elastic type can be considered as particular linear
viscoelastic materials.

Purpose of the present paper is to prove that materials of linear rate type can be considered
as particular viscoelastic materials; if stronger smoothness hypotheses of relaxation and
Boltzmann functions are verified and if the infinitesimal strain history is an analytic function,
it is possible to approximate the constitutive functional of linear viscoelasticity theory by a
particular constitutive equation of Kelvi — Voigt type.

It is interesting to observe that the coefficient of the memory term of this constitutive
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relation is equal to the value of the dynamic viscosity tensor, when the frequency w approaches
to zero, where this tensor has an eliminable discontinuity in virtue of the assumed hypothe-
ses [S].

Finally we conclude proving an existence and uniqueness theorem for the quasistatic
problem of material systems expounded by the above functional; the solution is determined
as limit of a solution of the quasistatic problem for a strictly viscoelastic material system when
w — 0 [6].

2. Let 8 be a linear viscoelastic and homogeneous material system described by the
following constitutive functional:

+oo
T@Jyzad@E@¢y+/cw%@E%mgm:
0

+oo
— Gool@) B, 1) + / (G, 5) — Goo()] B (. 5)ds,
" (1)
T(xz,t) =TT (x,1), (x,t) € QA x [0,+00) = Q,

where T'(x, s) is the Cauchy stress tensor, G(x, s) and G'(x, s) are respectively the relaxation
and Boltzmann fourth-order Cartesian tensors, Go(x) and G (x) denote respectively the
instantaneous and equilibrium elastic moduli, that are so defined:

s—0

GW%ﬂme@:Gmﬁ—/G@ﬂm

0
+o00
Go(x)= lim G(z,s) = Gy(x) + / G'(z,7)dT;
0

s§——+400

1
E(x,t) = 3 [Vu + (Vu)T] , where u(z, t) denotes the displacement vector, is the second-order

infinitesimal strain tensor, while E'(x, s) = E(x,t — s), s € [0, +00) with respect to every fixed
t € [0,+00), denotes the history of the infinitesimal strain tensor at instant ¢; finally € is an
open and bounded domain of R? with sufficiently regular boundary 9.

We assume that the following hypotheses are verified V& € :

sG'(x,s) € LY(0, +0c0),
G(x,") — Goo() = — / G'(7)dr € H"'(0,+00) N H'(0, +00),

lim s%[G(x,s) — Goo(x)] = 0; )

$—+00

G(x,s) = —G(x, —s)
Vs € [0, 400).
G'(x,s) = G'(x,—s)
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If and only if Go(x) = G (x), then, for all t > 0

+o0
in_ [ a6 (24 2) - Gutw] [T dy o0,
a—+00 a Yy
—at
where y = a(s —t) and a > 0.

1. It is assumed that G'(z,-) is continuous V& € € while G"(z,-) is piecewise
continuous; furthermore G’(z,-) verifies Dini condition in every point of discontinuity and
in a neighbourhood of such points G”(x, -) is bounded.

2. The fourth-order symmetric tensors Go(x) and G (x) are positive definite and
continuous in ; furthermore G(z,-) and G’(z, -) are continuous in Q with respect to every
fixed s.

We remark that conditions (3) 2,3 are all verified if we suppose:

Ja>3: lim s*T'G/(s) = 0. (3)

By the assumed hypotheses we can state the following:

Theorem 1. If hypoteses (2) hold and if (3) holds by a suitable value of « and if E(x,t —s) €
€ H51(0, +00)NHY2(0, +00) VI € Q is an analytic function, then the body 3 is of Kelvin — Voigt
type, i.e.:

T(x,t) = Goo(x)E(x,t) + K (x)E(x, t) V(x,t) € Q x [0,dpa), dpa < 400, 4)
+oo
where K (x) = / [G(x, s) — Goo(x)]ds is such that:
0

+oo
B1A: A>—A: / sG'(x,s)dsA=A: K(x)A > 32A: A >0
/ 5)
Ve € Q, VA e Sym(V)\ {0},
and (31, (2 are positive constants.
Proof. By Maclaurin formula we have:
E'(x,s) = E(zx,t) + (—s)E(x,t) + o(z, s%) Va €, (6)
where lir% a(xé 8) _ 0.
s§— S
Using (6) we can rewrite (1), by a suitable value of ¢, in this manner:
¢
T(x,t) = Go(z)E(x,t) +/G'(a:, s) [E(a:,t) - sE(a:,t)} ds +
0
+oo
+ / G'(z, s) [E(m, t) — sE(z,t) + oz, 52)} ds; )
t
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remarking that, in the assumed hypotheses, it is possible to replace the limit of the integral with
the integral of the limit, and that, within a linear theory, we have that:

lim G'(z,s) [E(:c,t) — sE(x,t) + o(a:,s2)} =0 Vo €

t—+4o00

if we pass to the limit of the last integral of (7) with t — +o0, finally by a suitable value of « in
(3) and by the analiticity hypothesis of E(x, s) we have that:

+oo
T(2,1) = Goo(a)E(w,t) — / G/ (@, $)ds (@, 1) = Goo () E(m, 1)+

0
“+oo

+ / [G(x,5) — Goo(x)] dsE(x,t) ¥ (x,t) € 2 x [0,dpa), dps < +00, (8)
0
that implies (4) setting
+o0
K(x) = / (G, 5) - Goo()) ds:
0

finally (5) is a consequence of theorem IV of [5], because we get Va € Q
+oo

f1A: A> A: lim G.(x,w)A=—A: / sG'(x, s)dsA =
0

+oo

— A / (G, 5) — Goo()] dsA > foA: A,
0
+oo

where G.(z, w) = / [G(x, s) — Goo(x)] cos ws ds is the dynamic viscosity tensor.

0
By the above theorem, the theorem I — VI of [S] and the definitions I, II of [6] we are able to
complete the examination of viscoelastic materials, that have stronger or weaker or negligible
memory, formulating the following definitions:

Definition 1. A continuum material system expressed by the constitutive functional (1) is said
strictly viscoelastic if and only if, in hypotheses (2), the following conditions are verified:

i) G(zx,) — Go(x) € L' (0, +00) V& € Q, G(x, s) = GT (x,5) V(x,5) € Q x [0, +00);

ii) there exist two constants j11 > e > 0, such that:

1A A>A: [Go(x) — Goo(x)] A > 2A: A VA € Sym(V) \ {0} and Vx € Q,

where Sym(V) is the second-order Cartesian symmetric tensor space of R3;
+oo

iii) the dynamic viscosity tensor Ge(x,w) = / [G(x,s) — Goo(x)] coswsds is positive

0
definite and bounded, i.e. there exist two constants 31 > (3o > 0, independent of w, such that:

BA: A> A: Gy(z,w)A>BA: A Y AcSym(V)\ {0},

Yw e (—oo,+00) and V x € §;

348 ISSN 1562-3076. Heainitini koausauusa, 1999, m. 2, Ne 3



particularly, Vx € Q, we have:
+0o0
B1A: A> A: lim0 G.(z,w)A=—A: / sG'(x, s)dsA =

0
—+00

e / G(m,5) — Goo(a)]dsA > frA: A

iv)Ve € Q, ¥V A € Sym(V) \ {0}, vy, e > 0 such that:

A: [Go(m) + (A;/C(m,w)} A=A: [Goo(m) + wés(m,w)} A>1A:A  VweR,

~ ~

w?A: Go(z,w)A = —wG;(m,w) >1nA: A Yw#0,

where
+00 +00
a;(m,w) = /G’(m,s) cosws ds, Gz, w) = / [G(x,s) — Goo(x)] sinws ds,
0 0

~

+o00
G/S(a:,w): /G’(m,s)sinwsds
0

and vy, vo don’t depend on w, particularly, Vx € ), we have:

A: 1},@0 [Go(m) + a;(m,w)] A=A: lim [Goo(:c) + was(m,w)} A=

w—0
=A:Go(x)A>11A: A,
A: hrf [GO(:B) + (A;'/C(:c,w)} A=A: hrf [Goo(w) + was(ac,w)} A=

=A: Go(x)A > A: A

Definition 2. If and only if G(z,-) — Go(z) € L'(0,+o00) Y € Q, a continuum material
system described by the constitutive functional (1) is a linear viscoelastic body of Kelvin — Voigt
type, if by hypotheses of theorem 1 the following conditions are verified:

i) T(x,t) = Goo(x)E(x,t) + K (x)E(x,t) ¥Y(x,t) € Qx[0,dps), dpa < 400, where K (x) =
“+o0o

= / [G(x,s) — Goo(x)] ds is such that:
0 0o
B1A: A> A: lin% G.(z,w)A = —A: / sG'(x,s)dsA =
0

—+00
=A: / [G(z,s) — Goo(x)]dsA > 2A: A Yz e VAecSym(V)\ {0}
0
and (31, (32 are positive constants;
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i) G(x,s) = GT (x,5) € Q x [0, +00).
Definition 3. If hypotheses (2) hold, and if and only if G(x,-) — G (x), G(x, ) — Go(x) €
€ LY(0,+o00) VY € Q, body 3 is of linear elastic type, i.e.
T(xz,t) — Go(x)E(x,t) = Goo(x)E(x,t) Vte[0,T,) where T, < +o0;
if and only if
T(x) = Go(x)E(x) = Goo(x)E(x)
then body (3 is linear elastic.

3. The quasistatic problem for a strictly viscoelastic body expressed by definition 1 is
formulated by the following Dirichlet problem:

+oo
A\ {Goo(sc)Vu(ac, t)+ / [G(x,5) — Goo(x)] V' (2, 5) ds} + b(x,t) =
0

+oo
=V- {Goo(w)Vu(:c,t)—i—/G’(a:,s)Vut(w,s) ds}—i—b(w,t)O, (z,t) € Q, 9)
0

u(x, t)‘aﬂ =0,

where

u(x,t) = u(x,t) —us(x), lim u(x,t) =ux(x), blx,t)=">bx,t)— bs(x)

t—-+o00
and

lim b(x,t) = boo(x).

t—+4o00

Relating to this problem we have proved [6] the following

Theorem 2. If and only if body S is strictly viscoelastic according to definition 1, if b(x,t) €
€ LY(R; HY2(Q)) N L2(R; HY2(Q)), b(x, ) € Soo(R) and has compact support in R, there exists
one and only one solution with compact support u(z,t) € H ' (R; HY2(Q)) N HY2(R; HY2(Q)),
u(x, ) € Soo(R), such that:

“+o0o
/{Goo(a:)Vu(:I:,t) + / [G(x,5) — Goo] V! (z, 5) ds} : VH (z,x' t)dx’ =

Qf 0

+oo
/{Go(ac)Vu(:c,t)—i— / G'(w,s)Vut(w,s)ds}VH(ac,:c',t)d:v'
91 0
—/b(w,t)H(:c,a:’,t)dw' (1

Q/
V H(z,a',t) € L®(—o00,+oo; HY?(Q) x HY*(V)): H(z, @',t)|,, = 0,
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where H (x, x', t) is strongly measurable, if ' # x, and S (R) denote the class of infinitely many
time differentiable functions u(x,t) with respect to t for which there exists a set of constants Cy,
dependent on same function u(x,t) and on numbers p and q, such that:
p5(@) 2 2 (9) 2 2
)t 0, u(z,t)| dz < Cp, ‘tp(?t Vu(z,t)| dz < Cp,.

Q Q

In [6] we verify that (10) holds if we inversely transform by Fourier the solution of the
Fourier transformed problem of (9); this solution is null outside at a compact interval of the
time origin, because of a condition of compatibility with the meaning itself of the quasistatic
problem.

This consideration and definition 2 imply that a solution of the quasistatic problem for a
viscoelastic body descrebed by definition 2 must be determined as limit of this Fourier inverse
transformed solution when w — 0.

Consequently we can state relating to the Dirichlet problem:

+o0o

V- Goo(x)Vu(z,t) + / [G(z,s) — Goo(x)] dsVu(z,t) p + b(x,t) =
04 00

=V- Goo(w)Vu(w,t)—/sG’(w,s)dsVﬂ(w,t) +b(x,t)=0, (11)
0

(x,t) € Q x[0,dps), dps < 00,
u(alc,t)‘aQ =0,
the following

Theorem 3. If body 3 is a linear viscoelastic material system according to definition 2, if
b(x,t) € L?(Io; HY2(Q)), where 1, = [0,dpy), is analytic and has compact support, only null
solution solves the problem (11).
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