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This paper is concerned with a second order nonlinear impulsive difference equation with continuous
variable. By using a nonimpulsive inequality sufficient conditions for the oscillation of impulsive difference
equation are obtained.

Poseaanymo HeniHiliHi iMnyabCHI pi3HULe8] PIBHAHHA OPY2020 NOPAOKY 3 HENePEePBHUM AP2YMEHIOM.
Bukopucmogyiouu HeiMnyabcHy Hepi8HICHb, OMPUMAHO OOCHIAMHI YMOBU OCUUAAYIL IMIYAbCHUX Di3-
HUYeBUX DIBHAHD.

1. Introduction In many applied mathematics problems, it is considered difference equations of
the form

zn = f(n,zn—j), n=12,..., jeN,

which is a discrete equation and it is a special case of the following difference equation with
continuous variable

z(t) = f(t,z(t —k)), t>0, k isaconstant.

Recently, there has been an increasing interest in the study of oscillation of difference equations
with continuous variables [1—6]. On the other hand, it is well known that impulsive equations
appear as a natural description of the observed evolution phenomena of several real world
problems [7, 8]. There has been rich literature on the oscillation of impulsive differential equati-
ons. The monographs [9, 10] and the survey papers [11, 12] include many results on the oscillati-
on of impulsive differential equations. But, to the best of our knowledge there has been only
a few works on the oscillation of impulsive difference equations with continuous variables [13,
14], and there is no paper on the second order nonlinear impulsive difference equations with
continuous variables.

In this paper, our aim is to establish sufficient conditions for the oscillation of second order
nonlinear impulsive difference equation with continuous variable. We shall construct a noni-
mpulsive inequality and using it we shall obtain sufficient conditions for the oscillation. This
technique has been used in [15] and it can be applied to higher order impulsive difference
equations with continuous variable.

LetO < t] <te <...<t, <tps1 < ...be fixed points with lim,,_, o t,, = +00.
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We consider second order nonlinear impulsive difference equations of the type

A2a(t) + Ava(t) + 2(t) + f(2(t — o) = 0, % to, (1)

z(ty) —=(t,) = g(x(t;)), neN={1,2..} )

where A;x(t) = z(t+7) — x(t), 7, o are positive constants; z(t;}) = lim,_,+ 2(t), and z(t;,) =
= lim, ;- x(t).

Throughout this paper we shall assume that the following conditions are satisfied:

(i) f € C(R,R), f(u)/u > K, K > 01is a constant, for u # 0;

(i) g € C(R,R), ug(u) > 0foru # 0.

Definition 1. A function = : [—o0,00) — Ris called a solution of (1), (2) if

(a) fort # t,,n € N, x is continuous and satisfies (1),

(b) fort = t,,, x(t}) and x(t,)) exist and satisfy (2) with x(t;)) = z(t,).

Definition 2. If a function x(t) is positive (negative) for all large values of t, then it is said that
x(t) is eventually positive (negative). A solution x(t) of (1), (2) is called oscillatory if it is neither
eventually positive nor eventually negative.

2. Main results. In this section, first we introduce some functions. Denote

F(u) = T o) u € R\{0}.

From the condition (ii) we have u + g(u) # 0and 0 < F(u) < 1 for u # 0.
Let x(t) be a solution of (1), (2). Define

) =a2(t) [ Fla(tm), t=to>0.

to<tm<t

As usual, the symbol [[,., _, a,, denotes the product of members of the sequence {a,,} over
m such that t,,, € [a,b) N {t, : n € N}.

If [a,b) N {t, : n € N} = @ ora > b, then we use the convention that [[,«;, _,am = 1.

It can be seen that the function z(t) is continuous at ¢, > ¢(. Indeed,

Aty) = alty) [ Flatn) = 2(t)

to<tm<tp

and

At = atf) I Fltn) =) ] Flettn)Fet) = 2(t),

toStm<t2' to<tm <ty

where we have used the impulse condition (2).
Define

t+27

v(t) = — / z(u)du, t > to. 3)
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Lemma 1. Assume that hypotheses (i), (ii) hold. If x(t) is an eventually positive solution of
(1), (2), then v(t) > 0, and v'(t) < 0 eventually.

Proof. Let z(t) > 0,t > to. Then it is clear that v(t) > 0 for ¢ > ¢y. From (3) we obtain

V() = (a4 27) — 2(t 4 7)] =
=2 II Fat) |z¢+2r)  T] Flat)-aten|. @
to<tm<t-+T T <tm<t+27

Now from Eq. (1), we have
z(t+27)—z(t+71) <O0.

Since 0 < II F(x(tm)) < 1, we also have
t+7<ty, <t+27
eit+2r) [ Fa(tm) < x(t+7). (5)
t+7<ty <t+27

Using (4) and (5), we obtain v'(t) < 0 fort > tg, t # t,,. Since v(t) is continuous, it follows
that v'(¢t) < 0fort > to.
Lemma 1 is proved.

Remark 1. Assume that hypotheses (i), (ii) hold. If x(¢) is an eventually negative solution
of (1), (2), then v(t) < 0, and v'(¢t) > 0 eventually.
Leto =kr+60,k € N0 € [0,7).

Lemma 2. Let x(t) be an eventually positive solution of Egs. (1), (2). Assume that the followi-
ng conditions hold:

(Hy) assumptions (i), (ii) are fulfilled;

(Hs2) f(u) is convex for u > 0, and concave for u < 0;

(H3) ug(u) < Lyu? foru € R, where L, > 0, m = 1,2,..., are constants.

Then v(t) defined by (3) eventually satisfies the inequality

o(t+27) —o(t+7)  [] (4 L) +o(t) + f(o(t — k7)) < 0. (6)

to<tm<t+3T

Proof. Let x(t) > 0,t > to. By using (H;)— (Hs) and employing the Jensen’s inequality, we
get

vt+2r)—ovt+7)  J[ @+ Lm)+o@)+ fo(t—0) <
to<tm<t+37

1 t+271 t+271 t+271 t+271
< — / x(u+27)du — / z(u+7)du+ / z(u) du + / flz(u—0))dup = 0.
-
t+1 t+7 t+7 t+1

()
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Note that from condition (i) and (H2) f is nondecreasing. On the other hand, in view of
Lemma 1, we have

v(t—o) > v(t — k7). (8)
Using (8) and the fact that f(u) is nondecreasing, we easily obtain (6) from (7).

Lemma 2 is proved.

Remark 2. Let x(t) be an eventually negative solution of Egs. (1), (2). Under the hypotheses
of Lemma 2 it is shown that v(¢) defined by (3) eventually satisfies the inequality

v(t+2r) —v(t+7) [+ Lm) +0(t) + fu(t — k7)) > 0.
to<tm <t+37

Theorem 1. In addition to (Hy) — (Hs), assume that

(Hy) limsup [ (1+Ly) =L < oo
t=00  to <ty <t+37
1f

K Lk+2(
> (k + 2)k+2’ ©)

then every solution of (1), (2) is oscillatory.

Proof. Suppose to the contrary that x(¢) is a nonoscillatory solution of (1), (2). We may
assume without any loss of generality that z(¢) is eventually positive. From (6), we have

ot +27) St k) fo(t— k) 77 olt—i7)
R | S e T SN | T
Define @
v(t
a(t) = o t > to.
Since v/(t) < 0, it is clear that a(¢t) > 1. From (ii) and (10), we have
k

j=0 to<tm <t+31

In view of (H,) inequality (11) implies that «(t) is bounded. Let 5 = liminf; ,,a(t). Taking
the inferior limit on both sides of (11), we obtain

1+ KB"? < BL.
This inequality implies that

k+2
g > % and Kp <1 (12)

BL—1—
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Using the fact that

min B = 1 (k+ 2"
g>1 BL —1 Lk+2 (k+1)k+1’

we obtain from (12) that

1 (k+2)k+2 < i
LF2 (k+ 1)k+1 = K7

which however contradicts (9). If z(¢) is an eventually negative solution of Egs. (1), (2), we are
lead to a contradiction by a similar argument.
Theorem 1 is proved.

Theorem 2. In addition to (H1) — (Hs3) assume that the following conditions are satisfied:
(Hs) >y Lm < 00,
fw)

(Hs) limsup,,_,o — > 1.
Then every solution of Egs. (1), (2) is oscillatory.

Proof. Suppose to the contrary that z(¢) is a nonoscillatory solution of (1), (2). We may
assume without any loss of generality that z(¢) is eventually positive. From (6), we have

v(t+2r) <olt+7) [ 0+ Lm). (13)

to<tm<t+3T
Using (13) we obtain

k+1

v(t+7) <ot —kr) [] 11 (14 L)

i=1 tg<tm <t—(i—3)7

Now using the above inequality from (6), we get

flt—kr) <ot+7) J[ Q+Lm)<ot—kr) J[ @+Ln)*

to<tm <t+371 to<tm <t+3T1
From the last inequality, we have
f(o(t — k7)) k2
———2 < | +Ln)" (14)
v(t — k) to<tm<t+37

Since v(t) > 0 1is a continuous function and v/(¢) < 0, lim;_,oov(t) = vg > 0. We claim that
vo = 0. If vy > 0, then from (4) we get

o(t+2r)+ot) <vt+7) ] (+Lm).
to<tm <t+3T

Taking the limit on both sides of last inequality we obtain 2vy < vy which is a contradiction. So,
limy_,o v(t) = 0.
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Now, taking the superior limit on both sides of (14), we obtain

fet=kn) _
t_

lim sup By = b
-

t—00 U(

which however contradicts (Hg). If z(¢) is an eventually negative solution of Egs. (1), (2), we
are lead to a contradiction by a similar argument.
Theorem 2 is proved.

Remark 3. 1f z(t}7) = x(t,)) foralln € N, then L = 1 and the assertions of Theorems 1 and
2 are valid for nonimpulsive equation.

Corollary 1. Assume that (H)— (Hs) and (Hs) are satisfied. If

o flu (k 4+ 1)k+1
R TR ()

then every solution of Egs. (1), (2) is oscillatory.

Example 1. Consider the linear impulsive difference equation with continuous variable

3
A3r(t)+ Buja(t) +2(0) + Ax (1= 3) =0, £ 1,

(15)
1

x(ty) —=(t,) = nn+ 1)

z(tn), th=mn, n €N,

4

4
where 7 = 1/2,0 = 3/2, A > 0is a constant, L,, = ,ne NIfA > =5 then by

n(n+1)
Corollary 1 every solution of equation (15) is oscillatory.

Example 2. Consider the nonlinear impulsive difference equation with continuous variable

c(t4+2) —2(t+1) +x@)+ait—1)(1+22t—-1) =0, t#t,,
(16)
1 z(ty)

w(ty) —z(t,) = 3 1 22(6,)

t,=n, n=12,...,

1
where 7 = 0 = 1, f(u) = u(l + u?), g(u) = Fe H—LQ Equation (16) satisfy the conditions
u
22
(H1)-(H3), (Hs). Moreover, lim iélf Jw) > 38 So, by Corollary 1, every solution of equation
u—> u

(16) is oscillatory.
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