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We consider a parametrized boundary-value problem containing an unknown parameter both in the nonli-
near ordinary differential equations and in the nonlinear boundary conditions. By using a suitable change
of variables, we reduce the original problem to a family of those with linear boundary conditions plus
some nonlinear algebraic determining equations. We construct a numerical-analytic scheme suitable for
studying the solutions of the transformed boundary-value problem.

Pozenadaemovca napamempusosana :paHutHa 3a0a4d, W0 MiCIUMb HeGIOOMULL NAPAMEMD Y HEAIHITIHUX
36UYAUHUX OUpepeHYIANbHUX PIBHAHHAX | 8 HEAIHIUHUX 2PAHUYHUX YMO8ax. Bukopucmosyiouu 8iono-
BIOHY 3AMIHY 3MIHHUX, NOYAMKOBY 3a0aty 38¢0eHO 00 CiM’l 3a0ay 3 AIHIUHUMU 2PAHUMHUMU YMOBAMUL
ma 0esaKuUX HeAIHILHUX aa2eOpaliHUX USHAUAALHUX DIBHAHb. [106Y006aH0 YUCEAbHO-AHAATMUYNY CXe-
MY, AKY MONCHA BUKOPUCIIO8YBAMU OA5 BUBHUEHHA PO36 A3KI8 NepemaeopeHol panHuyHol 3a0a4i.

1. Introduction. The parametrized boundary-value problems (PBVPs) were studied earlier
mostly in the case when the parameters are contained only in the differential equation (see, e.g.,
[1,2]). The boundary-value problems with parameters both in the nonlinear differential equati-
ons and in the linear boundary conditions were investigated in [3—8] by using the so-called
numerical-analytic method based upon successive approximations [3, 8]. According to the basic
idea of the mentioned method, the given boundary-value problem (BVP) is replaced by a
problem for a “perturbed” differential equation containing some new artificially introduced
parameter, whose numerical value should be determined later. The solution of the modified
problem is sought for in the analytic form by successive iterations with all iterations depending
upon both the artificially introduced parameter and the parameter contained in the given BVP.

As to the way how the modified problem is constructed, it is essential that the form of the
“perturbation term’; depending on the original differential equation and boundary condition,
yields a certain system of algebraic or transcendental “determining equations’; that give the
numerical values both for the artificially introduced parameters and for the parameters of the
given BVP.

By studying these determining equations, one can establish existence results for the ori-
ginal PBVP. The numerical-analytic technique described above was used in different types of
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parametrized BVPs. Namely, in [3, 8] were studied the following two-point PBVPs:

dx
dt

Az(0) + \Cx(T) = d, detC # 0, A € R,

= f(t,xz), t €[0,T], =, f € R",

r1(0) = w19,
the PBVPs with nonfixed right boundary:

dx
dt

Az(0) + Cz(\) = d, detC #£ 0, A € (0,T],

= f(t,x), t € [0,\], z, f € R",

z1(0) = x40,

dx
dt

AMAz(0) + Cz(Ag) = d, detC # 0, A € R, Ay € (0,7,

= f(t,z), t € [0,\e], =, f € R™,

z1(0) = z10, 22(0) = 290,

and the PBVP of the form

dzx

i f(t,x), t €[0,T], z, f € R",

MAz(0) + XoCx(T) = d, detC # 0, A1, A2 € R,
r1(0) = 210, 22(0) = 220.
The paper [4] deals with the two-point PBVP

dx

i f(t,x) + X g(t,z), t €[0,T], z, f € R",

A$(0) + )\QC:U(T> =d, detC # 0, A\, A2 € R,
x1(0) = x10, 22(0) = z90.
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In [5, 6] a scheme of the numerical-analytic method of successive approximations was given for
studying the solutions of the PBVP

dx

E - f(tan))\l)7 t e [07)‘2]7 xuf S an

MAz(0) + C(M)z(A2) = d(A2), detC # 0, A1 € R, Ay € (0,77,

21(0) = w10, 22(0) = 220.
In the paper [7] it was studied the three-point PBVP of the form

dzx

E = f(t,a:,/\l), t e [0,)\2], x,f S Rn,

Az(0) + Ar1z(t1) + Cx(A2) = d(N1), detC # 0, \y € R, \g € (O,T],

171(0) = I10, xg(O) = T90-

It should be noted, that the PBVPs mentioned above are subjected to linear boundary condi-
tions. In [3, 8, 9] the methodology of the numerical-analytic method was extended in order to
make it possible to study the nonlinear two-point BVP of the form

dy _
dt

9(y(0),y(T)) =0, g € R,

fty®), t€[0,T], y,f € R",

with nonlinear boundary conditions; with this aim, a general nonlinear change of variable was
introduced in the given equation.

In the paper [10], it was suggested to use a simpler substitution, which, as was shown,
greately facilitates the application of the numerical-analytic method based upon successive
approximations. In particular all the assumptions for the applicability of the method are formu-
lated in terms of the original problem, and not the transformed one. It was established that for
the nonlinear PBVPs with separated nonlinear boundary conditions of the form

dzx

o= J(ta), te 1] af € R

2(T) = a(z(0)), a€R",

the numerical-analytic method can be applied without any change of variables.
Similar results were obtained in [11] for problems with separated nonlinear boundary condi-
tions of the form

dx

E - f(t7x(t))a t e [O,T'}7 x7f c Rn’

2(0) = b(z(T)), b€ R™
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Following the method from [10, 11], in [12, 13] it was suggested how to construct a numerical-
analytic scheme suitable for studying the PBVPs with parameters both in the nonlinear di-
fferential equation and in the nonlinear two-point boundary conditions of the forms

d
d_i = f(t,y, A1, x2), £ €[0,T], y, f € R",

9(y(0),y(T), A1, X2) =0, A1 € [a1,b1], A2 € [az, b2],

y1(0) = y10, ¥2(0) = o0,
and

d
d_:l; - f(t’y7)‘l)7 te [O’T]7 y7f € Rn’

g(y(0),y(T), 1, A2) =0, A1 € [a1,b1], A2 € [ag, o],

y1(0) = w10, ¥2(0) = y20.

Here we give a possible approach how to handle, by using the numerical-analytic method,
some PBVPs with boundary conditions of a more general form than mentioned above.

2. Problem setting. We consider the nonlinear two-point parametrized BVP

% = f(t,y(t),N), t €[0,T), (2.1)

g (y (O) Y (T) ) /\) =0, (22)

y1 (0) = a1+ A ajy;(0), (2.3)
j=2

containing the scalar parameter \ both in Eq. (2.1) and in conditions (2.2), (2.3).
Here, we suppose that the function

f:00,T] x G x[a,b] = R", n>2,
and
g:GxGx[a,b — R"

are continuous, where G C R" is a closed, connected, bounded domain and A € J := [a, ] is
an unknown scalar parameter; a;, as, ..., a, are given coefficients.

Assume that, for ¢t € [0,7] and A € J fixed, the function f satisfies the Lipschitz condition
of the form

’f(tvu))‘)_f(t7v’)‘)| < K‘u_v| (24)

ISSN 1562-3076. Heainitini koausarnsa, 2003, m. 6, N> 4



486 M. RONTO, N. SHCHOBAK

for all {u,v} C G and some nonnegative constant matrix K = (Kj;);',_;. In inequality (2.4),
as well as in similar relations below, the signs |-|, <, > are understood componentwise.

The problem is to find the values of the control parameter A such that the problem (2.1),
(2.2) has a classical continuously differentiable solution satisfying the additional condition (2.3).
Thus, a solution is the pair {y, A\} and, therefore, (2.1)—(2.3) is similar, in a sense, to an eigen-
value or a control problem.

3. Construction of an equivalent problem with linear boundary conditions. Let us introduce
the substitution

y(t) = z(t) + w, (3.1)

where w = col(wy,wa, ..., wy,) € @ C R"™is an unknown parameter. The domain 2 is chosen
so that D+ C G, whereas the new variable x is supposed to have range in D, the closure of a
bounded subdomain of G. Using the change of variables (3.1), the problem (2.1)—(2.3) can be
rewritten as

dx

= = [tz () +wN), t[0,T), (3.2)

g(xz(0)+w,z(T)+w,\) =0, (3.3)

21(0) = a1 + >z (0) + w;] — wy. (3.4)
j=2

Let us rewrite the boundary conditions (3.3) in the form
Az(0) + Bz(T) + g (z (0) + w,z (T) + w,\) = Az(0) + Bz(T), (3.5)

where A, B are fixed square n-dimentional matrices such that det B # 0.
Itis natural to determine the artificially introduced parameter w from the system of algebraic
determining equations

Az(0) + Bz(T) + g (x (0) + w,z (T) + w, A) = 0. (3.6)
Obviously, if (3.6) holds then, from (3.5),
Az(0) + Bxz(T) = 0. (3.7)

Thus, the essentially nonlinear problem (2.1) —(2.3) with nonlinear boundary conditions turns
out to be equivalent to the collection of two-point BVPs

dx

= = [t +wN), t€0,T], (3.8)

Az(0) + Bz(T) = 0, (3.9)

21 (0) = a1 + Az (0) + wjy] — wi, (3.10)
j=2
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parametrized by the unknown vector w € R" and considered together with the determining
equation (3.6). The essential advantage obtained thereby is that the boundary condition (3.9)
is already linear.

By virtue of (3.9), every solution z of the BVP (3.8) —(3.10) satisfies the condition

z(T) = =B~ Ax(0). (3.11)
Therefore, taking into account (3.11), the determining equation (3.6) can be rewritten as
g (z(0) + w,—B *Az(0) + w, \) = 0. (3.12)

So, we conclude that the original nonlinear BVP (2.1)—(2.3) is equivalent to the family of
BVPs (3.8)—(3.10) with linear conditions (3.9) considered together with the nonlinear system
of algebraic determining equations (3.12).

We note that the family of BVPs (3.8) - (3.10) can be studied by using the numerical-analytic
method based upon successive approximations developed in [3, 8].

Assume that the given PBVP (2.1) —(2.3) is such that the subset

Dg == {y € R" : B(y,B(y)) C G}
is nonempty,
Dy # ©, (3.13)

where

Bly) = 5 0a(f) + (B A+ Ly,

(3.14)
1

1) = — ty,\) — i .y, \
a(f) 5 (t’w)errﬂ%xcwf(,y, ) (ny,A)er{é};l]XG“f(,y, )},

I,, is an n-dimensional unit matrix and B(y, 5(y)) denotes the ball of radius (y) with the center
at the point y.

Moreover, we suppose that the spectral radius r(K) of the matrix K in (2.4) satisfies the
inequality

10
K —. 3.15
"(K) < o2 (3.15)
Let us define the subset U C R"~! such that
U := {u = col(ug,ug,...,uy) € R !: 2z e Dg},
where
z = col(ay + )\Zaj[uj + w;] —wi, uz, uz, . .., up). (3.16)

Jj=2
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Let us connect with the BVP (3.8) - (3.10) the sequence of functions

¢
Tmp1(t,w,u, ) z+/f (8, Zm (s, w,u, \) +w, \)ds —
0

T

/f(S,ﬂb‘m(S,w,U,/\)+w,>\) ds —

0

t
T

- SBA L]

(3.17)
m =0,1,2,..., zo(t,w,u,\) = z € Dg,

depending on the artificially introduced parameters w € Q@ C R*, u € U C R"! and on the
parameter A € [a,b] contained in the problem (2.1)-(2.3), where the vector z has the form
(3.16).

Note that for the initial value of functions z,, (¢, w, u, A) at the point ¢ = 0, the following
equality holds:

T (0,0, u, \) = 2z (3.18)

forallm = 0,1,2,..., and arbitrary w € Q, u € U, X € [a,b].

It can be also verified that all functions in the sequence (3.17) satisfy the linear homogeneous
two-point boundary condition (3.9) and the additional condition (3.10) for arbitrary v € U gi-
ven by (3.16) and w € Q, X € [a,].

We propose to solve the PBVP (3.8) —(3.10), together with the determining equation (3.12),
sequentially, namely first solve (3.8) —(3.10), and then try to find the values of parameters w €
€QCR,uecUCcCR" )€ [a,b], for which the equation (3.12) can simultaneously be
fulfilled.

4. Investigation of the solutions of the transformed problem (3.8) — (3.10). First we establish
some results concerning the PBVP (3.8) - (3.10) with a specially modified function in the right-
hand side of Eq. (3.8).

Theorem 1. Let us suppose that the functions f : [0,7] x G x [a,b] —
— R" g : G x G x [a,b] — R" are continuous and the conditions (2.4), (3.13)-(3.16) are
satisfied.

Then:

1. The sequence of functions (3.17) satisfying the boundary conditions (3.9), (3.10) for arbi-
trary u € U, w € , and \ € [a,b], converges uniformly as m — oo, with respect the domain

(t,w,u,A) € [0,T] x Q2 x U X [a,b], (4.1)
to the limit function
¥ (t,w,u, \) = lim zp, (8w, u, A). (4.2)
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2. The limit function z*(-,w,u, \) that has the initial value z*(0,w,u,\) = z and given by
(3.16) is a unique solution of the integral equation

x(t) :z—i-/f(s,x(s)—i-w,)\)ds—
0

T
- % /f (s,z(s) +w,\)ds + (B_lA +1,) 2|, (4.3)
0

I. e, itis a solution of the modified (with regard to (3.8)) integro-differential equation

dx

—= = ft,x+w,A) + A(w, u, A) (4.4)

satisfying the same boundary conditions (3.9),(3.10), where

T
A(w,u, \) = —% (BT'A+1,) = +/f (s,z(s) +w,\)ds| . 4.5)
0

3. The following error estimation holds:

|z™ (t, w, u, N) — @ (8, w, u, A)| < h(Ew,u, N), (4.6)
where
20 t _
e wd) =t (1 1) @ (0 - Q) [Qbelt) +
+ K|(B'A+1,) 7],
o . 3T
the vector 0¢(t) is given by Eq. (3.14) and the matrix () = EK.

Proof. We shall prove that, under the assumed conditions, sequence (3.17) is a Cauchy
sequence in the Banach space C([0,7],R"™) equipped with the usual uniform norm. First, we
show that x, (¢, w,u,\) € D for all (t,w,u,\) € [0,T] x Q2 x U X [a,b] and m € N. Indeed,
using the estimate

/'ﬂﬂ—%fﬂwudrs
0 0

aq(t) | max f(t) — min f(t) 4.7)
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of Lemma 2.3 from [8] or its generalization in Lemma 4 from [11], relation (3.17), for m = 0,
implies that

1

¢ T
|:c1(twu)\)—z]§/ flt,z+w,A) — /fsz—i—w)\ds dt| +
0 0

+[[(BT'A+ 1) ]| <aa(®)da(f) + Bi(2) < B(z) (4.8)

where
an(t) = 2t (1 _ %) n0)] < 5 4.9)
Bi(z) = |[BrA+1,] | . (4.10)

Therefore, by virtue of (3.13), (3.14), (4.8), we conclude that x(t,w,u,\) € D whenever
(t,w,u,\) € [0,T]xQ2xU x[a, b]. By induction, one can easily establish that all functions (3.17)
are also contained in the domain D forallm = 1,2,..., t € [0,T], w € Q, u € U, X € [a,b].
Now, consider the difference of functions

¢
Tin1 (t, W, uy N) — Ty (8, w0, 1, M) / (s, Tm (S, w,u, A) +w, A)—
0

— f(s,zm—1(s,w,u, \) +w, A)] ds —

T

/ [f(s, xm(s,w,u, \) +w, X)—

0

t
T

— f(s,zm—1(s,w,u, \) + w, \)] ds, (4.11)
and introduce the notation
A (t,w, u, A) = |z (W, uy A) — Tp—1 (B, wyu, )|, mo=1,2,... . (4.12)

By virtue of identity (4.12) and the Lipschitz condition (2.4), we have

t T
(1—%>/dm(s,w,u)\d8—|—t/dmswu)\ ] (4.13)
0 0
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for every m = 0,1,2,.... According to (4.8),
di(t,w,u,A) = |21(t,w,u, ) — 2| < aa(t)oa(f) + Bi(2),

where ;(z) is given by (4.10).
Now we need the following estimate Lemma 2.4 from [8]:

3

am11(t) < <1_O

3

T> am(t), amy1(t) < (ET>mal(t),

obtained for the sequence of functions

t T
m11(t) (1 - —) /am )ds + — /am(s)ds, m=0,1,2,...,
0 t

1
where a7 (t) = goal(t).

In view of (4.14), (4.16), for m = 1 it follows from (4.13) that

do(t,w,u, ) < Kda(f |:<1 — —> /tal Yds + — /Tozl(s)ds] +
0
¢ T
cwaio (1) fe g f o <
0 t

< K [aa(t)3a(f) + a1(t)Bi(2)].

By induction, we can easily obtain

A (80,0, 3) < K™ 01 (D6(F) + am(DBi()),m = 0,1,2,.... |

491

(4.14)

(4.15)

(4.16)

(4.17)

where a;,,4+1(t), au,(t) are calculated according to (4.16), and é;(f), 41(2) are given by (3.14)

and (4.10). By virtue of the second estimate from (4.15), we have from (4.17) that

<3TK)m S(f) + K <3TK) " [31(2)] -

<&
dm+1 (t7 w, u, )‘) > (t) 10 10

=a(t) [QMdc(f) + KQ" ' fi(2)]
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for allm = 1,2,..., where the matrix

Q= [;TK. (4.19)

Therefore, in view of (4.18),
|-Tm+j (tv w,u, )‘) - xm(t? w, u, )‘)’ <
< @ (8w, u, A) — Zpgj—1 (8w, u, A)| +

+ |$m+jfl(ta w,u, )‘) - "Eerj*?(t’ w, u, >‘)| +...

J
coot T (G w, u, N) — o (E, W, u, A)| = de+i(t7w,u, A) <
i=1

<@i(t) | Y (QHda(s) +KQm+“ﬂl<z>>] E

=1

j—1 Jj—1
=m(t) Q"> Qa(f) +KQ™ Qiﬂl(z)] : (4.20)

L =0 =0

Since, due to (3.15), the maximal eigenvalue of the matrix @) of the form (4.19) does not exceed
one, we have

j—1
YR <(I-Q7!
1=0

and

Jim @™ = [l

Therefore we can conclude from (4.20) that, according to the Cauchy criteria, the sequence
T (t, w, u, \) of the form (3.17) uniformly converges in the domain (4.1) and, hence, the asserti-
on (4.2) follows.

Since all functions x,, (¢, w, u, A) of the sequence (3.17) satisfy the boundary conditions (3.9),
(3.10), the limit function x* (¢, w, u, \) also satisfies these conditions. Passing to the limit as m —
— oo in equality (3.17), we show that the limit function satisfies the integral equation (4.3). It
is also obvious from (4.3) that

z*(T,w,u,\) = B Az, (4.21)
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which means that z*(¢, w, u, A) is a solution of the integral equation (4.3) as well as a solution
of the integro-differential equation (4.4). Estimate (4.6) is an immediate consequence of (4.20).
The theorem is proved.

Now we show that, in view of Theorem 1, the PBVP (3.8) —(3.10) can be formally interpreted
as a family of initial value problems for differential equations with an “additively forced”
member in the right-hand side. Namely, consider the Cauchy problem

dflgt) = f(t,x(t) +w,\) + p, t € [0,T], (4.22)
z(0) = z = col(ag + )\Zaj [z (0) + w;] — wi,ug,us,...,u,), (4.23)
j=2

where p € R", z € Dg, w € Q, X € [a,b] are parameters.

Theorem 2. Under the conditions of Theorem 1, the solution x = x(t,w,u, \) of the initial
value problem (4.22), (4.23) satisfies the boundary conditions (3.9), (3.10) if and only if

w= A(w,u, ), (4.24)

where A : Q x U X [a,b] — R™ is the mapping defined by (4.5).

Proof. According to Picard — Lindelof existence theorem it is easy to show that the Lipschitz
condition (2.4) implies that the initial value problem (4.22), (4.23) has a unique solution for all

(u,w,u, A) € R" x Q x U X [a,b].
It follows from the proof of Theorem 1 that, for every fixed
(w,u,\) € Q@ x U x [a,b, (4.25)

the limit function (4.2) of the sequence (3.17) satisfies the integral equation (4.3) and, in addi-
tion, x*(t,w,u,\) = lim (¢, w,u, A) satisfies the boundary conditions (3.9), (3.10). This

implies immediately that the function x = x*(¢, w, u, \) of the form (4.2) is a unique solution
of the initial value problem

d“;it) = f(t,2(t) + w,\) + A(w,u, \), t € [0,T], (4.26)
x(0) = col(ag + )\Zaj [z (0) + w;] —wi,uz,us, ..., up), (4.27)
j=2

where A(w,u, \) is given by (4.5). Hence, (4.26), (4.27) coincide with (4.22), (4.23) correspon-
ding to

T
p = A(w,u,\) = —% (B'A+1,) = +/f (s,z(s) +w,\)ds| . (4.28)
0
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The fact that the function (4.2) is not a solution of (4.22), (4.23) for any other value of yu, not
equal to that in (4.28), is obvious, e.g., from (4.24).
The theorem is proved.

The following statement shows how the solution x = z*(¢,w, u, ) of the modified PBVP
(4.3), (3.9), (3.10) relates to the solution of the unperturbed BVP (3.8)—(3.10).

Theorem 3. [f the conditions of Theorem 1 are satisfied, then, the function x*(t,w,u*, \*) is
a solution of the PBVP (3.8) — (3.10) if and only if the triplet

{w,v*, X'} € Qx U x [a,b] (4.29)

satisfies the system of determining equations
T
[B_lA + 1)z + /f (s, 2" (s, w,u, A) +w,\)ds = 0, (4.30)

where z is given by (4.27) and w is considered as a parameter.

Proof. 1t suffices to apply Theorem 2 and notice that the differential equation in (4.26)
coincedes with (3.8) if and only if the triplet (4.29) satisfies the equation

A(w,u*, \*) =0, (4.31)

i.e., when the relation (4.30) holds, where w is considered as a parameter, w € (.
The theorem is proved.

It now becomes clear how one should choose the value w = w* of the artificially introduced
parameter w in (3.1) in order for the function

Yy (t) = 2" (t, w*, u*, \") +w* (4.32)

to be a solution of the original PBVP (2.1)-(2.3).

Theorem 4. If the conditions of Theorem 1 are satisfied, then, for function (4.32) to be a
solution of the given PBVP (2.1)—(2.3) it is necessary and sufficient that the triplet

{w*, u*, \*} (4.33)

satisfy the system of algebraic determining equations

g(z+w,—B 1Az +w,\) =0, (4.34)
where
z = col(on + A" oy} + wi] — wi,uj,uj, .. up), (4.35)
j=2

and the pair {u*, \*} is a solution of the system (4.30), parametrized by w.
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Proof. 1t was established in Section 3 that the PBVP (2.1)—(2.3) is equivalent to the family
of BVPs (3.8)-(3.10) considered together with the determining equation (3.12). The vector
parameter z in (4.35) can be interpreted as an initial value at ¢ = 0 of a possible solution of
the problem (3.8) - (3.10). Therefore, Eq. (3.12) can be rewritten in the form (4.34). Taking into
account the change of variables (3.1) and the equivalence of (2.1)—(2.3) to (3.8) - (3.10) (3.12),
we notice that the function y*(¢) in (4.32) coincides with the solution of the PBVP (2.1)-(2.3)
if and only if w = w* satisfies the equation (4.34).

Corollary 1. Under the conditions of Theorem 1, the function y*(t) of the form (4.32), (4.2)
will be a solution of the PBVP (2.1)— (2.3) if and only if the triplet (4.33) satisfies the system of
determining equations

T
[BT'A+1,] 2+ /f(s,m*(s,w,u,)\) +w,\)ds = 0,
0

g(z+w,—B7tAz +w,\) =0, (4.36)
z = col(ag + )\Zaj[Uj + U)j] — W1, U2, U3, .., Un),
j=2

that contains 2n scalar algebraic equations, where x*(t,w, u, \) is given by (4.2).
Proof. 1t suffices to apply Theorem 3 and Theorem 4.

Remark 1. In practice, it is natural to fix some natural m and, instead of (4.36), to consider
the “approximate determining system”

T
[B—1A+In] z+ /f(s,xm(s,w,u, A) +w,\)ds = 0,
0

g(z+w,—B7 Az +w,\) =0, (4.37)
z = col(ag + )\Zaj[uj + wj] — wi, ug, uz, . .., Up).
j=2

In the case when system (4.37) has an isolated root, say
W= Wy U = Um,y A = A, (4.38)
in some open subdomain of

QxU x [a,b],
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one can prove that under certain additional conditions, the exact determining system (4.36) is
also solvable,

w=w",u=1u" A=\

Hence, the given nonlinear PBVP (2.1) —(2.3) has a solution of form (4.32), such that

n
2*(t = 0) = col(ay + )\*Zaj[@ +wi] — wi,uy,u3, ..., uy) € Dg,
=2

w* € QN € [a,b], vt €U, y" €q.
Furthermore, the function
Ym(t) = Ty (t, Wi, Uy An) + Wi, Tt € [0, T, (4.39)

can be regarded as the “m-th approximation” to the exact solution, y*(t) = x* (¢, w*, u*, \*) +
+w* (see estimate (4.6)). To prove solvability of system (4.36), one can use some topological
degree techniques (cf. Theorem 3.1 in [8, p. 43]) or the methods oriented to the solution of
nonlinear equations in Banach spaces developed in [14] (see, e.g., Theorem 19.2 in [14, p. 281]).
Here, we do not consider this problem in more detail.

Remark 2. If we choose in (3.5), (3.7) the matrix A to be the zero matrix, then the PBVP
(3.8)—(3.10) is reduced to the parametrized initial value problem

Ccll—f = f(t,z (t) +w,\), t € [0,T], (4.40)
+(T) =0, (4.41)

with the additional condition (3.10). In this case, instead of successive approximations (3.17) we
obtain

t
m’m-f—l(t?'w??h)‘) ::Z+/f(saxm(s7w7u7)‘)+w7)‘) ds —
0

T
t t
~ 7 /f (s, T (s, w,u, A) +w, ) ds — TZ’ (4.42)
0

m=0,1,2,..., zo(t,w,u,\) = z € Dg,
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n
where z = col(oq + A ) ojuj +wj] —wi, ug, us, . .., uy,), and the system of determining equati-
=2
ons (4.36) is transformed into the system

T
z+/f(s,m*(s,w,u,)\)—i—w,)\)ds =0,
0

g(z + w,w,\) = 0, (4.43)
z = col(ag + )\Zaj[uj + wj] —wi, ug, uz, ..., Up).
=2

In this case Theorem 3 guarantees existence of a solution of the parametrized Cauchy problem
(4.40), (4.41) with the additional condition (3.10) on the interval [0, 7.

Remark 3. If one can obtain the solution z = 2°(t, w, \) of the parametrized initial value
problem (4.40), (4.41) on the interval [0, T, e.g., by Picard’s iterations,

ZO(t,w, ) = lim T, (t,w, \) =

t
= lim [ f(s,Zm-1(t,w,\))ds, (4.44)
m—0o0
T
m=1,2,..., Zo(t,w,\) = z, then to find values of the parameters
w=w" \=\, (4.45)
for which the function
YO (t) = 30t w, \) 4+ w° (4.46)

will be a solution of the original PBVP (2.1)—(2.3), we should solve, according to (3.12), (3.4),
the determining system

g(Z°(0,w, \) + w,w, \) = 0,

(4.47)
n
200, w,\) = a1 + )\Zaj [36(;»(0, w, \) + w;] —wy
j=2
that contains (n+1) equations with respect to (n+1) the unknown values w = col(w1, wa, ..., wy)

and A.
We apply the above techniques to the following PBVP.

ISSN 1562-3076. Heainitini koausarnsa, 2003, m. 6, N> 4



498 M. RONTO, N. SHCHOBAK

Example 1. Consider the second order parametrized two-point BVP

2y tdy N [(dy\® 1 9 2
ﬁ—ga‘F?(E) +§y(t) = 3_2+E’ t €10,1], (4.48)
dy(1)]”
= |—— 4.4
vo = |22 (449)
dy(0) _ dy(1) N
——= =< —9y(l) - = 4.
o i 1O Ry (4.50)
satisfying the additional condition
1 Xdy(0)
R A 4.51
v0) = 16~ 1 & (4.51)

d
By setting y; := y and y2 = d—?, the PBVP (4.48)—(4.51) can be rewritten in the form of
system (2.1)-(2.3),

dyr

ae

dy 9 t2 ¢ A2,
L T P AR AP S 452
T — 33 T 1g T eY2 T g2 gy (4.52)

)\2
2(0) = 2(1) 3 (1) - . (453)
1 A
— — — 24(0). 4.54
01(0) = < — 712(0) (454)
Suppose that the PBVP (4.52) —(4.54) is considered in the domain
(t,y,A) €10,1] x G x [-1,1], (4.55)

3
G = {(@myz) Sy <1, Jye| < Z}'

One can verify that for the PBVP (4.52) —(4.54), conditions (3.3), (3.13) and (3.15) are fulfiled
in the domain (4.55) with the matrices

N = O

ol 3+~
| S
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Indeed, from the Perron theorem it is known that the greatest eigenvalue Ay, (K) of the matrix
K, in virtue of the nonnegativity of its elements, is real, nonnegative, and computations show

that
21
/\max K S 10

Moreover the vectors d(f) and 5(y) in (3.14) satisfy

solf) < | | B = goaln + (B A+ B)y < | S | +2pl,

WO | o
oo Ut ool W

Substitution (3.1) takes the given system of differential equations (4.52) and the additional
conditions (4.54) to the following form:

dac;t(t) = x2(t) + wa,
(4.56)
dea(t) 9 7t ;
a3 i Tl e
2
_ % <:c2(t) Fw)? — %(xl(t) + wl) ,
and
21(0) = % _ 2(:@(0) +ws) — . (4.57)

Thus we reduce the essentially nonlinear PBVP (4.52) — (4.54) to a collection of two-point BVPs
of view (3.8)-(3.10), namely, to the system (4.56) which is considered under the linear two-
point boundary condition

z(0) +z(1) = 0, (4.58)

together with an additional condition (4.57) and an algebraic determining system of equations
of form (3.12),

21(0) + w1 = (w2(1) + wy)?,

)\2

xQ(O) + wo = xg(l) “+ wy — (371(1) + wl) — E

Taking into account that, according to (3.11),

z(1) = col(x1(1), z2(1)) = =B 1Az(0) = col(—z1(0), —z2(0)),
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the determining system obtained above can be rewritten in the form

331(0) +w, = (—1‘2(0) + w2)2,

(4.59)
)\2
2 = - —.
To (0) T1 (0) w1 16
Due to the equality (3.16), in our case
1 A
z = col(z1, 2z2) = col <16 1 (ug + we) — wl,uz> , (4.60)

and the components of the iteration sequence (3.17) for the PBVP (4.56), under the linear
boundary conditions (4.57), have the form

1 A

Tt w,u, \) = [—

16_Z(UQ+w2)_w1:| +

t

+ / [Zm,2(s, w, u, \) + wa] ds —
0

¢
1
_ t/ [Zm,2(s, w, u, \) + wa] ds — 2t 6~ % (ug + wa) —wi|, (4.61)
0

t
l‘m+12(t w,u, )\ _u2+/ |: ($m72(8,w,u, >‘) +w2) -
0
A2 5 1
- (Xm,2(s, w,u, ) + wa)” — 5 (@1 (s, w,u, ) +wr)| ds —

1
t/ |: + P + (xm,Q(sawvua /\) + w2) -
0

2 1
- % (Zm2(s, w, u, \) + wa)? — 3 (@m (s, w,u, X) + wl)] ds — 2tug,
(4.62)
wherem = 0,1,2,..., and
1 A
zo(t,w,u,\) = z = col T (ug + wa) —wy,ug | . (4.63)
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Using equalities (3.18) and (4.60), the determining equations (4.59), which are independent on
the number of the iterations, can be rewritten in the form

1
16 Z(U2+w2) = (w2_u2)2a
(4.64)
1 A2
2ug = E* Z(u2+w2) — 2w — T6

The system of approximate determining equations depending on the number of iterations,
which is given by the first equation in the system (4.37) together with (4.60), is written in the
component form as

1
1A
2[———(u2+w2 ]+/1‘m2SWU)\)+w2]d5:07
16 4
0

1
9 52 s
2+ [ [— S a0, A) + ) —
0

A2 1
ey (Tm,2(s, w,u, A) + w2)2 — 5 (Tm,1 (s, w,u, \) +wy)| ds = 0. (4.65)

Thus, for every m > 1, we have four equations (4.64), (4.65) in four unknowns wy , we, ug, and
. Note that, in our case, we can decrease the number of the unknown values as follows.
Obviously, from the first equation of (4.64), we have

1—16 (wy — ug)?
4(ug + wa)

A= (4.66)

Considering the auxiliarly equations (4.64) in the given domain, we find that

1 A
1_6_Z(u2+w2> = (w2—u2)2;
1 A A2
- _2 — 9 92 &
16 4(UQ+1U2) U + w1+16,
from which
(w2 —u2)2 A2
w = ——— 2 g — —

2

ISSN 1562-3076. Heainitini koausarnnsa, 2003, m. 6, N> 4



502 M. RONTO, N. SHCHOBAK

or, by using (4.66), we obtain

_ M 1 [1 — 16 (TUQ - U2)2] i ] (467)

2 2_3_2 4(UQ+WQ)

So, by solving the determining system (4.59), which is independent on the number of iterations,
we have already determined A\ and w; in (4.66) and (4.67) as functions of two other unknowns
w2 and usg.

For finding the rest of unknown values of wy and uy in each step of iterations (4.61) and
(4.62), one should use the approximate determining equations (4.65). From (4.61) and (4.62),
as a result of the first iteration (m = 1), we get

11 1 1 1 1
z11(tw,u,\) = 6~ Z}\UQ — Z)\wg —wy — §t + §>\tuQ + 5/\&02 + 2tw1,
(4.68)
1 1 1 1 33 1
t \) = — 3+ =2 Py — —t — gt — —wot.
12t w,u, A) = up + ot Tettup + gettwy — et — Jeust — Jew

The system (4.65), as follows from the first iteration (4.68), now has the form

1 —32u2 + 64uswy — 32w3 + 1 + 768u3 + 256w3 + 512uj + 512w; + 1792u3ws N

% (UQ + w2)2
1 1280ugw3 — 1024udws + 1024udw3 — 1024uswi 0
256 (ug + wo)? -
13 33 1 1 (=14 16u3 — 32ugws + 16w3)*u3
S S D 5 202 5)7up
48 16 16 32 (U2 + ’LUQ)

1 (=1 + 16u3 — 32uswy + 16w3)%uswy 1 (—1+ 16u3 — 32ugws + 16w3)?w3

16 (ug + wo)? 32 (ug + wo)?

1 (=14 16uj — 32upwy + 16wi)ug — (=1 + 16u3 — 32ugwy + 16w3)wy 0
32 U + w9 -

whose solution, in the given domain, is
wi 2 =~ 0,1245396563, ur2 ~ —0,1339659756.

Note that there are other solutions in other domains. From (4.66) and (4.67) one can easily
obtain the values

A & 1,835355492,  wi & 0,06211202021.
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Therefore, the first approximation to the first and second components of the solution, according
to (4.39), have the form

y11(t) =a11(t win, wi e, u12, M) +wip =
=0,06682516175 — 0,009426283100¢%,
y1,2(t) =z12(t, wi1, wip, U2, A1) +wip =
= — 0,009426319300 + 0, 02083333333t> —

— 0,5891449560 - 10~%* + 0, 2476877629¢.
Proceeding analogously for the fourth approximation (m = 2) in (4.61) and (4.62) we find
x4 (t, w,u, ) =0,06250000000 — 0,2500000000Auz — 0, 2500000000 \we — wy —

0,1194062104 - 10~ 11¢16 4 0, 1800897703 - 10~ 1215 —

0,2408329197 - 10~ 1041 4+ 0, 7189018645 - 1012413 +
+ 0,5101736163 - 107%¢'2 + 0, 1618135334 - 10~ 9¢11 —
— 0,2527520491¢ + 0, 12835750862 + 0,9709047280 - 10~ 7¢10 —

— 0,00001805766167t> + 0, 1428247920 - 10~°¢> —

0,0002260468395t5 — 0,0003540640278t* +
+ 0,2944072199 - 10-8¢° — 0, 6946488839 - 10 °¢® —
— 0,1877914607 - 10~°t" + 0, 5000000000 Aty +

+ 0, 5000000000t A\ws + 2w1 t,
and

Ta2(t,w,u, \) = 0,4976866454 - 1073 \%18 — 0,1404778946 - 1012417 —
— 2tus + ug — 0,007465543200t — 0, 06250000000wst +
+ 0,01379906533t> + 0, 3312081224 - 107241 — 0, 0055665586 7¢% +

+ 0,1103300827 - 10~ "¢ — 0, 2809717397 - 10711415 +
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21071341 10, 5886618649 - 10791 +

107 13¢16 — 0, 2173620444 - 10754 —

— (0,2237083782t" + 0,9720803613t*)10™* + 0, 2533009667 - 10~6¢5 —

0,6307951402

X

0,4954982044

0,9551537601

+ 0, 3890544470

+ 0, 1720306960

— 0,1731456709

— 0,4931604453

+ 0, 1877914608

0, 1800897703

0,5101736162

0, 7189018646

-1075¢° — 0,0006468017252t> — 0, 2222484346 x

1072102429 4+ 0, 1854113403 - 10~ 19¢12 — 0, 1134099269 - 10~ 1522423 —

S107MN22 £ 0,1567434632 - 1071722 —
210717222 — 0, 8702276884 - 107N\ +
21072202428 4 0,4121325604 - 107 19N227 +
-1072302139 — 0, 5887109399 - 10~ 23 \%¢3t —
21071522420 4 0, 1287651362 - 107120219 —
-1072902¢26 4 0, 1044769886 - 10A*¢10 +
-107922t wy — 0, 2944072199 - 103N wy —
210722205 4 0, 2408329197 - 10710414\ 209 —
-10782t 2w + 0, 1194062104 - 10~ 1A% ¢100wy —

210712021205 — 0,9709047280 - 107" A2t 0w,y +

+ 0,00007289581339A%t% — 0, 01098605843\ — 0,00004145889033 x

X

X

+ 0, 8319872882

0,8357541416

0,6907514911

A2t + 0, 0625000000062 ws + 0,01629035143t2)\2 + 0, 4935812452 x

104N 4 0, 1371991985 - 1072 A%t — 0, 3557335850101 \2¢1° +

S1071N2YT — 0, 5201889647 - 107 10N 14 —
210792212 4+ 0, 8180703847 - 107 12\%¢16 —

210782413 — 0, 4676981841 - 1075128 —
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— 0,00002900681601A%t5 — 0,1133979816 - 10\t —

— 0,1618135334 - 107222 wy + 0, 6946488838 - 10> A2t5w, +
+ 0,0002260468395\2t%wy — 0, 1428247920 - 105 \2tPwy +

+ 0,00001805766166A\%t3ws + 0,0003540640278 X%t wy —

— 0,1283575086A%t%wy — 0, 005356874774\t + 0, 1277520491 \*tws.
The determining system (4.65) for the fourth approximation is

—1241618464u3 + 2516763073uzwp — 1241618464w5

0,1-107°
(UQ + w2)2

+ 0,1-10
(U2 + UJQ)Q
o1 10_90,2 10 w3 4+ 0,5 - 10 udws + 0,4 - 10 ugw? N
’ (UQ + w2)2
_ 4'1113 4‘11122_ 4‘111 3
4 0.1-10° 0, 0 uswa0, 0 usws — 0, 0t ugws —0

(U2 + 'UJ2)2

0.2.10-13 —0, 1444008049 - 10443 — 0, 3405148352 - 10 4ugwy
’ (u2 + w2)?

—0, 1287758049 - 10Mw3 + 0,24 - 10" wqu3

—0,2-10713
(UQ + w2)2

- 0,2
(UQ + ’LU2)2
_ 0210718 0,4023137469 - 103 uws + 0, 6705229115 - 10"%w)
(UZ + U}2)2
_0,2.10-13%:6705229115 - 10'2wyud — 0,4040095731 - 10!
(UQ + w2)2
0.9, 10-132619230123w; — 0,125 - 10"uf — 0,3208815364 - 10w

(ug + wo)?
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130,2157354929 - 10"3u5 — 0,4784264507 - 10Mwy

—0,2-10"
(ug + wa)?

13—0, 2532088154 - 1050wy — 0,1310823693 - 105 uywd
(UQ + w2)2

~0,2-10"

0,4137058029 - 10" ujw; — 0,1370558704 - 10"°ujws

-0,2-1071
(ug 4 wa)?

130, 1413705803 - 10 uzwd — 0,16 - 10"5wiud

—0,2-10"
(ug —|—w2)2

1130, 2682091646 - 10 uw3 — 0,16 - 10 wfu,

- 0,2
(ug 4+ wa)?

= 0.

Solving numerically the system (4.65), taking into account (4.66), (4.67), we obtain the
following values of the parameters:

wyo ~ 0,1262581431, ugo = —0,1245642413,

A = —0,9725912388, wy1 ~ 0,1264593375.

The fourth approximation of the first and second components of the solution of PBVP (4.52) -
(4.54) then have the form

Ya,1(t) = xa1(t, w1, wa2,Us2, A1) +wa1 =
~ 0,0629118685 — 0, 1194062104 - 10~ 1¢16 4 0, 1800897703 - 10~ 12¢15 —
— 0,2408329197 - 107 1% 40, 7189018645 - 10712413 +
+ 0,5101736163 - 10~8¢'2 + 0, 1618135334 - 10~ ¢! —
— 0,657111111 - 1073¢ + 0, 1283575086t% 4 0, 970904728 - 10~ "¢10 —
— 0,1805766167 - 10~*3 + 0, 142824792 - 10~5¢° — 0, 2260468395 - 10~ 3¢° —
— 0, 3540640278 - 1073¢* + 0, 2944072199 - 10~8¢° —

— 0, 6946488839 - 107°¢% — 0, 1877914607 - 10~°¢7,
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Ya2(t) = xa2(t, wa 1, Wa2,Us2, A1) + W2 =

~ 0, 7729570392 - 10~ 1417 — 0, 4664970935 - 10720426 +
+ 0,1627296358 - 10723430 — 0, 5568815281 - 10~ 331 +
+ 0,4707785788 - 10713418 — 0,210232288 - 102142 —
— 0,1072782738 - 107 1%¢23 — (0, 4687084587 - 10~ 1442 +
+ 0, 1482689269 - 10~ 17t — 0,9035121474 - 10~ 17422 —
— 0,8231777126 - 1071924 + 0, 3680197195 - 10~22¢28 +
+ 0,3898500851 - 107 19¢%7 — 0,1637843282 - 10~ 1529 +
+ 0,1218032840 - 10~ 2t + 0, 2439622186¢ + 0, 16939018 - 1072 +
+ 0,34091389 - 10723 — 0, 138165455 - 10~8¢10 +
+ 0,2404195214 - 1072% — 0,9625329172 - 10~ ¢! —

0,6196229775 - 10~ 1¢15 — 0, 4709801276 - 101014 —

0,5945475256 - 10~8¢!3 + 0,9375536582 - 10712416 4
+ 0,1698583801 - 175¢% 4+ 0,245429592 - 10~*¢" —

0,1880355733 - 1075¢% — 0, 9413888196 - 10~ *t* +

+ 0,6666667229 - 1075¢° — 0,5780176957 - 103t —

— 0, 1381336598 - 10~5¢'2.

Asis seen in Figures 1, 2 and 3, 4, the graphs of the exact solution

21
= —+—, A=\"=1
{y() 8 16’ }

and especially the fourth approximation almost coincide, whereas the deviation of their deri-
vatives does not exceed 0, 001.
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Fig. 1. The first components of the exact solution (solid line) and
its first approximation (dotted line).
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.-\."‘}. r r . r r . r r . . r . . r . . r r )
O3 0,2 0,4 0,5 0,3 u

Fig. 2. The second components of the exact solution (solid line) and
its first approximation (dotted line).
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Fig. 3. The first components of the exact solution (solid line) and
its fourth approximation (dotted line).

0,22

0,15

0,14

7" oz T g op 05k

H )

Fig. 4. The second components of the exact solution (solid line) and
its fourth approximation (dotted line).

1. Luchka A. Yu. Application of the iteration processes to boundary-value problems for differential equations
with parameters // Dokl. Akad. Nauk. Ukr. SSSR. Ser. A. — 1989. — Ne 10. — P. 22-27 (in Russian).

2. Feckan M. Parametrized singular boundary-value problems //J. Math. Anal. and Appl. — 1994. — 188. —
P 417-425.

ISSN 1562-3076. Heainitini koausarnnsa, 2003, m. 6, N> 4



510

10.

11.

12.

13.

14.

M. RONTO, N. SHCHOBAK

Samoilenko A. M., Ronto N. I. Numerical-analytic methods in the theory of boundary-value problems for
ordinary differential equations. — Kiev: Naukova Dumka, 1992 (in Russian).

Ronto N. I, Korol I. I. Investigating and solutions of parametrized boundary-value problems by numerical-
analytic methods // Ukr. Math. Zh. — 1994. — 46, Ne 8. — P. 1031 -1042.

Ronto M. On numerical-analytic method for BVPs with parameters // Publ. Univ. Miskolc. Ser. D. Natural
Sci. Mathematics. — 1996. — 36, Ne 2. — P. 125-132.

Ronto M. On some existence results for parametrized boundary-value problems // Ibid. — 1997 — 37. —
P 95-103.

Ronto M., Tégen M. Numerical-analytic methods for investigating three point boundary-value problems with
parameters // Ibid. — 1999. — 40. — P. 67-77.

Ronto M., Samoilenko A. M. Numerical-analytic methods in the theory of boundary-value problems. —
Singapore: World Sci., 2000.

Samoilenko A. M., Le Lyuong Tai. On a method of investigating boundary-value problems with nonlinear
boundary conditions // Ukr. Math. Zh. — 1990. — 42, Ne 7 — P. 951-957, 1031 - 1042.

Ronto A., Ronto M. On the investigation of some boundary-value problems with nonlinear conditions //
Math. Notes (Miskolc). — 2000. — 1, Ne 1. — P. 43-45.

Ronto A., Ronto M. A note on the numerical-analytic method for nonlinear two-point boundary-value
problems // Nonlinear Oscillations. — 2001. — 4, Ne 1. — P. 112-128.

Ronté M. On nonlinear boundary-value problems containing parameters / Arch. Math. — 2000. — 36. —
P. 585-593.

Ronto M. On the investigation of parametrized nonlinear boundary-value problems // Nonlinear Analysis.
— 2001. — 47. — P 4409 -4420.

Krasnosel’skii M. A., Vainikko G. M., Zabreiko P. P, Rutitskii Ya. B., and Stecenko V. Ya. Approximate soluti-
on of operator equations [in Russian]. — Moscow: Nauka, 1969. English transl.: Noordhoff, Groningen,
1972.

Received 21.072003

ISSN 1562-3076. Heainitini koausarnns, 2003, m. 6, N 4



