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ON STABILITY OF A NONLINEAR PENDULUM
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By means of Liapounov’s method, we establish a sufficient condition for stability of a nonlinear pendulum.

Методом Ляпунова знайдено достатню умову стiйкостi руху нелiнiйного маятника.

1. Introduction. Various interesting dynamical processes described by ordinary differential
equations with many-dimensional rapid and slow variables have been studied by several authors
[1 – 4]. Using the methods of works [5 – 8], Matviitchuk [9, 10] established and proved sufficient
criteria of stability for the class of the mentioned dynamical processes.

The purpose of this paper is to establish by the means of Liapounov’s method [11] a suffici-
ent criterion for stability of a nonlinear pendulum. In Section 2, we obtain a differential system
for oscillations of a nonlinear pendulum. The obtained system is a dynamic system with two
rapid variables and one slow variable. In Section 3, we find the interval of stability of nonlinear
pendulum described in Section 2.

2. Mathematical considerations. Throughout this paper we use the following notations: g is
the acceleration of gravity; α the angular deviation from vertical; x(τ) the slowly variation of
the length of the thread; τ = µt, where µ is a small positive quantity [2]. We assume that the
length of the thread changes not by means of external forces, but by means of the self energy of
the system, that is, the rate of change of the length of the thread depends only on α, α̇ and x.We
also assume that the rate of the plastic deformation of the thread is very small and proportional
to the tension of the thread, that is, ẋ = λµP, where P is the tension of the thread and λµ a
small coefficient of deformation. If we denote by x0 the initial length of the thread then we can
write x(τ) = x0 + ξ(τ), with 0 ≤ ξ ≤ K − x0, where K is a positive constant. The oscillations
of such a pendulum are governed by the dynamic system [1]

dα

dt
=

p

m(x0 + ξ)2
,

dp

dt
= −mg(x0 + ξ)α,

dξ

dt
= λµ

[
mg cosα+

p2

m(x0 + ξ)3

]
,

(1)
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defined in the region

D = {α, ξ, p, µ, t : − π < α < π, 0 ≤ ξ ≤ K − x0, − p0 ≤ p ≤ p0, p0 = const > 0,

0 < µ < µ0, µ0 = cosnt > 0, 0 ≤ t ≤ µ−1
}
.

A pendulum whose oscillations are governed by system (1) is called a nonlinear pendulum.
By setting ε = λµ, system (1) under the transformation t = t/ε is reduced to the following

system with a small positive parameter along the two first derivatives:

ε
dα

dt
=

p

m(x0 + ξ)2
,

ε
dp

dt
= −mg(x0 + ξ)α,

dξ

dt
= mg cosα+

p2

m(x0 + ξ)3
.

(2)

At every point (α, p, ξ) of the phase space (or the region where system (2) is defined) system
(2) defines the vector of the phase velocity

v(α, p, ξ) =
(

1
ε

p

m(x0 + ξ)2
,
−mg(x0 + ξ)α

ε
,mg cosα+

p2

m(x0 + ξ)3

)
. (3)

As it is seen, the third component of the phase velocity (3) possesses a finite value, and, generally
speaking, the two first components are infinitely large. Therefore for the phase portrait of
system (2) we notice the presence of rapid movements and slow movements. Nevertheless the
rapid movements occur far from the region [12]

Γ = {α, p, ξ : α = 0, p = 0, 0 ≤ ξ ≤ K − x0}

almost in parallel to the plane αp, and the slow movements occur near the region Γ.
System

ε
dα

dt
=

p

m(x0 + ξ)2
,

ε
dp

dt
= −mg(x0 + ξ)α

in which ξ is considered as a parameter is called the system of rapid movements, corresponding
to system (2), and the variables α and p are called rapid variables [12] of system (2). The variable
ξ is called the slow variable [12] of system (2). Therefore, (1) is a dynamic system with many-
dimensional rapid and slow variables (two rapid variables, α and p, and one slow variable, ξ).

Because
f1(α, p, ξ) =

p

m(x0 + ξ)2
, f2(α, p, ξ) = −mg(x0 + ξ)α

and

f3(α, p, ξ) = mg cosα+
p2

m(x0 + ξ)3
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are continuous functions in Ω̃ = {−π < α < π, 0 ≤ ξ ≤ K−x0,−p0 ≤ p ≤ p0, p0 = const >
> 0}, we have the following conclusion [12 – 14]: if ϕ(t, ε) = (α(t, ε), p(t, ε), ξ(t, ξ)) is a solution
of system (1) (with ε = λµ) verifying the initial condition ϕ(0, ε) = ϕ0 and ϕ0(t) a solution of
the singular system

dα

dt
=

p

m(x0 + ξ)2
,

dp

dt
= −mg(x0 + ξ)α,

dξ

dt
= 0

(4)

(this system is obtained from (1) by setting µ = 0) corresponding to system (1), defined in the
region 0 ≤ t ≤ T and verifying the same initial condition ϕ0(0) = ϕ0, then

ϕ(t, ε) = ϕ0(t) +R0(t, ε),

where R0(t, ε) tends uniformly to zero with respect to t ∈ [0, T ] as ε → 0.

If we consider α and α̇ to be very small, then cosα ≈ 1−α
2

2
. Therefore, system (1) relatively

coincides with the nonlinear system

dα

dt
=

p

m(x0 + ξ)2
,

dp

dt
= −mg(x0 + ξ)α,

dξ

dt
= λµ

[
mg − 1

2
mgα2 +

p2

m(x0 + ξ)3

]
.

(5)

Systems (4) and (5) play an important role in the investigation of the stability of nonlinear
pendulum whose oscillations are governed by system (1).

3. Stability of nonlinear pendulum. The solutions of singular system (4) read

α(t) = a cos(ωt+ β), p(t) = −ma(x0 + ξ)2ω sin(ωt+ β), ξ(t) = const, (6)

where a is the amplitude of oscillations of the pendulum; ω =
√
g/(x0 + ξ), β = const. With

the help of the singular solution (6), we write system (1) in the form [15]

dξ

dt
= µ̃Z(t, ξ, ϕ(t, ξ, a, β)) +R1(t, ξ, ϕ(t, ξ, a, β)),

dα

dt
= µ̃Z1(t, ξ, ϕ(t, ξ, a, β)) +R2(t, ξ, ϕ(t, ξ, a, β)),

dp

dt
= µ̃Z2(t, ξ, ϕ(t, ξ, a, β)) +R3(t, ξ, ϕ(t, ξ, a, β)),

(7)
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where

ϕ(t, ξ, a, β) = (a cos(ωt+ β),−ma(x0 + ξ)2ω sin(ωt+ β)),

Z(t, ξ, ϕ(t, ξ, a, β)) = λm{g cos[a cos(ωt+ β)] + (x0 + ξ)a2ω2 sin2(ωt+ β)},

Z1(t, ξ, ϕ(t, ξ, a, β)) =
−3a

2
√
x0 + ξ

sin2(ωt+ β)Z(t, ξ, ϕ(t, ξ, a, β)),

Z2(t, ξ, ϕ(t, ξ, a, β)) =
ωt− 3

2 sin(ωt+ β)
2(x0 + ξ)

Z(t, ξ, ϕ(t, ξ, a, β)),

R1(t, ξ, ϕ(t, ξ, a, β)) = λµ

(
mg cosα+

p2

m(x0 + ξ)3

)
− µ̃Z(t, ξ, ϕ(t, ξ, a, β)),

R2(t, ξ, ϕ(t, ξ, a, β)) =
p

m(x0 + ξ)2
+

3aµ
2(x0 + ξ)2

sin2(ωt+ β)Z(t, ξ, ϕ(t, ξ, a, β)),

R3(t, ξ, ϕ(t, ξ, a, β)) = −

{
mg(x0 + ξ)α+

µ̃

2(x0 + ξ)

(
ωt− 3 sin(ωt+ β)

2

)
×

×Z(t, ξ, ϕ(t, ξ, a, β))

}
.

Let us group, together with system

dξ

dt
= µ̃Z(t, ξ, ϕ(t, ξ, a, β)),

dα

dt
= µ̃Z1(t, ξ, ϕ(t, ξ, a, β)),

dp

dt
= µ̃Z2(t, ξ, ϕ(t, ξ, a, β)),

(8)

Liapounov’s function

V (t, ξ, α, p, µ̃) = e− sin(e−t)
[
2−1ξ2 + µ̃(sin2 α+ sin2 p)

]
in the domain D for which the derivative along the system (6), under the conditions

|µ− µ̃| < µ1, µ1 ≤ λmK
γ − µ̃K0

g +Kp3
0

, K0 = mK[g(π + 3) +Kp2
0], γ = const > 0,
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has the estimate

dV

dt
=
∂V

∂t
+
∂V

∂ξ

dξ

dt
+
∂V

∂α

dα

dt
+
∂V

∂p

dp

dt
≤

≤ e−t cos(e−t)V (t, ξ, α, p, µ̃) + e− sin(e−t)(µK1 + γ),

K1 = λmg(2 + a2)
[
K + (2x0)−1 (2

√
g + 5µ̃)

]
+

p0

mx0
.

That is,

dV

dt
≤ e−t cos(e−t)V (t, ξ, α, p, µ̃) + e− sin(e−t)(µK1 + γ). (9)

Let s(t, µ̃) be a function defined by

s(t, µ̃) =

t∫
t0

esin e−t0−sin e−s(µ̃K1 + γ)ds.

Let us consider the following Cauchy problem for the congruence equation [9, 10, 16]:

dy

dt
= e−t cos(e−t)[y + s(t, µ̃)],

(10)
y(t0) = y0 ≥ V0 = V (t0, ξ(t0), α(t0), p(t0), µ̃).

Cauchy problem (10) possesses a bounded and continuous solution

ỹ(t) = esin e−t0−sin e−t [y0 + (µ̃K1 + γ)(t− t0)]− s(t, µ̃).

Using Theorem 9.5 of work [8] on the differential inequalities and by virtue of the inequality
(9), the following estimate holds for the Liapounov’s function (8) along the solution of system
(1) for the values of t ∈

[
0, µ−1

]
∩
[
0, µ̃−1

]
:

V (t, ξ(t), α(t), p(t), µ̃) ≤ ỹ(t) + s(t, µ̃).

That is,

V (t, ξ(t), α(t), p(t), µ̃) ≤ esin e−t0−sin e−t [y0 + (µ̃K1 + γ)(t− t0)] .

By virtue of the fact that s(t, µ̃) is a bounded quantity on
[
0, µ−1

]
∩
[
0, µ̃−1

]
and

y(t) →
t→+∞

y0e
sin e−t0 ,

ISSN 1562-3076. Нелiнiйнi коливання, 2003, т . 6, N◦ 2



196 E. KENGNE

we finally have for t ∈
[
0, µ−1

]
∩
[
0, µ̃−1

]
the estimate

0 ≤ V (t, ξ(t), α(t), p(t), µ̃) ≤ esin e−t0
[
y0 + (µ̃K1 + γ)

(
1
µ̆
− t0

)]
,

where µ̆ = max(µ, µ̃). Consequently, the processes (1), subordinate to condition (5), is stable
[10] on the segment I =

[
0, µ−1

]
∩
[
0, µ̃−1

]
. In other words, the nonlinear pendulum described

in Section 2 is stable on the region I =
[
0, µ−1

]
∩
[
0, µ̃−1

]
.
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