ТРЕТЬЯКОВА И.Н., БАРСУКОВА А.В., ИЖБОЛДИНА М.В.

Институт леса им. В.Н. Сукачева СО РАН Россия,660036, Красноярск, Академгородок, e-mail: culture@ksc.krasn.ru

ПРОБЛЕМЫ И ПЕРСПЕКТИВЫ СОМАТИЧЕСКОГО ЭМБРИОГЕНЕЗА ХВОЙНЫХ: ИНИЦИАЦИЯ, ПРОЛИФЕРАЦИЯ, ВЫЗРЕВАНИЕ

К настоящему времени накоплен определенный фактический материал по изучению морфологических, физиологических, цито-гистологических и молекулярных особенностей формирования и развития морфогенных каллусов и соматических зародышей различного происхождения у представителей семейства сосновых (Lelu et al., 1994, 2008; Klimaszewska, Cyr, 2002; Белоруссова, Третьякова, 2008 и др.). Получены данные о длительном сохранении пролиферирующей эмбриональной массы хвойных путем криоконсервации (Park, 2002), которую можно использовать в программе MVF (Multi variety forest), широко используемой за рубежом. Однако до сих пор не разработан комплексный цитофизиологический подход и не полностью решены те аспекты фундаментальной проблемы морфогенеза (тотипотентность, детерминация и компетентность, дифференциация и дедифференциация), которые можно решить на примере именно соматического эмбриогенеза как модельной системы. Отсутствуют работы по сравнению цито-гистологического статуса морфогенных (эмбриональной массы) и не морфогенных каллусов различного происхождения во всей динамике их развития, вплоть до вызревания соматических зародышей и растений регенерантов. Далеким от окончательного решения остается вопрос о сходстве и различии морфогенеза полового и соматического зародышей в естественных условиях и в культуре in vitro. Недостаточна сравнительная информация по анатомии и морфологии проростков, возникших из половых и соматических зародышей. Недостаточно разработаны способы управления ПУТЯМИ соматического эмбриогенеза контролируемых условиях культуры in vitro.

Технология соматического эмбриогенеза остается проблематичной для ряда видов хвойных, в том числе и видов, произрастающих на территории России (Третьякова и др., 2007). Критическим моментом является процесс созревания соматических зародышей, поскольку он влияет на жизнеспособность полученных зародышей, и их способность прорастать и продуцировать нормальные растения-регенеранты.

Цель исследования - разработка биотехнологии получения соматических зародышей у основных лесообразующих хвойных видов Сибири.

Материалы и методы

Объектом исследований служили деревья сосны сибирской (кедр сибирский, *Pinus sibirica* Du Tour) — основного орехоносного вида Сибири, произрастающего в естественном древостое Западного Саяна и на клоновых прививочных плантациях Западно-Саянского Опытного лесного хозяйства, а также лиственницы сибирской (*Larix sibirica* Ledeb.), произрастающей в естественных насаждениях на территории Республики Хакасия и Тыва, в искусственных насаждениях и клоновых плантациях (Красноярский край). На клонах кедра сибирского и лиственницы сибирской проводятся опыты по контролируемому опылению, с использованием в качестве опылителей пыльцу плюсовых деревьев и уникальные гетерозисных форм с однолетним развитием женской шишки (кедр сибирский), а также деревьев лиственницы сибирской, устойчивых к лиственничной почковой галлице. С указанных выше деревьев производился сбор семян на стадии формирования семядольных зародышей (июль). Семена стерилизовались и из них извлекались зародыши, которые вводились в культуру in vitro

Для инициации эмбриональной массы из зиготических зародышей использовались базовые среды ½ MS, MS, (Murashige, Skoog 1962), ½ LV, LV, MSG, (Plant cell....1995)

и МА (неопубликованные данные) с добавлением мезоинозита, L-глютамина, фитогормонов: 2,4-Д и 6-БАП, сахарозы, а также агара или Gelrite. Для пролиферации эмбриональной массы концентрация 6-БАП, 2.4-D и сахарозы снижалась в 2-4 раза (у разных видов по-разному). Эксперименты по индукции и пролиферации эмбриогенного каллуса проводились в темноте при температуре $24 \pm 1^{\circ}$ С. Для перехода соматических зародышей к созреванию экспланты культивировались на безгормональных базовых средах с активированным углем в течение 1 нед. Для созревания соматических зародышей в среды добавлялись мезоинозит, L-глютамин, 2.4-Д, АБК, ИМК, сахароза, а также Gelrite. Культивирование проводилось на свету, при 16-ти часовом фотопериоде и температуре $24 \pm 1^{\circ}$ С.

Для проведения цитологического анализа использовались давленые препараты. Окраска эксплантов проводилась сафранином с добавлением капли метиленового синего. Просмотр микроскопических образцов осуществлялся на микроскопе МБИ-6. Статистическая обработка данных проводилась по стандартным методикам при помощи Microsoft Excel. Морфологические изменения фиксировались цифровой фотокамерой Fudjifilm FinePix S7000 (Япония).

Результаты и обсуждение

Экспериментальным путем было показано, что процесс реализации соматического эмбриогенеза у изучаемых хвойных видов Сибири — процесс многоступенчатый, состоящий из индукции эмбриогенного каллуса (ЭК), пролиферации эмбриональносуспензорной массы (ЭМС), вызревании соматических зародышей и их прорастания. На всех этапах соматического эмбриогенеза у видов хвойных использовались базовые среды с различными модификациями макро и микроэлементов, витаминов, азотистых соединений и гормонов.

На индукционной среде под действием гормонов 6-БАП и 2.4-Д соматические клетки зиготических зародышей лиственницы сибирской и кедра сибирского на 5-10 сут. культивирования начинали интенсивно растягиваться в длину и превращаться в эмбриональные трубки размером 200-300мкм. Эмбриональные трубки в результате неравного деления образовывали мелкие эмбриональные клетки диаметром 39-47 мкм. В течении 1 месяца эмбриональные клетки активно делились и образовывали эмбриональные глобулы, эмбриональными которые окружались трубками. Наблюдалось образование эмбрионально-суспензорной массы. Пересадка ЭМС на пролиферирующие среды с пониженным содержанием цитокининов и сахарозы вызывала интенсивную пролиферацию ЭСМ, в которой шел активный кливаж. Через 1 мес. культивирования на этих средах возникали торпедообразные соматические зародыши. При субкультивировании ЭСМ на базовых средах, содержащих АБК и ИМК, соматические зародыши приобретали биполярную структуру: на одном из полюсов формировались примордии семядолей, на другом – зародышевый корешок и хорошо развитый суспензор. При переносе соматических зародышей лиственницы сибирской на базовую безгормональную среду с активированным углем происходило быстрое прорастание соматических зародышей (в течение 7 дней) и образование растений-регенерантов. Формировались чистые эмбриогенные линии.

Наблюдения за динамикой роста ЭК показали, что процессы инициации и пролиферации каллуса у разных генотипов идут с неодинаковой скоростью. Из 17 эксплантов плюсовых деревьев кедра сибирского выделился один индивидуум, у которого объем эмбриогенного каллуса в 2-3 раза превышал объем каллусов остальных плюсовых деревьев (1600мм³ против 600-900мм³). Наиболее активное образование ЭК шло у клонов в вариантах опыления пыльцой гетерозисного дерева с однолетним формированием женских шишек. Объем ЭК достигал 4460 мм³ за 50 дней культивирования. Динамика роста ЭК и образование соматических зародышей у лиственницы сибирской происходило аналогично кедру сибирскому. Среди 150 генотипов выделились 30 % генотипов у которых шло интенсивное образование

эмбриогенного каллуса, у 40 генотипов образование эмбриогенного каллуса шло значительно слабее и у 30% генотипов формирование эмбриогенного каллуса вообще не наблюдалось. Особенно заслуживает внимание генотип донора лиственницы сибирской, который отличался устойчивостью к повреждению лиственничной почковой галлицей, у которого формирование эмбриогенного каллуса шло со значительной скоростью. У данного генотипа наблюдалось активное образование соматических зародышей. На среде вызревания (базовая среда с АБК и ИМК) шло активное формирование семядольных соматических зародышей, формировалась чистая эмбриогенная линия, способная продуцировать массовое образование соматических зародышей.

Образование эмбриогенного каллуса, его пролиферация и формирование соматических зародышей, а так же их вызревание у лиственницы сибирской занимает 4-6 месяцев, у кедра сибирского 7-10 месяцев. Длительность этого процесса в основном согласуется с другими видами лиственницы и сосны (Lelu et al., 1994, 2008; Klimaszewska. Cyr, 2002 и др.). При этом соматические клетки зиготического зародыша становятся на путь развития зиготы. Аналогично зиготическим зародышам, морфогенез соматических зародышей включает последовательное прохождение стадий проэмбрио, кливажа, образование глобулярных и торпедообразных зародышей, после которых осуществляются процессы дифференцировки - формируются апексы побега и корня, гипокотиль и семядоли, наконец, происходит прорастание соматических зародышей в растения – регенеранты. Реализация соматического процесса, требует применения разных химических соединений, в том числе фитогормонов и различных физических предобработок. Поэтому соматический эмбриогенез у хвойных видов можно использовать как модельную систему в эмбриологических исследованиях. С помощью эмбриогенных культур можно получать генетически модифицированные растения, подвергать их криоконсервации и создать банк генов улучшенных генотипов.

Не исключено, что развитие соматических зародышей может быть архивировано у всех видов растений, включая и хвойные, для которых характерно наличие полиархегониальности и полиэмбрионии (Singh, 1978). Возникновение множественных зародышей в одном гаметофите (у сосен до 16), полученных от разных отцов, наличие апомиксиса у сосен свидетельствует о множественном пути реализации их репродуктивного потенциала (Минина, Ларионова, 1979; Третьякова, 1990). Реализация этого потенциала широко проявляется в условиях культуры in vitro и, прежде всего, через соматический эмбриогенез.

Выводы

У представителей сибирских видов хвойных путем подбора состава питательных сред были получены ЭК и соматические зародыши. Выявлены генотипы донорских растений лиственницы сибирской и сосны сибирской, способные давать чистые эмбриогенные линии, соматические зародыши и растения - регенеранты.

Работа выполнена при поддержке гранта РФФИ № 08-04-00107, интеграционного гранта № 53Б.

Литература

- 1. *Белоруссова А.С., Третьякова И.Н.* Особенности формирования соматических зародышей у лиственницы сибирской: эмбриологические аспекты // Онтогенез. 2008. Т. 39, № 2. С. 1-10.
- 2. *Минина Е. Г., Ларионова Н. А.* Морфогенез и проявление пола у хвойных. М.: Наука, 1979. 216 с.
- 3. *Третьякова И. Н.* Эмбриология хвойных: физиологические аспекты. Новосибирск: Наука, 1990. 157 с.
- 4. Третьякова И.Н., Белоруссова А.С., Носкова Н.Е., Савельев С.С., Лукина А.В., Барсукова А.В. Ижболдина М.В., Череповский Ю.А. Перспективы применения

методов биотехнологии для размножения генетически ценных форм лесных древесных видов // Хвойные бореальной зоны.-2007. - Т. 24, №2-3. - С.309-318.

- 5. *Klimaszewska K., Cyr D. R.* Conifer somatic embryogenesis: I. Development // Dendrobiology. 2002. Vol. 48. P. 31-39.
- 6. Lelu M. A., Bastien C., Klimaszewska K., Charest P.J. An improved method for somatic plantlet production in hybrid larch (Larix x leptoeuropaea): Part 2. Control for germination and plantlet development // Plant Cell Tiss. Org. Cult. 1994. Vol. 36. P. 117-127.
- 7. Lelu-Walter M-A., Bernier-Cardou M., Klimaszewska K. Clonal plant production from self- and cross-pollinated seed families of *Pinus sylvestris* (L.) through somatic embryogenesis // Plant Cell Tiss Organ Cult 2008 Vol. 92 P. 31–45
- 8. *Murashige T., Skoog F.*A revised medium for rapid growth and bioassays with tobacco tissue cultures // Physiol. Plant. -1962. Vol. 15, N04. P. 473-497.
- 9. *Park Y-S*. Implementation in conifers somatic embryogenesis in clonal forestry: technical requirement and development considerations // Ann. For. Sci. 2002. Vol. 59. P. 651-656.
- 10. Plant cell, tissue and organ culture: fundamental methods / Eds. O.L. Gamborg, G.C. Phillips. Berlin: Springer-Velag, 1995. 358 pp.
- 11. *Singh H.* Embryology of gymnosperms / Berlin-Stuttgart: Gebrüder Borntraeger, 1978. 304 p.

Резюме

Инициация соматического эмбриогенеза у лиственницы сибирской (*Larix sibirica* Ledeb.) и сосны сибирской (*Pinus sibirica* Du Tour) проводилась с использованием зиготических зародышей на разных стадиях их развития. Культивирование велось на среде ½ MS, MS, ½ LV, LV и MSG, и MA с гормонами 2,4-Д, 6-БАП, ИМК и АБК в разных концентрациях. Успешность соматического эмбриогенеза обусловлена гормональной регуляцией и связана с генотипом дерева.

Induction of somatic embryogenesis in Siberian larch (*Larix sibirica* Ledeb.) and Siberian pine (*Pinus sibirica* Du Tour) has been conducted from zygotic embryos. Culturing was made on ½ MS, MS, ½ LV, LV, MSG and MA nutrition media with hormones 2.4-D, 6-BAP, IBA and ABK in different concentrations. The success of somatic embryogenesis is due to hormonal regulation and tree genotypes.

ЯРУЛЛИНА Л.Г., ТРОШИНА Н.Б., СУРИНА О.Б.

Учреждение Российской академии наук Институт биохимии и генетики Уфимского научного центра РАН

Россия, 450054, Уфа, пр. Октября, 71, e-mail: phyto@anrb.ru

ИСПОЛЬЗОВАНИЕ СОВМЕСТНЫХ КУЛЬТУР РАСТИТЕЛЬНЫХ КЛЕТОК С ВОЗБУДИТЕЛЯМИ ГРИБНЫХ БОЛЕЗНЕЙ В ИЗУЧЕНИИ МЕХАНИЗМОВ ФОРМИРОВАНИЯ УСТОЙЧИВОСТИ

Одной из первоочередных проблем современной биологии является выявление путей формирования устойчивости растений к фитопатогенам. Важный этап в формировании защитного эффекта – резкая и многократная активация локализованных в клеточной стенке и плазмалемме оксидоредуктаз, регулирующих уровень активных форм кислорода [Kawano, 2003]. В последнее время появились данные о влиянии фитогормонов на экспрессию генов оксидоредуктаз. Так экспрессия гена оксалатоксидазы находится под контролем ауксина [Berna, Bernier, 1999], НАДФНоксидаза активируется АБК [Guan et al, 1997], цитокинины участвуют в регуляции