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Phase diagram of the spin quantum Hall transition
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We study a system which can be realized in a dirty, gapless superconductor in which time-reversal symmetry

for orbital motion is broken, but spin-rotation symmetry is intact. We present a phase diagram in a phase-space

of spin Hall conductance e and energy of quasiparticles A. It exhibits a direct transition between two insulating

phases with quantized Hall conductances of zero and two for the conserved quasiparticles when A = 0. The ener-

gy of the quasiparticles acts as a relevant symmetry-breaking field at the critical point, which splits the direct

transition into two conventional plateau transitions. We use updated correct values of the critical exponents to

.. . 6/7
define these two critical lines as € ~+A™ .
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1. Introduction

Anderson localization of a quantum particle [1] is an in-
tensive research field [2]. One of its central research direc-
tions is the physics of Anderson transitions [3], quantum
critical points tuned by disorder. These include metal-
insulator transitions and transitions of quantum Hall type
separating distinct phases of topological insulators.

From the theoretical point of view, symmetries play a
central role in determination of universality classes of cri-
tical phenomena. This idea was applied to Anderson local-
ization in [4,5], where ten distinct symmetry classes were
identified. In three of these classes, classes A, C, and D,
the time-reversal invariance is broken, and there is a possi-
bility for a quantum Hall transition in two dimensions. The
transition in class A is the usual integer quantum Hall tran-
sition in a two-dimensional (2D) electronic system in a
strong perpendicular magnetic field (see [6] for a review).
Class C is one of the four Bogoliubov—de Gennes classes
which describe transport of quasiparticles in disordered
superconductors at a mean field level, and possess the par-
ticle-hole symmetry. In this class the spin-rotation invari-
ance is preserved, the quasiparticles have conserved spin,
and one can study spin transport. The corresponding Hall
transition is known as the spin quantum Hall (SQH) transi-
tion [7,8], at which the system exhibits a jump in the spin
Hall conductance from 0 to 2 in appropriate units.

In this brief report, we present a phase diagram for a
system belonging to class C using updated correct values
of the critical exponents. We show that in the presence of a
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symmetry-breaking field (which breaks spin-rotation invar-
iance) the transition occurs in two stages, and two critical
lines are defined by the new critical exponent 6/7.

2. The model

A scattering theory description of Anderson localization
and Anderson transitions in terms of random network mo-
dels was introduced in [9]. The resulting networks are chiral,
reflecting the breaking of timereversal invariance in strong
magnetic fields. The simplest such model is the the Chalker—
Coddington (CC) model originally proposed to describe the
integer quantum Hall (IQH) effect [10]. In this model, elec-
trons move along unidirectional links forming closed loops
in analogy with semi-classical motion on contours of con-
stant potential. Scattering between links is allowed at nodes
in order to encode tunneling through saddle point of the po-
tential landscape. A natural generalization of the network
model includes spin. It is achieved by allowing each link to
carry two channels (both in the same direction). Two states
can mix on the link but scatter separately at the node.

The symmetry class C was mapped onto generalized
CC model [7] by allowing SU(2) matrices on the links
which preserve spin-rotation invariance (see Fig. 1). Scat-
tering at the nodes is parameterized by e = (1/2)A. The
value of € determines the Hall conductance of the system,
as measured at short distances: varying ¢ drives the model
through the delocalization transition (in this sense € corre-
sponds to a Fermi level as in the standard CC model). A
non-zero value for A breaks spin-rotation invariance, and
in fact changes the universality class for the transition.
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Fig. 1. Two-channel chiral network model. Dots represent scat-
tering matrices on the links and squares represent the nodal scat-
tering matrices.

Numerical calculations for a very long system of par-
ticular width M produce a localization length (as the in-
verse of the smallest positive Lyapunov exponent A, ,5)
which staisfies a two-parameter scaling assumption

%4=f(evM,A”M), (1)

which allows to find the values of two critical exponents.
These exponents describe the divergence of two corre-
sponding thermodynamic localization lengths & ~|e[
and &, ~|A[™", when a critical point e=A=0 is ap-
proached along € and A axes.

3. Phase diagram

In the original paper [7] a broad range of ¢ €[0,1] was
used (including the values of € far from the critical point),
and the result was v = 1.12. In a more recent study [11] the
authors used only data for € < 0.05 (very close to the criti-
cal point), and obtained v ~1.335, in excellent agreement
with the analytical prediction v =4/3 [12].

A numerical result found in [7] for a second critical ex-
ponent p~1.45 was in a good agreement with analytical
prediction 3/2 [12]. Both results were recently significantly
corrected [13]. Percolation mapping of [12] was used to
extract analytical value p = 8/7. Numerical simulations used
a different (from [7]) approach. Instead of breaking spin-
rotation invariance in the nodes of the network by introduc-
ing parameter A, extra random phases with zero mean were
defined on the links, and their variance p was used as a
symmetry-breaking parameter. Without symmetry-breaking
perturbations, all Lyapunov exponents of the transfermatrix
product are doubly degenerate due to the presence of time-
reversal invariance (Kramers degeneracy). It was suggested
in [7] that when the time-reversal symmetry is broken by a
small perturbation, the renormalized localization length
and the deviation from Kramers degeneracy (the difference
between the two smallest positive Lyapunov exponents
multiplied by the circumference M) exhibit scaling behav-
ior characterized by the same exponent. This idea was fur-
ther supported in [14,15]. It turned out that the deviation
from Kramers degeneracy is a superior way to extract criti-
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Fig. 2. (Color online) The phase diagram for a spin quantum Hall
effect, exhibiting three phases with spin Hall conductivities
oy =0, oy, =1, and oy, =2, seprated by critical lines
e~ A%7.

cal exponents in this case, since we know its exact zero
value at the critical point. It has been shown in [13] that
both perturbations breaking spin-rotation invariance act as
a random Zeeman field and must have the same critical
exponent p. The numerical results using deviations from
Kramers degeneracy produced p=1.15 in excellent
agrement with analytical prediction p=8/7 =1.14. We
believe that the reason for the discrepancy of the previous
and recent numerical results is that only large values of A
were used in [7]. Indeed, in that paper it was impossible to
resolve two separate critical states for A <0.5.

Now finally we can write two-parameter scaling with
correct critical exponents

Su f(e4/3M,A8/7M). 2)
M

On the critical lines the scaling function is M-inde-
pendent. This unambiguously defines critical curves on the
phase diagram as | €|~ +AMY = 797 We present a phase
diagram in Fig. 2.
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dasoBa giarpama CniHOBOro KBaHTOBOIoO nepexony
Xonna

B. Karanoscbkun, [1. HemipoBcbkuin

BuBueHo cucremy, sika peanizyeTbcsi B OpyAHHX, OC3LIiIHH-
HHUX HAJIPOBIJHUKAX, B SKHX [OPYLICHA CHMETPisl 3BEpPHECHHS
4yacy opOiTaJbHOTO PYXY, ajie He 3a4eIieHa CUMETPisl CIIIHOBOTO
obepranns. [Ipexncrasieno ¢a3oBy piarpamy B INIOIIMHI CIIIHOBOT
XOJUTIBCHKOT MPOBIAHOCTI € Ta eHeprii kBaszivacTuHok A. Cucrema
3a3Ha€ NPSIMUI Iepexif MK ABOMa HENpoBiAHUMH (a3zamu, ki
BIANOBIAIOTh KBAaHTOBAaHUM XOJUTIBCBKUM ITPOBIJHOCTSIM HYJb i

J(Ba JUIsl KBA3MYAaCTHHOK, 10 36epirarorees, npu A = 0. Enepris
KBa319aCTHHOK (i€ sIK XapaKTepHE IOJIe, 10 MOPYIIYE CHMETPIro
B TOYL MEPEXO.y, sIKe PO3LICIUIIOE MPSMHIN Hepexis Ha JABa MOoC-
JIIOBHHUX [Epexoja THIY IUIAaTO. BHKOPHUCTOBAHO CKOPUrOBaHi
NpaBWIbHI 3HAYCHHS /Ul KPUTHYHHMX 1HICKCIB ISl BU3HAYCHHS
[UX JABOX KPUTHYHHX JIHIH 5K € ~ + A6/7.

KutouoBi cnoBa: cminoBuii kBantoBuit edexr Xomrta, kiaac C,
KPHUTHYHI iHJIeKCH, (Ba30Ba giarpama.

dasoBasi aMarpaMmma CrMHOBOrO KBAaHTOBOIO
nepexoga Xonna

B. Karanosckun, [1. Hemuposckum

N3ydena cuctema, KOTOpas pealu3yeTcs B IpS3HBIX, Oeclie-
JIEBBIX CBEPXIPOBOJHUKAX, B KOTOPBHIX HapyIICHA CHMMETPHS
oOpareHust BpeMeHH OpOUTATIbHOTO JBIKCHHUS, HO HE 3aTPOHYTa
CHMMeTpHsl CIIMHOBOrO BpameHus. [Ipencrasinena ¢azosast aua-
rpaMMa B TJIOCKOCTH CIIMHOBOW XOJIJIOBCKOM MPOBOJUMOCTH € H
sHepruu kBasuuactul A. CucremMa UCIBITHIBACT IPSAMOM IEepexo]
MEXJy ABYMsl HEMpPOBOAAIIUMHU (DazaMu, COOTBETCTBYIOIIUMHU
KBAaHTOBAaHHBIM XOJUIOBCKMM IIPOBOJMMOCTSM HYNb M J(Ba IS
COXPAaHSIOMIMXCS KBa3udacTull, npu A = 0. DHeprust KBa3U4acTHI
JEHCTBYET KaK XapaKTEpHOE I10JI€, HApYIIAIoNlee CHMMETPHIO B
TOYKE Mepexoja, KOTOPOe PACIIEIUIAeT MpsMOil mepexoa Ha 1Ba
[ocJIeJ0BaTeIbHBIX NIepexoia TUIa Iaro. Mcrnoabp3oBaHbl CKOp-
PEKTHPOBAHHBIE MPABUJIbHBIE 3HAUCHUS! [UISI KPUTHYECKUX HH-
JIEKCOB ISl ONpeNeleHHs STHX IBYX KPUTHYECKHX JIMHHH Kak
e~=% A6/7.

KimroueBsie cioBa: ciiHOBBIH KBaHTOBBIH 3 dext Xomra, kiaace C,
KPUTHYECKHE MHEKCHI, (ha30Bas IHarpaMma.
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