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We theoretically study the effect of the spatial dispersion on the optical response of a layered high-
temperature superconductor slab. The nonlocality of the inherently-anisotropic layered superconductor comes
from the wave vector dependence of its average permittivity tensor, and leads to the generation of additional
electromagnetic modes just above the characteristic Josephson plasma frequency, that is in the terahertz range.
We calculate p-polarization optical spectra for a BioSr,CaCu,0g+s (Bi2212) superconductor slab, which show
very narrow resonances associated with the quantization of the wave vectors of both long-wavelength electromag-
netic modes, having negative dispersion, and short-wavelength additional (nonlocal) modes of positive dispersion.
The dependence of the frequency position and shape of the resonances on the nonlocality parameter, the slab thick-
ness, and the components of the quasiparticle conductivity is analyzed. We have found that the quantized long-
wavelength modes of negative dispersion, which can only be observed at relatively-large slab thicknesses, give rise
to prominent resonances in the p-polarization reflectivity spectrum. On the other hand, the resonances associated
with quantized additional short-wavelength electromagnetic modes are weak, but they can be clearly observed when
the superconductor slab thickness is smaller than the smallest magnetic-field penetration depth.
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1. Introduction

The electrodynamic properties of layered high-tempera-
ture superconductors is of great interest because of their
applications in the THz frequency range [1-3] and are well
described by using the model of a periodic system with in-
trinsic Josephson junctions in the unit cell [4-9]. As was
demonstrated in several works (see, for example, the re-
views [8,9] and references therein), the gauge-invariant
phase difference of the order parameter in the junctions
obeys sine-Gordon equations, whereas the electric and mag-
netic fields in the laminar superconductor are determined
from the distribution of such a phase difference. Among the
striking phenomena described by sine-Gordon equations, the
stop-light effect and the excitation of Josephson plasma
waves (JPW) have been of particular interest [8].

The JPW can be excited by a p-polarized electromag-
netic wave incident on the high-temperature superconduc-
tor surface, parallel to the ab plane. In the case of small
wave amplitudes (linear regime), the dispersion relation
between the wave vector component k§3), parallel to the ¢
axis, and the frequency o for propagating modes in a lay-
ered superconductor like Bi2212 has two branches at fre-
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guencies above the characteristic Josephson plasma fre-
quency, being in the terahertz (THz) range [8,10]:

®, =c/(h; Ve). ©)

Here, A | is the transverse magnetic field penetration depth,
¢ is the high-frequency dielectric constant of the insulating
layers alternating with superconducting layers, and c is the
light velocity in vacuum. It turns out that one of the
branches has negative dispersion (am/ak§5> <0), whereas
the dispersion of the second one is positive (6@/6k§3) >0).
The appearance of the later branch is owing to the effect of
the dynamical breaking of charge neutrality in the layered
superconductor, which is controlled by the capacitive cou-
pling parameter [8],
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where Rp is the Debye length for a charge in a superconduc-
tor, s is the thickness of a superconducting layer, and D is the
period of the insulator-superconducting superlattice.

In the long-wavelength regime (| kgs) | D < 1), the elec-
tromagnetic response of an inherently anisotropic layered
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high-temperature superconductor can be described with an
average nonlocal permittivity tensor ‘€ av, whose components
depend not only on the frequency w, but also on the wave
vector k§s) (see Refs. 10, 11). In the limit of charge neutrality,
when the parameter oo = 0, the nonlocality of the layered su-
perconductor and, consequently, the second (additional)
branch of the dispersion relation k§5> (w) disappears. In the
later case, the layered superconductor behaves as a hyperbolic
metamaterial with effective negative refraction index. Indeed,
as is shown in Ref. 11, at frequencies » above the Josephson
plasma frequency ®,, the permittivity components, parallel
and perpendicular to the superconducting planes, have differ-
ent sign. Interesting electromagnetic phenomena in layered
high-temperature superconductors have been described within
the local approach. Thus, for example, the dispersion curves
and the excitation of wave-guide [12-14] and surface Joseph-
son plasma [12,14] waves in a superconductor slab, placed
between two identical dielectrics, have been analyzed by
using a local average permittivity tensor. Moreover, the lo-
cal approach has been successfully applied in studying the
resonant optic transmission through different heterostructures,
containing a layered high-temperature superconductor slab, on
which localized modes can be excited [15,16]. The local con-
tinuum limit has also allowed to describe the transmission of
terahertz radiation through periodically modulated slabs of
layered superconductor [17,18].

The Debye length in a superconductor is usually much
smaller than the London penetration depth and, therefore,
the nonlocality parameter o (2) is typically small. Howev-
er, as is shown in Refs. 8, 10, 11, the breaking of the
charge neutrality of the superconducting layers and the
capacitive interlayer coupling can play an important role in
the dispersion properties of the JPWs when the frequency
 is very close to the Josephson plasma frequency o, (1).

In the present work we shall study the nonlocal elec-
tromagnetic response of a layered high-temperature super-
conductor slab near the Josephson plasma frequency. A
theoretical formalism, based on the use of an average non-
local effective permittivity to calculate the electromagnetic
field inside a superconductor slab, is described in Sec. 2. In
the model, we apply additional boundary conditions, which
allow us to determine the amplitudes of the additional elec-
tromagnetic modes. We calculate and analyze the disper-
sion relations for p-polarized modes and the optical (re-
flectivity) spectra for a Bi2212 superconductor slab in
Secs. 3 and 4. Here, we also study the effect of the non-
locality parameter o upon the resonant structure of the
optical spectra. Our conclusions are written in Sec. 5.

2. Formulation of the problem

2.1. Geometry of the system

The system considered here is a high-T,, superconductor
slab of thickness “d”, specifically Bi2212, whose structure
is inherently layered and periodic. Its superconducting
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Fig, 1. Scheme of a high-temperature layered superconducting
slab. kj and k, are the wave vectors of the incident and reflect-
ed light, respectively.

planes are assumed to be parallel to the x — y plane and the
system is embedded in vacuum (see Fig. 1). Also assuming
that a monochromatic electromagnetic plane wave with p-
polarization is incident on the superconductor-slab surface
at z =0, the magnetic field in the upper medium (z <0)
can be written as

HW =H, +H,, z<0, 3)

where the index “u” indicates the upper medium (vacuum),
“i” the incident beam and “r” the reflected one. The ex-
pressions for H; and H, are, respectively,

Hi - (O, Hi ’O)eikxx+ikzz—imt’ (4)

H, = (0,H,,0)e"x* 2270t =7 < )

In these expressions, k, =ksin® and k, = kcos are
the components of the incident wave vector k;, where
k = w/c, o is the frequency, and 6 is the incidence angle.
The magnetic field of the transmitted electromagnetic
wave into the lower medium (vacuum) is given by

HO = (0, H,, 0)e e DTet 759 (g)

2.2. Electromagnetic field in the superconductor slab

Now, to study the propagation of electromagnetic
waves through a high-temperature layered superconductor,
occupying the space 0 < z < d, one can exploit the fact that
the superconductor behaves as a uniaxial crystal in the
long-wavelength limit [10,11]. As is shown in such works,
the constitutive equation, relating the displacement vector
D and the electric field E,

D=%aE, @)

is determined by a nonlocal average permittivity tensor
€av. The principal values of €ay are functions of the
wave number k§s) and frequency o as
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where o, is the Josephson plasma frequency defined in
Eqg. (1), y= kL/k” is the anisotropy parameter given by the
ratio between the transverse (1 ;) and parallel (%) magnet-
ic-field penetration depths, and D is the period of the array
of insulating and superconducting layers. One should men-
tion that expressions (8) and (9) were derived by assuming
that the thickness of the superconducting layers s is much
smaller than the lattice period D (s < D).

In the region of the superconductor slab, we will look
for the solution for Maxwell equations as a p-polarized
plane wave with a magnetic field given by

H=(0, Hylo)eikgs)zﬂkxx—imtl 11)
After substituting Eq. (7) and Eq. (11) into Faraday law
(cVxH =oD/ét) and Ampere—MaxweII law for an aniso-
tropic medium (E = (IC/oo) £ 1V x H), we can derive the
relations between the nonzero components of the electric
and magnetic fields inside the superconductor:

Ck§s) Hy = oey (w)Ey,

ckyHy =g, (o, kgs))EZ, (12)

keE; —k{VE, = ~(0lC)H,.

The dispersion relation for the electromagnetic waves
inside the inherently-anisotropic layered superconductor
can be straightforwardly obtained from the homogeneous
system of algebraic equations (12). We get

K2 ko

ey (@) )

—. (13)
&, (o, kgs)) c?

In order to obtain an explicit expression for the disper-
sion relation, we substitute Eqg. (9) along with the next
long-wavelength approximation (| k(s) | D «1),

2(1-cos(k{)D)) _ 4sin¥(k{?D)/2)
D2 D?

k)2 ~ . (14)

into Eq. (13). Afterwards, the dispersion relation for a p-
polarized electromagnetic wave acquires the form
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By solving the biquadratic algebraic equation (15), we
can explicitly express the wave number k§s) as a function
of the frequency :

[2
Darcsm ZhEvb" —dac g —dac | (16)
a

k(S) —

Thus, four electromagnetic modes can propagate in the
superconducting slab. The wave number of each mode will
be denoted as follows:

kKD, j=1,2,34 (17)
where kgl) = —k§3) and k§2) = —k§4) with the restrictions
Imk{Y >0 and Imk{? > 0.

The latter implies that the first and second (j =1, 2) elec-
tromagnetic modes decay along the positive direction of
the z axis, whereas the third and fourth modes (j =3, 4)
decay in the opposite direction.

The total magnetic field inside the superconducting slab
can be expressed as a linear superposition of the four elec-
tromagnetic modes:

H® = 0,H{) (2),0)e" ™", (18)
where
4 k),
HP ()= A" 7 (19)
j=1

Here Aj (j=1,2,3,4) are the amplitudes of the plane
waves.

From Eq. (19) and Faraday law, the x and z compo-
nents of the electric field can be written in the form

(D)

QW&- ZAM”' 2 (20)
X ] =1
i (J)
E®) (z)=-° Z ek, (21)
j=1¢z (o, kz )
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2.3. Boundary conditions

In order to calculate the amplitudes A; in Eq. (19), as
well as the amplitudes of the reflected (H,) and transmitted
(H;) electromagnetic waves, the well-known Maxwell
boundary conditions should be applied, namely, the continu-
ity of the tangential components of the electric and magnetic
fields at the surfaces. These conditions for the vacuum-
superconductor interfaces at z = 0 and z = d are given by

EV©O=e®©), E®)=eP(@)

H©O =HP©),  HO@=HPE). (2
However, the number of unknown amplitudes is six (A;,
i=1,2,3,4; H, and H;) and the Maxwell boundary
equations (22) are only four. Therefore, it is necessary to
derive two additional boundary conditions (ABC) to calcu-
late all the amplitudes. As in Ref. 10, we will derive the
ABCs by taking into account the fact that the surface Jo-
sephson junctions have only one neighboring junction. In
other words, there are no superconducting planes outside
the slab. It means that the average of the polarization com-
ponent, parallel to the growth direction of the layered su-
perconductor, over the width of imaginary Josephson junc-
tions just outside the slab should be equal to the
polarization of the external medium.

For the anisotropic layered superconductor having a
nonlocal dielectric response, the polarization vector can be
written as

P(S) — (PX(S) (Z), 0, PZ(S) (Z))eikxx—io)t. (23)
Here
RS (2) = 16 xEP (2), 24)

where x¢ = (e —1)/4x, E{)(z) has the form (20) and

4 .
; )
PO (2) = D xe, (kIHES (k{272 (25)
j=1

with xe , (kD) = (e, (k§i))—1)/4n and
A.

. (26)

E(S)(k(J))
o g, (o,k{)

Since the external medium is vacuum, the polarization
z-component, averaged over the width (= D) of imaginary
Josephson junctions outside the sample, should vanish.
Hence, the ABCs at z =0 and z = d can be written as

1 0
5 [ PP @)z=0, @7)
-D
L @D
= j P (z)dz = 0. (28)
d

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 12

Let us expand PZ(S) (2) into the Taylor series. We get

0 0 (
1 1 oP,
BI PZ(S)(z)deB | {PZ(S)(O)+—Z

s)
Z|dz =
z=0

-D -D
(s)
-P(S)(O) 1p%7) (29)
o
z=0
and
d+D (s)
1 | P(S)(z)dz~P(S>(d) 1p% (30)
D o
d z=d
In this way, the additional boundary conditions are
S
PO©-20-0) =0 (31)
(s)
P(S)(d)+1 ap ZZ_(d)=o. (32)

Applying these ABCs together with the Maxwell
boundary conditions (22), the reflect|V|ty (R=|H,/H; | )
and transmissivity (T =|H;/H; | ) spectra for the Iayered
superconductor slab in the far mfrared can be calculated.

3. Results

In this section, the theoretical formalism above present-
ed is applied to study the propagation of p-polarization
waves with 6 = 75° in a Bi2212 superconducting slab. The
effects on the electromagnetic response of the supercon-
ducting slab due to the variation of the nonlocality pa-
rameter, the energy dissipation parameters, and slab
thickness are all analyzed here. First, we have studied the
effect of the nonlocality parameter on the dispersion rela-
tion for the electromagnetic propagating modes and far-
infrared reflectivity spectrum. Three cases are described
and discussed below.

3.1. Quasi-local case

The dispersion relation for the propagating modes
when the nonlocality parameter o is almost zero is shown
in Fig. 2(a), and the corresponding reflectivity is presented
in Fig. 2(b). The superconductor parameters used in the
calculations are [11]: ®, —1012 rad/s, y =500, £ =12.0.
Other parameters are o = 1077, d =35, where § is the
smallest of the penetration depths for the anisotropic su-
perconductor (8= M = ¢/ (yoop f) 173.20 nm), and
D =15.35 A. In order to compare these results with our
previous calculations for the local case (o = 0) and without
dissipation, published in Ref. 13, we have considered not
just a very small value of o but also very small energy
losses determined by the parallel and perpendicular con-
ductivities of the normal state quasiparticles. SpeC|f|caI—
ly, the conduct|v7|t|es are, respectively, o, =3.6- 107 ®p
and o, =1.8-10 " .
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Fig. 2. (Color online) (a) Dispersion relation k§5>(m) for p-
polarized modes in a Bi2212 superconductor at 6 =75 in the
quasi-local case (oc=10_7). (b) Reflectivity spectrum for a
Bi2212 superconductor slab of thickness d = & with the parame-
ters o =3.6-10 o and 5, =1.8-10 " o

According to Eg. (15), for a non-zero o there are al-
ways two additional electromagnetic modes. At the specif-
ic value of the nonlocality parameter o = 107, the branch
with negative dispersion (kgl) (w)) practically coincides
with that of the local case (o = 0). On the other hand, the
additional electromagnetic modes (k§2) (®)) turn out to be
evanescent because the imaginary part Sk§2) is much larg-
er than the real part ‘Rk§2) (see Fig. 2(a)). The black dots in
the figure stand for the frequency positions where the
Fabry—Perot condition is satisfied (| ingl)d |= nm,
n=1,2...), and the corresponding resonances appear in
the far infrared spectrum for o=10"" (Fig. 2(b)). This
spectrum has resonances at the same frequencies as in re-
flectivity and transmissivity spectra for the local case with
0 = 75° (see Fig. 3 in Ref. 13).

3.2. Weak nonlocality

In Fig. 3, the calculations were carried out with
o = 0.0015, whereas the other parameters are the same as
in Fig. 2. As is seen, the dispersion relation of the addi-
tional electromagnetic modes (the branch for k§2) (w)) now
possesses a pass band of positive dispersion just above the
Josephson plasma frequency. For this reason, the reflectivi-
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Fig. 3. (Color online) (a) Dispersion relation k§s)(w) for p-
polarized modes in a Bi2212 superconductor at 6 =75 in the
case of weak nonlocality (o = 0.0015). (b) Reflectivity spectrum
for a Bi2212 superconductor slab of thickness d =& with the
parameters cy = 3.6-10_50)p and ¢, = 1.8~10_7wp.

ty spectrum (Fig. 3(b)) exhibits Fabry—Perot resonances
associated not only with the modes of negative dispersion
(kY (w) branch), but also with the additional modes. The
number of the later resonances is rather large because the
wave number k§2) (w), being almost real in the pass band,
rapidly increases with frequency o until it reaches the bor-
der of the first Brillouin zone (5Rk§2)D/rc=l or, equiva-
lently, ‘J%k§2)d/n =112.83). Notice that the additional
Fabry—Perot resonances are weaker and narrower than the
resonances associated with the electromagnetic modes with
negative dispersion.

3.3. Strong nonlocality

The dispersion relation k§s) (w) for the case when the
nonlocality parameter has a realistic value (o =0.05
[10,11,19]) for a Bi2212 superconductor is shown in
Fig. 4(a), and the respective p-polarization reflectivity for
a layered high-temperature slab with thickness d =38 is
presented in Fig. 4(b). In the numerical calculations of the
curves we used very small conductivities o, = 3.6~10’5oaID
and o, =1.8-10_7mp, producing a rather small energy
dissipation in the layered high-temperature superconduc-
tor. Although the value o =0.05 could be considered
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Fig. 4. (Color online) (a) Dispersion relation kgs)(m) for p-
polarized modes in a Bi2212 superconductor at 6 =75° in the
case of strong nonlocality (o =0.05). (b) Reflectivity spectrum
for a Bi2212 superconductor slab of thickness d =& with the
parameters oy :3.6-10’50)p and o, :1.8~1O’7mp.

small, the nonlocality in this case is well developed and
sufficiently strong. Indeed, with o = 0.05, the resonances
associated with the quantization of the wave vectors, corre-
sponding to the branch of positive dispersion (additional
modes), appear in a wide frequency interval and are clearly
separated from each other (see Fig. 4).

In the panels of Fig. 5 we show p-polarization reflec-
tivity spectra for a superconductor slab as that of Fig. 4,
but with a typical large value of the in-plane component of
the quasiparticle conductivity o, = 3.6-104coIO [11,20-22]
and two different small values of the perpendicular com-
ponent: o, =1.8-10" @, (panel (a)) and 6, =1.8:10 ",
(panel (b)). Interestingly, the large value of the conductivi-
ty component o, increases the light absorption in the su-
perconductor and, consequently, the reflectivity has broad
minima around the first resonances (n=1, 2, 3) of the
quantized modes with negative dispersion. As it is seen,
the resonances associated with the quantized additional
modes are practically unaffected by o,. The later reso-
nances are smoothed out with increasing the perpendicular
component of the conductivity, namely o, (compare pa-
nels (a) and (b)).

In panel (a) of Fig. 6 we show the p-polarization reflec-
tivity spectra for Bi2212 superconductor slabs of thick-
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Fig. 5. (Color online) Effect of energy dissipation on the p -
polarization reflectivity spectrum for a Bi2212 superconductor
slab of thickness d =& with nonlocality parameter o = 0.05 and
at =75 as in Fig. 4. Curve in panel (a) was calculated with
ox=3610%0, and o,=1810"w,. In panel (b),
oy =36:10%0, and 6, =1.8-10 %w).

nesses d =8, d =45 and d =83, which were calculated by
using realistic values for both in-plane (o = 3.6~104c)p
[11,20-22]) and transverse (o, :1.8-10_303p [11,22,23])
conductivities. The dispersion relation for the electromag-
netic modes in the layered superconductor is plotted in the
subfigure 6(b). There, the black dots indicate the frequency
and wave vector on the dispersion relation curve, where
the Fabry—Perot condition for a superconductor slab of
thickness d =83 is satisfied. The dots positions are in good
agreement with the observed resonances in the correspond-
ing reflectivity spectrum shown in the panel (a). Notice
that only the resonances of electromagnetic modes with
negative dispersion are well-resolved. For this reason, the
dips of the resonances in the reflectivity spectra are shifted
towards higher frequencies when the thickness slab is in-
creased (compare the curves in Fig. 6(a)).

Figure 7(a) exhibits the p-polarization reflectivity spec-
tra for superconductor slabs of thicknesses smaller than the
skin depth 8: d =0.105, d =0.158 and d =0.255. The
panel (b) of Fig. 7 shows the dispersion relation curve with
the positions of the frequencies where the Fabry—Perot
condition is satisfied in a slab of thickness d = 0.105. Be-
cause of the small slab thickness, only the wave vectors of
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Fig. 6. (Color online) (a) p-polarization reflectivity spectra for
Bi2212 superconductor slabs of thickness d =1, 4, 85 at 6 = 75°.
The quasiparticle conductivities used are: o, = 3.6 -104(1)p and
oy =1.8~10_3cop. (b) Dispersion relation k§s) (w) for p-pola-
rized modes in a Bi2212 superconductor.

the additional electromagnetic modes are quantized, lead-
ing to the appearance of discernible resonances in the p-
polarization reflectivity spectrum (see panel (a)). As is also
seen, the dips of the resonances in the reflectivity spectrum
are shifted towards higher frequencies when the slab thick-
ness is decreased. There is another remarkable feature of
the reflectivity spectra for thin slabs: the position of the
reflectivity resonances turn out to be slightly shifted to
lower frequencies with respect to the frequencies where the
Fabry—Perot condition is satisfied. In fact, in Fig. 7(a) the
small lines next to the numbers, labeling the resonances,
indicate the frequencies where the Fabry—Perot condition is
really satisfied. This shift of the resonances is attributed to
the type of the additional boundary conditions, (31) and
(32), used in our calculations since the optical spectra of
nonlocal media depend on the ABCs.

4. Discussion of the results

Because of the nonlocality of the optical response of a
layered high-temperature superconductor slab, i.e., as a
result of the wave vector dependence of its average permit-
tivity tensor ?av(kgs)) (Egs. (7)-(9)), for a given frequen-
cy four p-polarized electromagnetic modes can propagate
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Fig. 7. (Color online) (a) p-polarization reflectivity spectra
for Bi2212 superconductor slabs of thickness d =0.1, 0.15,
0.255 at 6=75". The quasiparticle conductivities used are:
Oy :3.6~1O40)p and o, :1.8-10’3o>p. (b) Dispersion relation
kf‘) (w) for p-polarized modes in a Bi2212 superconductor.

through the sample. For this reason, to calculate their am-
plitudes it was necessary to apply the Maxwell boundary
conditions (22) together with the ABCs derived in subsec-
tion 2.3, namely Egs. (31) and (32). Using the classifica-
tion of ABCs, which is employed for other nonlocal media
such as excitonic ones, the above derived ABCs corre-
spond to the generalized ABCs [24]:

o5 0P (0) +B, 0P (0)/ez = 0,
oty ¢ P (d) + B, 40P (d) oz = 0, (33)

with o, g =a, ¢ =1and B, o =B, 4 =—D/2. Inour case,
the applied here ABCs came from the absence of Joseph-
son junctions just outside the superconductor sample. The
choice of the ABCs can qualitatively change the optical
properties of nonlocal systems, e.g., the reflectivity and
transmissivity, since these nonlocal spectra are sensitive to
the microstructure of the sample surfaces. Therefore, to
properly describe the nonlocal response of a superconduc-
tor, the parameters o, o, o, 4, B0, @nd B 4 in the gener-
alized ABCs (33) can be fitted to experimental optical
spectra.
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Our results presented in previous section demonstrate
that, even for realistic large in-plane (o) and transverse
(o,) components of quasiparticle conductivity, the p-
polarization reflectivity spectra for Bi2212 superconductor
slabs with thickness d larger than the skin depth
o= kH = c/(ywp\/g) (d > &) have well-resolved resonances
associated with the quantization of the wave vector for
electromagnetic modes with negative dispersion. In con-
trast, when the thickness d is smaller than & (d <) the
optical spectra exhibit separated resonances originated by
Fabry—Perot resonances of the additional (short-wave length)
electromagnetic modes inside the superconductor slab.

In Ref. 13, where a local average permittivity tensor
was considered, it was demonstrated that the quantized
electromagnetic modes in a layered superconductor slab
are quasi-longitudinal because of the large anisotropy of its
dielectric response, i.e., a strong contrast between the per-
mittivity components (&, |>|¢, ). Indeed, as follows
from Eqg. (13), we obtain

|k§s)|~ —&x
Ky ) €z

>1, (34)

and from the Maxwell equation V-D =0, we get

o

I,

Hence, the z component of the electric field is much larger
than its x component. This conclusion is also valid for the
additional short-wavelength electromagnetic modes gener-
ated in the nonlocal case because they have even larger
wave numbers kgs) ( kgs) | > k) and the inequality (35) is
fulfilled.

|_kx8x
|k§5)gz

|E, = Ex Ex|>|Ex|. (35)

5. Conclusions

As a result of the spatially-dispersive (nonlocal) optical
response of layered high-temperature superconductors,
additional electromagnetic modes are generated in the p-
polarization geometry. The calculated p-polarization THz
spectra for a Bi2212 superconductor slab show very nar-
row resonances associated with the quantization of the
wave vectors of long-wavelength electromagnetic modes,
having negative dispersion, and short-wavelength addi-
tional modes of positive dispersion, in the frequency inter-
val just above the characteristic Josephson plasma frequen-
cy of the superconductor. The frequency positions of the
resonances are determined by the nonlocality parameter,
the slab thickness and the angle of incidence. In the case
when the thickness slab is larger than the skin depth
(d > 3), the discernible resonances in reflectivity spectra
are due to the excitation of electromagnetic modes with
anomalous dispersion and, therefore, they undergo a shift
towards higher frequencies as the slab thickness is in-
creased. At slab thicknesses smaller than the skin depth

(d < d), the dips of the resonances are mainly associated
with quantized additional electromagnetic modes. Because
of their positive dispersion, such resonances are shifted
towards higher frequencies as the slab thickness is de-
creased. We have found that the quantized electromagnetic
modes are quasi-longitudinal because of the strong anisot-
ropy in the nonlocal optical response of the high-
temperature superconductor.
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HenokanbHUM oNTUYHWIA BIAryK LWapyBaTol
BMCOKOTEMMNepaTypHOI HaAMNPOBIAHOI NNACTUHU

S. Cortés-Lopez, F. Pérez-Rodriguez

TeopeTHyHO BHBYEHO BIUIMB MPOCTOPOBOI AMCIIEpCii Ha Om-
THYHH{ BIATYK LIapyBaToOi BHCOKOTEMIIEPATYPHOI HAIIPOBIIHOI
iactuHU. HenokanpHICTh aHI30TPOMHOrO ILIAPYBAaTOro Haj-
NIPOBiJHNKA OOYMOBIIEHA 3aJISKHICTIO BiJl XBHJIEOBOTO BEKTOpa
CepeHbOi BENMYMHHU TEH30pa MAiCNIEKTPUYHOI MPOHUKHOCTI Ta
MPU3BOJUTH 10 TeHepauil JOJATKOBHX EJICKTPOMArHiTHUX MO,
YacTOTa SKMX IEPEBHILYE XapaKTepHy JKO3e(COHIBCHKY ILIa3-
MOBY 4YacTOTY, IO BIiANOBigae TepareprioBoMmy aianasony. O0-
YHCIICHO p-TIOJAPH3ALliHI ONTHYHI CIEKTPH B HAIIPOBIAHIH
mwractuHi BipSroCaCuyOg. 5 (Bi2212), siki BKa3yrOTh Ha HasIBHICTh
Jy’Ke BYy3bKHX PE30HAHCIB, II0B’SI3aHUX 3 KBAHTYBAHHAM XBHJIbO-
BHX BEKTODIB SIK JIOBFOXBHJIbOBHX EJICKTPOMArHiTHHX MO/, IO
MalOTh BiJl’€MHY IHCIEPCil0, TaK i KOPOTKOXBHIbOBHX I0JATKO-
BUX (HEJIOKAJIBHMX) MOJ 3 HO3UTHUBHOIO JHCIepcielo. BusueHo
YaCTOTHY 3aJISKHICTh Ta 3aJEXKHICTh (POPMH PE30HAHCIB Bif Ia-
pamMeTpa HEJIOKaJIbHOCTi, TOBLIMHM IUIACTHHH, KpiM TOrO,
NPOaHaTi30BaHO IMOBEAIHKY Pi3HMX CKJIAJ0BUX B IIPOBIJAHOCTI
KBa3i4aCTHHOK. BCTaHOBJICHO, L0 KBAaHTOBaHI JOBrOXBHIIBOBI

MOJHM 3 BiZ’€EMHOIO JHCIIEPCI€0, SIKi MOXYTh CIIOCTEpiraTucs B

[UIACTHHAX BiJJHOCHO BEJMKOI TOBIIMHH, MOPODKYIOTh BUPAKCHI
PE30HAHCH B p-TIOJSPU3ALIMHOMY CHEKTpi BINOWTHX XBWIb. 3
iHIIOro OOKY, PE30HAHCH, TOB’s3aHi 3 JOJATKOBMMHU KBAaHTOBHMH
€IIEKTPOMATHITHIMH MOJIAMH, CJTa0KO BHPAKEHi, ajle MOXYTb OyTH
9iTKO BU3HAYEHI B pa3i, KOJM TOBLIMHA HAIIPOBIJHOI IIIACTHHU HE
TIEPEBHILY€E HAMCHIITy MarHiTHY JOBXKHHY IPOHHUKHCHHSL.

KitouoBi cnoBa: 1mapyBaTi HaANPOBIJHUKH, KYNPaTHI HAAIMpPO-
BIJIHUKH, ME€TaMaTepiain, IpoCcTOpoBa AUCHepcis, TOHKI JTiHil.

HenokanbHbI ONTUYECKUIA OTKIUK CIIOUCTOMN
BbICOKOTEMMNEPATYPHOW CBEPXMPOBOASLLEN
nnacTuHbI

S. Cortés-Lopez, F. Pérez-Rodriguez

TeopeTuyecku U3y4eHO BIMSHHUE IPOCTPAHCTBEHHOU AUCIIEP-
CUM Ha ONTHUYECKUM OTKJIMK CIOUCTOW BBICOKOTEMIIEPATYPHOM
CBEpXIIPOBOJsIIEeH miuacTuHbl. HelokanbHOCTb aHU30TPOIIHOIO
CJIONCTOTO CBEPXMPOBOJHMKA OOYCIOBJIEHA 3aBUCHMOCTBIO OT
BOJIHOBOI'O BEKTOpa CpeAHEH BEIMYHHBI TEH30pa AUIIEKTpUYE-
CKOHM NPOHUIIAEMOCTH M MPUBOAUT K T€HEPAIMU JOMOIHHUTEIb-
HBIX DJJEKTPOMArHUTHBIX MOJ, 4YacTOTa KOTOPBIX IPEBBINIAET
XapaKTEpPHYIO0 JK03e()COHOBCKYIO IUIa3MEHHYIO YacTOTy, 4YTO
COOTBETCTBYET TEPAareplOBOMY JHANa30Hy. BeraucieHsl p-noss-
PH3aIMOHHBIE ONTUYECKUE CIEKTPHl B CBEPXMPOBOJSIIEH Iia-
crure BiySroCaCuyOgis (Bi2212), KoTOphle yKa3bIBalOT Ha Ha-
JUYMEe OYEHb Y3KHX PE30HAHCOB, CB3aHHBIX C KBAaHTOBAaHHEM
BOJIHOBBIX BEKTOPOB KaK JUIMHHOBOJHOBBIX 3JIEKTPOMArHUTHBIX
MOJI, UMEIOLIUX OTPHLATENBHYIO JUCHEPCUIO, TAK H KOPOTKOBOJI-
HOBBIX JIOTIOJHUTENBHBIX (HEIOKAIBHBIX) MOJ C MOJOKUTEIBHOM
nucnepcuen. M3ydeHa uyacToTHasi 3aBUCHMOCTb U 3aBUCHUMOCTb
(OpPMBEI PE30HAHCOB OT MapaMeTpa HEIOKAJbHOCTH, TOJIIUHEI
TUIACTHHBI, KPOME TOTO, MPOAHAIM3UPOBAHO MOBEICHUE PA3IHU-
HBIX COCTABJIAIOIUX B IPOBOAMMOCTU KBa3U4aCTHL. ¥YCTaHOBIIE-
HO, YTO KBAaHTOBAHHBIE IJIMHHOBOJHOBBIE MOJBI C OTPHIATENb-
HOU Jucmepcueld, KOTOphle MOTYT HaOJIIOAAThCS B IUIACTHHAX
OTHOCHUTEIBHO OONBIION TONIIMHBL, MOPOXKAAIOT BBIPAYKEHHbIE
PE30HAHCHI B p-NOIAPU3ALUOHHOM CHEKTPE OTPa’KEHHBIX BOJIH. C
JpYTroil CTOPOHBI, PE30HAHCHI, CBSI3aHHBIE C JOMOJHHTEIBHBIMU
KBAaHTOBAaHHBIMU 3JEKTPOMarHUTHEIMH MOJIaMH, CI1a00 BBIpaXke-
HBI, HO MOTYT OBITh UETKO ONIPEAENEHbI B CIydae, KOraa TONIINHA
CBEPXIIPOBOJAILEH IIACTUHBI HE NPEBHIIACT HAUMEHBIIIYIO Mar-
HHUTHYIO JIJIMHY TPOHUKHOBEHHUS.

KiroueBble cnoBa: CIIOUCTBIE CBEPXIPOBOIHUKHU, KyIPAaTHBIC
CBEPXINPOBOAHUKH, METaMaTEePUaIIbl, TPOCTPAHCTBEHHAS THCIIEP-
CHsl, TOHKHUE JINHUM.
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