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Cooling of mechanical vibrations by heat flow
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We theoretically consider a nanomechanical link between two metallic leads subject to a temperature drop. It
is shown that mechanical dynamics of such system can be strongly affected by a heat flow through it via the po-
sition dependent electron-electron interaction, even though the electronic transport between leads is blocked. In
particular, it is demonstrated that, under certain conditions, the stationary distribution of the excitations in the
mechanical subsystem has a Boltzmann form with an effective temperature, which is much lower than the tem-
perature of the environment; this seems rather counterintuitive. We also find that a change in the direction of the
temperature gradient can result in the generation of mechanical vibrations rather than the heating of the mechan-

ical subsystem.
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Nanoelectromechanical systems (NEMS) promise to
manipulate mechanical motion of the nanoobjects using
electronic dynamics. There are many approaches to con-
trol nanomechanical (NMS) performance providing a
number of new functionalities of nanodevice operations,
in particular, pumping or cooling of the mechanical sub-
system [1-5]. One of the main approaches exploits the dc
electronic flow through the nanosystem induced either by
the bias voltage or temperature drop between two elec-
tronic reservoirs connected by the NEMS [6,7]. Recently
new type of nanomechanical heat engine, which working
principle is based exclusively on the heat flow, was sug-
gested in [8]. It was shown that the electron-electron cou-
pling in NEMS may results in a nanomechanical instabil-
ity controlled by a heat flow, even though the electronic
transport between the leads is blocked. However, a
semiclassical approach used in this paper didn’t allow to
investigate the operation of such NEMS in a cooling re-
gime. In this paper, using reduced density matrix approach,
we calculate a Wigner function characterizing a stationary
state of the mechanical subsystem in the NEMS similar to
one considered in [8]. We demonstrate, that, at certain
conditions, it has a Boltzmann distribution form with an
effective temperature which is lower than the temperatures
of the adjacent electrodes.

There are many different experimental realizations of
the general concept presented in the paper. To be concrete

© S.I. Kulinich and L.Y. Gorelik, 2018

we chose one which, may be not the easiest, but the best,
from our point of view, for the illustration of the basic phys-
ical phenomenon. This prototype NEMS device (Fig. 1)
comprises two single-level quantum dots (QD) positioned
sequentially between two electrodes — left (L) and right
(R) — kept at different temperatures T, and Tg, corre-
spondingly. One quantum dot (right) clamped to the right
electrode while another one (left) is attached to the left
electrode by nanomechanical link and is free to move in
horizontal direction. The electronic levels of the fabricated

Single level QDs

Fig. 1. The scheme of the device — two single-level quantum
dots (left and right) is placed between the leads that are kept at
different temperatures, T; = Tg; t,(u) is the tunneling amplitude
of electron from the lead x=(L,R) to the corresponding dot, | is
the distance between the dots and F is the strength caused by
Coulomb interaction of the dots.
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quantum dots are connected to the corresponding elec-
trodes through high resistance tunnel barriers. At the same
time the distance between the dots is too large to allow
tunneling between them, but is short enough so that the
Coulomb interaction between charged dots significantly
affects their population. We made this assumption solely
for the purpose of blocking electronic transportation be-
tween electrodes allowing at the same time the heat trans-
fer between them. The mechanical deflection u of the left
dot affects the electronic subsystem by changing the tun-
neling rate, I" (u), between the QD and the left electrode.
Conversely, the electronic subsystem affects the deflection
u via a Coulomb force acting on the charge residing on the
QD if another one is also charged.
The Hamiltonian of the system has a form

H :|:|I+|:|dot+|:|tun+|:|v! 1)

where Hamiltonian I:|| describes the noninteracting elec-
trons in the leads,

J - T
H| = ZskyKak’Kak'K, (2)

k,x

aE’K(ak,K) is the creation (annihilation) operator of elec-
tron with the energies ¢, . in the leads « = (L,R). The
Hamiltonian H 4, describes the electron states in the dot,

Hor = ELAL +Erfig +U (u)A fig, 3)

where E,_ is the energy level on the corresponding dot,
A = dZdK,dl(dK) is the creation (annihilation) operator
of the electron state on the dot «,U(u)~Uqy-—
—Fu (F ~ e?/1? > 0) is the energy of Coulomb interaction
between the electrons on the dots, | is the distance between

the dots. The Hamiltonian H,,

Cp? melu?

H,=—+ , 4
° o > (4)

describes the mechanical dynamic of the left dot, p and u
are the canonical conjugated momentum and coordinate,
[p,u]=—in; m, o are the mass and eigenfrequency of the
dot, correspondingly.

The connection between the dots and the leads is de-
scribed by the standard tunneling Hamiltonian,

|:|tun :tL(U)ZdEak,L +tRZd;EakYR+H.c., (5)
k k

where the tunneling amplitudes are t_ (u) =t exp(u/i),
tr () =tg = const and A > 0 is the tunneling length.

In this paper we will assume that the temperatures in the
leads T, are much greater than the width of the electronic
levels on the dots, 7", = 2ant,§ (here v, are the density of
states in the leads). This assumption allows one to neglect
coherent mixing between electronic states of the dots and the
leads and to factorize the total density matrix p(t)

P(t) = Paot ®PL ® PR, (6)

where p,. is an equilibrium (Gibbs) density matrix in the
lead « with the temperature T,. and py is the density ma-
trix of two dots which also describes the mechanical dy-
namics of the left dot.

Then following the standard procedure (see, for exam-
ple, [2]) we get the following master equation for the re-
duced density matrix pyo (below index “dot” in pgyo; and
H ot IS OMmited),

a;ﬁt) +%[I—A| +Ho,p0 = LG TR ()

wherein the collision integral fK{f)} has the form

e = 2@ [ 500, + 0] V@ -5 (M@, +
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Here p is a chemical potential which is supposed to
be the same for both leads, B, are inverse temperatures
of the leads, I' (u) =T"| exp(2u/r), Tr(u) =T = const
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and [A, B]+ = AB + BA denotes the anticommutator of the
operators A, B.
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In the following we will use the dimensionless varia-
bles,

u r
LT LN toa—)t,—K—H"K,l—w,
Up /] O] Up
2,2
N N Fu
A, A, =24 T ¢ )
2 ho

where ug =~/#/me is an amplitude of zero-point oscilla-
tions. We restrict our consideration to the case of rela-
tively large temperatures, B, 7o <1, which allows us to
replace p(t—#ip,t) — p(t) and neglect the vibronic Ha-
miltonian I:|v in Eg. (8). In addition we assume that
F <1 and neglect the coordinate dependence of the Cou-
lomb interaction.

The reduced density matrix describes the oscillator at
different population of the dots and may be presented in
the form

p(t) = (1-A)(A-Ag)po +A (1-fg)pL +
+Ag (1= )pr +ALALP,. (10)

Here the mechanical density matrix pgy = pg(u,u’) de-
scribes the state of the oscillator when both dots are “emp-
ty”, p. =p(u,u’) describes the state of the oscillator
when only one dot is occupied, and p, = p,(u,u’) is the
density matrix of the mechanical subsystem when both
levels on the dots are occupied. Substituting Eq. (10) into
Egs. (7), (8) we get the following system of equations de-
scribing the evolution of the mechanical subsystem:

%H[ﬁmpo]:ﬂ— )T WpLTLW) -

30
_LT[FL(U)vPOL +Tr(1- fél))pR -Tr fél)po, (11)

0 A
%H[Hv,m]: £ YL U)po T () -

1- £

— L@ e ], + TR 102 TR0, (12)
0 T
PR +i[Aypr | = @- (E) T @ T @) -

@

_LT[FL(U)IPRL -Tr(1- ngl))PR +I'R fp(al)Po, (13)

%H[HAU ~Fu,p, | = f@TLU)prATL () -

1- £

S TLW 2], T )0z +Trfi7py. (14)
In Egs. (11)-(14) we used the notations fK(l) = f . (Es),
féz) = f (E. +Ug), where

fe(E)=[1+expB (E-p)] (15)

is the Fermi-Dirac distribution function.
To analyze the system (11)—(14) we will use the Wigner
representation

Wy (U, p) = 2—171 j dee Popa(u+E/2, u—£/2).  (16)

Defining operators T;, T, as

Tlf(u,p)z—%{u%—p%jf(u,p), 17)
'I:Zf(u,p): f(u,p+i/7»)+f(u,p—i/7»), (18)

2
one finds that the equations of motion, Eqgs. (11)-(14), in
the Wigner representation take the form

T + (1— T W - FPT (u)Towg +
+Tr(- P )W -Tr f W, =0, (19)
T + T uWo - (- )T T w +
+ TR fPW, -Tr oW, =0, (20)
TWg +(1- f )0 (W, - 12T ()T W, -

~Tr- i Wg +Tr W, =0, (21)
W, +F %ﬂ+ fOT UWg - (- f 2T )T W, -
P

- TR W, + T fPwW, =0. (22)

We are interested in the steady state regime of the vi-
brational subsystem in the limit when the parameters F
and 1/A are small. To find the solution of Egs. (19)—(22) to
leading order in these parameters it is convenient to intro-
duce linear combinations of the Wigner distribution func-
tions as follows:

WZ :WO +W|_ +WR +W2, (23)
Rl :WL +W2, R2 :WR +W2, R3 :WZ' (24)

In addition, it is convenient to change from (u, p) to polar
coordinates (A, @) so that u—u = Asine and p = Acoso,
where U ~ F is the equilibrium position of the left dot. In
polar coordinate the steady state equation for the Wigner
distribution function Ws. (A, @) that describes the vibration-
al degree of freedom is given by the equation

Wy i R
_a_(p2+ L(0Wy — FRy)+ T (1-T,)Y =0, (25)

Y =Y(Ag) = fP Wy ~R ~R, +Rg)+

+(1- FY (R =Ry)+ 1D (R —Rg)+(1- f?)Rs,  (26)
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where I' =T (A,¢) =T_exp(2Asin¢/%) and differential
operator L is defined according to the expression
0 sing 6
L=cosp——-—T— 27
Poa" A o9 @)

Equation (25) for the oscillator Wigner function Ws (A, ¢)
is coupled to the steady state equation for the vector-
function |R) = (Rl,RZ,R3)T. The equation for |R) takes

the form
dIR
R 4 Ni(Ag) Ry =P, (28)
oo
I (F -1 0
M (A)=| () - 1)y I'g 0o |
—féz)FR —flfz)f‘L fL +FR
(29)
l ~
AN UR, — FR;
|F)y =Wy | f9Tg |+L| TR, —FRy |. (30)
0 UR; — FRy

Equations (25)-(30) have to be solved subject to the pe-
riodic boundary conditions Ws (A, ¢+2n) =Ws (A, 9),
Ri (A 0+ 27m) = R; (A ¢) . We will find the analytical solu-
tions of these equations in the limit of small-amplitude
vibrations, A< A.

For small vibrations an analytical solution can be found
by perturbation theory in terms of the small parameters
e ={F,/A}. In this case Egs. (25), (28)—(30) take the form

—%H:(UW —FR3)+F—L2I:2Y:0, (31)
o 21
oW A .
W) Nig | W) =1f), Mg =M(A=0,0), (32)
1
1, R, — FRy
1) =Wy | TR |+L| UR, —FRy |+
0 UR; — FRy
o a | W RO - 1R,
+ =L sing 0 . (33)
f2R, — Ry

We solve these equations by perturbation expansions
R(A9) =RO(AQ+RO(Ag)+..  (34)

(and similarly for the function W (A, ¢)), where Ri(”) is of
nth order in «.
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It is evident from Egs. (31)-(33) that the functions
W(O)(A 0), R (A ¢) do not depend on ¢. Hence,
O (A ¢) = w( (A) and

0 = w®, /D = @, R =, (35)

where n; = n; (T',B,.). The exact expression for the func-
tions n; is given in Appendix.

To first order in perturbation theory Eq. (31) determines
the equilibrium position of the dot, U = Fn,. To second
order in perturbation theory Eq. (31) after averaging over
¢ takes the form

F %(A<cos (pR(l) >) W o

D 8
0.2 A oA

Here the coefficient D; is the function of the tunneling
rates and temperatures of the electrodes (the exact form of
this function is given in Appendix). The brackets,
(f(A ), in Eq. (36) denote the zeroth Fourier component
of the 2n-periodic function f (A,¢). Deriving Eqg. (36) we
used the property

] 0. (36)

(CF (A @) = l3(A<<:os<p f(Ag)). (7
A OA

Therefore, to get a closed equation for W(O)(A) one needs
to know the function R(l)(A ¢). This function can, to first
order in perturbation theory, be determined from Egs. (32)
and (33). As a result one gets the stationary Fokker—Planck
equation for the oscillator Wigner distribution function

w0 (A),

g 60 (AZWE(O) ) DL

o w0
oAl oA

] =0, (38)

where the drift G and diffusive D coefficients take the
form
-2 2
=", p:M, (39)
A 2
the exact form for the coefficients G, D, is given in Ap-
pendix. The solution of Eq. (38) at small values of ampli-
tude has the form of a Boltzmann distribution function,
Ws (A) ~ exp (—BAZ/Z), where AZ2/2 is the vibrational
energy and coefficient B plays a role of an effective tem-
perature, and is given by equation
B:Q/D:LZG. (40)
D; + D, (AF)

It is a matter of direct verification to prove that the coeffi-
cients D; are positive, while G ~sinh(Br —B)Uq/2.
Therefore the sign of the effective temperature depends on
the direction of the temperature drop. Negative tempera-
ture corresponds to the situation of the nanomechanical
instability considered early in [8]. If the temperature of the
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left electrode is greater than the temperature of the right
electrode one can compare the effective temperature of
the mechanical subsystem with the temperatures of the
leads. It is appropriate at this point to recall that the drift
coefficient G was calculated above with accuracy to
B fio. In the cases L — oo, F — 0 or B = B, drift coeffi-
cient G — 0, and the corrections of the order of B, s are
of first importance. One can show that in this situation
the effective temperature is of the same order as tempera-
tures in the leads.

From Eg. (40) one can see that inverse effective tem-
perature as a function of the parameters A and F takes a
maximum value, B = sy, When AF =,/D;/D, and

oSBT
\/D]_(BKIFK)Dz (BK’FK)

In this paper we will analyze particular case when the
heat flow between electrodes generated by electronic
subsystem takes a maximum value at fixed I',.. This is
the case when the following condition are satisfied:
' =Tr=T/2, E, ~Eg ~Up/2and T <Uy < T,.In
that case flfl) = flfz) =1/2, ngl) =1, ngz) =0 and the
maximum inverse effective temperature is defined by the
equation

(41)

Brmax

2
TN = 3% +1) [I2+1 (r?+12). ()
4 24

From this expressions it follows that in the case of the
weak coupling between the dots and the leads (I' < 1),
the effective temperature of the dot is Tap" ~+/3/ 2k
(restoring dimension). Thus it is valid to say that we have
a near ground state cooling of the mechanical subsystem.
In opposite case T'>>1 the effective temperature
TN ~ J7/40T.

In conclusion, we theoretically studied the NEMS sys-
tem which is comprised of two quantum dots sequentially
positioned between two bulk electrodes kept at a different
temperature. It was shown that electron-electron interac-
tion between dots inducing the heat transfer between the
electrodes significantly affects the state of the mechanical
subsystem even though the electronic transfer between
electrodes is blocked. We found that at certain direction of
the temperature gradient between the electrodes the sta-
tionary distribution of the excitation in the mechanical sub-
system has a Boltzmann form with an effective tempera-
ture dependent on the parameters of the system. As this
take place, the minimal possible effective temperature is
Tetf ~ 1.2 and might be much less than the temperature
of the "cold" electrode. Therefore it was demonstrated that
the heat flow through NEMS might significantly suppress
the thermal fluctuation in the mechanical subsystem. At
this point we have to note that in all our consideration we
suggest that the mechanical subsystem interacts only with

electronic one. In realistic experimental situation there is
also phonon’s environment which affects the state of the
mechanical subsystem. However the strength of the inter-
action between vibronic mode and phonons in the leads
depend on the quality of the nanomechanical link and
might be much weaker than the coupling between vibronic
mode and electronic subsystem.

SIK acknowledge financial support from NAS
Ukraine (Grant No 4/18-N and Scientific Programme
No. 1.4.10.26.4/F26-4).

Appendix

The expressions for the functions n; =n;(C,By),
Eg. (35), have the form

_ £ 01 @ £ @)

n A (43)
1 1 1 2
i - (O (8 - 1)
nR = A ’ (44)
£ Ar £ @r
n, = R LRML+T "1 NR , (45)

r

where T =T +Tg,and A =1 (fY — @£ - 1)),
The expressions for the functions D;, G, Egs. (36),
(39), take the form

Oy =1 | A= f g+ (10— 1), |, 46)

G=_1LtIR |
r(1+1?)
1)¢(2 1 2 1) ¢(2 1 2
012 (1= 10 - @) 10 12 (1- 10 - 12)
X ’ (47)
A
r 1-n
D, = nz{ —— +§1(1—nL)+§2(1—nR)}, (48)
1+I% A

r
& :Z[ i+ (P (0 - 1) |«

x 1 _ 1 ) 1-AI' I'g
2 2 2 R'R T2 2
T +(1_AFLFR) 1+T T +(1_AFLFR)
(49)

r
£ :Z[ 1@ 1@ O féz))}x

_r f(z) 1—AFLFR
L'L 2 2
r +(1—AFLFR)
(50)

. 1 1
I24+(1-AT Tg)? 1+T7?
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OxonoaXeHHs1 MeXaHi4YHMX KoNmnBaHb TEMMOBUM
NOTOKOM

C.1. KynuHuy, J1.1O. MNopenuk

PosrisiHyTo HaHOMEXaHIYHHHN 3B’SI30K MK JBOMa METAICBIMHU
eNIEKTPOZIaMH, SIKI MiATPUMYIOThCS TIpHU Pi3Hiil Temmeparypi. [loka-
3aHO, II0 MeEXaHiyHa JWHAMIKa B Takili CHCTEMI ICTOTHO
BH3HAYAETHCSl TEIUIOBUM ITOTOKOM. ICHYBaHHS HEHYJIbOBOTO Tell-
JIOBOTO TIOTOKY OOYMOBIICHO €JICKTPOH-EIEKTPOHHOK B3aEMOJIIET0,

IpH LbOMY HOTIK 3apsily MDK €JeKTpOoaMH BiACYyTHii. BcraHoB-

JIeHO, IO 3a IEBHUX YMOB CTAIllOHAPHMH PO3MOALI 30y/KEHb B
MEXaHIYHI MiacucTeMi Mae BHIVIN OOJBIMAHIBCHKOI (YHKIIT
po3moiay 3 epeKTHBHOIO TEMIIEPATypolo, sIKa 3HAYHO HIDKYA 32
TeMIIepaTypy eneKTpofiB. Takox IOKa3aHO, IO 3MiHa HAIPSIMKY
rpajlieHTa TeMIepaTypy NMPU3BOAUTH 10 MEXaHIYHHX KOJIMBaHb, &
HE JI0 HarpiBaHHS MEXaHIYHOI TiICHCTEMH.

Kitto4oBi crioBa: HaHOENEKTPOMEXaHIYHA CUCTEMA, TEIUIOBHIA MOTIK,
BITHEpiBChKa (PyHKIIisT pO3HOJILTY.

OxnaxaeHne MmexaHn4yeckux konedaHum TennoBbIM
MOTOKOM

C.N. Kynunny, J1.1O. MNopenuk

PaccmoTpena HaHOMeXaHUUECKas CBA3b MEXTY JIBYMS MeTall-
JIMYECKUMU DJIEKTPOAAMH, KOTOPHIEC IIOJIEPXKUBAIOTCS IIPU Pas-
JMuHOM Temneparype. [loka3aHo, 4YTO MexaHuYecKas IMHAMUKA B
TaKOH CHCTEME CYIIECTBEHHBIM 00pa30oM OIpPEAEIseTCsl TEIUIOBBIM
noTokoM. CyIIecTBOBaHHE HEHYJICBOTO TEIUIOBOIO IOTOKA 00y-
CIIOBJICHO JJIEKTPOH-2JIEKTPOHHBIM B3aHMOJICHCTBHEM, HPH STOM
MOTOK 3apsfa MEXIy 3IeKTPOJaMH OTCYTCTBYET. Y CTaHOBIEHO,
YTO HPH ONPEJENCHHBIX YCIOBUAX CTAlMOHAPHOE pacHpe/ieleHue
BO30Y)XKICHHH B MEXaHWYECKOH MOACHCTEME MMeeT BUI OoJbLMa-
HOBCKOH (hyHKIMH pacnpeneneHus ¢ 3pQeKTHBHON TeMIepaTypoH,
KOTOpas 3HAYUTENBHO HIKE TEMIIEPATyphl 3MEKTPonoB. Takxke
M0Ka3aHO, YTO M3MEHEHHEe HAIllpaBJICHHS IpajyeHTa TeMIepaTy-
pBI NPUBOAUT K MEXaHMYECKHM KOJIeOaHUsIM, a HE K HarpeBy
MEXaHUYECKOH TTOICHCTEMBL.

KiroueBble c10Ba: HaHORIEKTPOMEXAHMYECKAs! CHUCTEMa, TEIIOBOM
TIOTOK, BATHEPOBCKAs (DYHKIIHS PACTIPEICIICHHS.
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