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Solid deuterohydrogen is in many respects a typical
representative of the family of hydrogen isctope crys-
tals. The main distinguishing and intriguing feature
is the eccentricity of the HD molecule. This feature is
expected 1o entail certain peculiarities in the behavior
of solid deuterohydrogen, as compared to H, and D, .

The motivation to look into the expected distine-
tions of the interaction between HD molecules was
stimulated by our recent powder x-ray resulis on the
structure of solid deuterohydrogen {1 ]. In conirast fo
the earlier measurements {2,3 ], where the purity of
the samples was not reported, our samples were pos-
sibly purest. One of our most striking findings was the
relatively large (more than 19, deviation of the ¢/«
ratio, extrapolated to T = 0, from the ideal value of

v8/3 = 1.633. It is worth mentioning here that the
rather strong electrical quadrupole-quadrupole
(EQQ) interaction between J = 1 species in the solid
homonuclear hydrogens is unable to shift this ratio in
the J = l-rich mixtures by more than one tenth of
that amount. We have formulated [1] a hypothesis
that this deviation of the ¢/ q ratic might be due to the
specificity of the anisotropic part of the interaction
between HD moleculzs. The aim of this report is o
consider in detail this interaction in solid HD and to
understand the implications that stem from the spe-
cificity thereof.

Now I shall recall the basic facts about the hydro-
gen molecule. The forces that bind two hydrogen iso-
tope atoms into a molecule are strong enough to sup-
press the zero-peint intramolecular vibrations and, as
a consequence, the internuclear spacing within the
molecule as well as the outer molecular dimensions
or, in other words, the electron density contour are
virtually the same irrespective of what isotopes con-
stitute the molecule. Moreover, the hydrogen mole-
cule is almost spherical, its ecceniricity not exceeding
5% [4]. Thus, the static interaction of two isolated
kydrogen molecules of any isotopic composition is es-
sentially the same if referred to their geometric cen-
ters. But now we must take into consideration the fact
that a molecule in the solid vibrates and gyrates aro-
und its center of mass rather than geometric center,
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In the homonuclear molecules such as H2 or D2 these

two centers coincide, whereas in the HD molecule
they do not, This means that the HD molecule vib-
rates as a whole in the solid not as an almost spherical
body (as is the case with H,) but, which is more

impoertant, it rotates in an off-center tumbling man-
ner, rubbing against its partners with the protruding
lighter-isotope end (Fig. 1).

The off-center shift of the center of mass along the
internuclear axis of the HD molecule, A, amounts to
one sixth of the internuclear distance. This shift pro-
duces an eccentricity more than three times as large
as the natural one of 5%,.

This report mainly concerns the anisotropic part of
the interaction between HD molecules. If, for the time
being, we ignore the intrinsic weak eccentricity of the
H D molecule, considered with respect to its geometric
cenier, then the main contribution to the anisotropic
potential will come from the isotropic part of the po-
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Fig. 1. A schematic representation of the HD molecule. The mole-~
cule rotates around the center of mass, which is shifted off the geo-
metric center by A, Thus, even a spherical particle will be seen by
its neighbors as an anisotropic entity. For HD, A = 2d/6, where
2d = 0.7412 A is the internuclear spacing.
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tential with the proviso that the essentially spherical
molecule is rotated not around its geometric center.

Thus, the anisotropic interaction between homo-
nuclear species (H, , D, , T,) comes from:

(i) noncoincidence of the internal distributions of
positive and negative charges (EQQ);

(ii) the valence and dispersion contributions due to
the very small eccentricity of the outer electron dis-
tribution contour.

Unlike in the homonuclear species, the anisotropic
interaction between heteronuclear species has an ad-
ditional term due to the tumbling motion of the mole-
cules around their centers of mass, which are shifted
from their geometric centers. Thus, even strictly iso-
tropic forces generate an anisotropic contribution [§ ].
This contribution, which is important for HD, can be
constructed in the following way (Fig. 2).

The anisotropic potential due to the off-center shift
can be written as a series in the powers of the two
vectors, which represent the shifts A in each of the
molecules, viz., wA and w'A (they are small as com-
pared to the intermolecular distance at not too high
pressures). Re-arranging the expansion into spheri-
cal tensors (see Fig. 2) we obtain (I show here only
the leading terms, which are not higher than quad-
raticin A)

Vams = 7efl + ch2 + sz + V M
' where
V.4 = U;R)(C,(®)-C,(m) ~ (C;@")-C;m)] ,
)
V.2 = Uy(R)[(C(@)- () — (Cy@")-C,m)]
&)
Vi = Up(Ci (@) C (@) , @)

V, = U (R){C,(®) ® C,(@")}, Cy(m)) . (5

Heren = R/R; w and @' are the unit vectors along the
shifts in each molecule;

. Cyn(@ = (4n/2N + 1) 2y, @) 5 6

Y, are the standard spherical functions. Equations

(2) to (§) involve scalar and direct products, which
are defined, respectively, as

(Cp(@)-Cp(b)) = Y (=1)"Cy,(a)Ch,) 5 (D

{C,(@) ® C (")}, =
= 2 C(112; n,v—n)Cy (@)Cy,_,(@))  ®
n
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Fig. 2. Interaction of HD molecules. The radius vector R sets the
frame, in which the interaction of two hydrogen molecules does not
depend of the species involved. The vector Ry separates the centers

of mass, around which the molecules rotate and vibrate in the solid.

with C(112; n, v—n) as the Clebsch-Gordan coeffi-
cients. The interaction contributions of Egs. (2) to (5)
was first derived by Van Kranendonk [5] in a some-
what different form and used to calculate the band-
width of the J = 1 roton in solid HD.

The amplitudes of the interaction terms are

Up =8P ; S ®

Uy = E23) (@, - @) ; (10)
Uy, = - C3)(@,+20) ; ap
U,=-@2N@,-0). U2

Here we introduced the following designations:
@, = Ryd vy (R)/dRY a3

with vo(R) as the isotropic potential between hydro-
gen molecules with respect to their geometric centers;

¢ =A/Ry=d/3R, . (14)

The potentials V oA and V, , when duly summed

over the lattice, must have produced the crystals
fields of the respective orders. The former cancels out
due to the symmetry of the hcp lattice. The other,
when summed over an arbitrary hcp lattice, yields a
generally nonzero crystal field of the form

Ve = €3,C20(@) as

(the reference frame is based on the ¢ axis of the
crystal) with

—ZCzo(na)Uqﬂ(Ré)—\/— EUpn+ 5 R Uy -
16)

Here the summing is over the nearest neighbors &,
and

E=c/la-V8/3 . 1))
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As Eq. (16) implies, the crystal field constant ¢, is

zero for the ideal ¢/ a ratio.

Equations (4) and (5) reflect a coupling of the two
molecular angular momenta. The former is an
isotropic-Heisenberg coupling, while the latter is al-
gebraically a dipole-dipole coupling, except for the
spatial dependence of the interaction constant (I
remind here that for the true electrical dipolar inter-

action the constant is proportional to R73).

Now about some properties of these two interac-
tions. In line with the standard reasoning regarding
the solid hydrogens at low temperatures, we shall
consider only the states with J = 0 and 1. If we are
working in the J = 1 manifold, then using the Wig-
ner-Eckert theorem, we can reduce various spherical
functions to functions of fixed J = 1 operators. What
is interesting with the V,, and V_ operators, their

matrix elements within the J = 1 manifold are all
identical zero. 1t is this interaction that gives rise to
the J = 1 roton in solid HD, whose bandwidth has
been evaluated [5] to be about 2 K. It is no surprise
because this roton is a state that is supported by tran-
sitions with the J flipping at a site from 0 to 1 and
back. Thus, the above linear couplings will give non-
zero interactions only if we have a mixed-J state.

If the problem is reduced to a single-particle one,
the rotational wave function W of molecule i can be

- written in the form

V() ~ [0);+ Y a,@) |1n), . (18)
17

Here |0) and | 1u) are the eigenfunctions of the mo-
mentum J. Note that in the homonuclear hydrogens
this would not make sense, because the average of any
operator involves strongly forbidden transitions be-
tween states of different parity (the so called o—p-
transitions) and are thereby very small in magnitude.
That is, in H, or D, the both J =0 and J = 1 ma-

nifolds are almost entirely separated. It is not so in
HD.
Let us come back to Eq. (18). The coefficients a,

are in fact the order parameters. Thus far, there are
three independent ones. If we take a homonuclear
species, then the confinement strictly to the J =1
manifold imposes the normalization restriction:

Eﬂaz = 1. In addition, there is also a symmetry re-

striction reflecting the fact of head/tail indistingui-
shability for this homonuclear species. This leaves
one linear combination of a,asa single independent

order parameter.

Before going further with the properties of solid
HD, I would like to compare the strengths of various
interaction components.

Evaluation of the anisotropic interaction constants
for HD as a function of the intermolecular separation
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was done employing the isotropic model potential
suggested by Silvera and Goldman [6], where 1 took
their parameters for the short-range repulsion and
the values for the dispersion attraction coefficients as
evaluated for H, by Mulder et al. [7]. Since the po-
larizabilities of H2 and HD differ [8] by less than
G.5%,, those values are very good estimates for HD.
In Fig. 3 the anisotropic interaction constants are
compared with the strongest intrinsic anisotropic en-
ergy of the EQQ interaction. As one can see, all the
interactions are weak specifically near the zero-pres-

sure separation of Ry =7a.u. =3.172 K [11. The
U, value is about —0.2 K per particle at R, and goes
further down with decreasing spacing. The U con-

stant is positive (0.7 K) but changes sign under a very
low pressure, or at a slightly closer separation. Now

~we must take into account the quantum nature of the

HD crystal, that is the potentials must be averaged
over zero-point vibrations, which are substantial in
solid HD. Since the points of intersection of both po-
tential curves with the R axis are close to R, , this

averaging diminishes the interaction constants notic-
eably, making the evaluated constants and even their
sign uncertain. Account of the higher (fourth) terms
in Egs. (11) and (12) «stabilizes» the interaction con-
stants to be: U;, close to —0.14 K and U, close to

—0.32 K. The signs imply that the Heisenberg-like
interaction will tend to orient the momenta homo-
geneously in parallel and the guasi-dipolar one will
mainly serve as an anisotropy field that ties the paral-
lel momenta to the crystallographic axes.
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Fig. 3. The constants of the anisotropic interactions between HD
molecules. RO is the nearest-neighbor separation in solid HD at

Zero pressure.
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Finally, we must remember that the EQQ interac-
tion is also actual for HD and, moreover, it is the most
efficient interaction term for J =1 states at low
enough pressures. Let us compare the EQQ interac-
tion with the anisotropic interactions inherent oniy in
HD. At R, = 7a.u. the EQQ constant is 30-46 times

stronger than the two interactions under considera-
tion. However, as the pressure is raised, the dipolar
interaction, for example, compares with the EQQ one
at a pressure of roughly § kbar and then exceeds it in
absolute magnitude at still higher pressures (shorter
distances). Similarly, the Heisenberg-like interaction
overtakes the EQQ one in magnitude at a pressure of
about 8 kbar. Thus, at pressure above 5-8 kbar the
specific anisotropic interactions are likely 1o become
the main factor that will govern the order parameter if
such appears.

Summing up, at higher densities, when one might
expect a pressure-driven orientational order to ap-
pear, there will be three types of interaction ready to
compete for the control of the emerging order pa-
rameter. More to that, since the Heisenberg-like in-
teraction is nonfrustrative, in contrast to the quasi-
dipolar and (especially) EQQ ones, it is expected to
be dominating, the other two interaction components
serving mostly as the factors that impose crystallo-
graphy-related restrictions.

Considering the same problem at another angle,
the mechanism of a possible pressure-driven transi-
tion to an ordered state of forced-nonzero-J states
can be completely different from that in D, and (hy-

pothetically) H, , where the order is of collective

character, i.e. being due to the total sum of EQQ
interactions, which overweighs the energy loss of go-
ing to the higher J = 1 state. In HD, when both U,

and U, are sufficiently strong (and they are the mea-

sure of the J = 1 roton band width), the creation of a
single J = 1 roton can become energetically favorable
as compared to the energy of excitation to the J = 1
state. This effect is basically the one generally recog-
nized for the origin of zero-point vacancy waves in
quantum crystals, when the gain due to the delo-
calization overweighs the loss of creating a vacancy.

Finally, we shall show thart the presence of the spe-
cific anisotropic interactions in HD tends to introduce
certain changes in the structure parameters of the HD
solid. Suppose a spatially dependent distortion ap-
pears in the solid. Then the corresponding change of
the elastic energy per unit volume in the continuum
approximation will have the form (for a hcp structure
with the c axis as the z direction)

2 L .2
Wy = (1/2)cy (i, + 1z + (1/2)eyqul, +

+ Ottty + €3l ey, + uyty) 19
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where

uy = (1/2)(3u; /ox; + ou; /9x;) Q0)

is the distortion tensor. It is easy to show that

u,=vV3/8&=v3/8cla-1. Q2n

Regretfully, there are no measured or calculated elas-
tic moduli for solid HD, even for zero pressure. So one
has to guess, choosing between Cij for H, , obtained

from sound velocities [9 ], and D, at 70 bar (deduced

from neutron scattering data [10]).

Equation (20) should be complemented with the
rotation-distortion coupling energy terms, one of
which is Eq. (16). Similar terms come from U,, and

U,. The second-order perturbation theory yields

= —0.0038 (the sign is definite), which should be
compared with the experimental value [1] of —0.015.
The agreement is rather good, considering all the
uncertainties involved.

Conclusions

1. The specific anisotropic interactions between HD
molecules stemming from the fact that the HD mo-
lecules rotate not around their geometric centers can
account for the structure anomalies found in experi-
ment. ‘

2. At comparatively moderate pressures (below
10 kbar) the specific anisotropic interactions compare
with the electrical quadrupole-quadrupole interaction
and can be the decisive factor in forming the eveniual
orientational order parameter to appear in a pressure-
driven phase transition.

3. In solid HD, the rotational wave function in-
volved is essentially a mixture of the J = Qand J = 1
states at any pressure.

4. The mechanism of the pressure-driven orienta-
tional ordering might have a different (as compared to
that in the homonuclear hydrogens) nature, the
emerging delocalized J = 1 roton states being a direct
analog of the zero-point vacancy waves suggested for
ultimately quantum crystals.
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