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Orientational ordering in molecular crystals
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The general phenomenon of orientational ordering in molecular crystals is reviewed. Some of the basic physical
questions which arise in connection with orientational ordering in molecular crystals are enumerated and experimental
techniques used to address them are described. The description of orientational ordering in terms of order parameters
and the resulting form of the Landau expansion is discussed for several typical cases. The relation to the modern theory
of critical phenomena and notions of elementary excitations are also discussed. Analogous theories of dynamics are

briefly mentioned.

1. Introduction

One of the oldest problems in molecular crystals

concerns the ordering transition that occurs when mo-
lecules (or molecular groups) cooperatively develop
long range orientational order. Perhaps the most ce-
lebrated example is solid ortho-hydrogen (o-H,) in

which molecular ordering was discussed as long ago
as the 1930’s by Pauling [1]. In both solid H2 and

solid N, there is a critical temperature (~ 4 K for
o-H, and ~ 35 K for N,) above which the orienta-

tions of molecules are essentially random and below
which long lange orientational order appears discon-
tinuously. In the orientationally ordered phase the fcc
lattice of molecules consists of four simple cubic ori-
entational sublattices, within each of which all mo-
lecules are preferentially oriented along one par-
ticular [111] direction, as listed in Table 1. This
structure, which occurs in several contexts, is an in-
teresting {2 ] cubic space group, Pa3. The purpose of
this paper is to review the phenomenon of orientation-
al ordering. Theoretical descriptions of this ordering
and experimental techniques to investigate such sys-
tems will be described. Readers wishing further de-
tails may usefully refer to a number of reviews [3-8].
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Table 1
Data for the two possible realizations of the Pa3 structure
Site Molecular orientations along 3-fold axes
0,0,0 [1,1,1] [L,1,1]
a/2,a/2,0 (1,1,1] (1,1,1]
a/2,0,a/2 [1,1,1] [1,1,1]
0,a/2,a/2 [1,1,1] [,1,11

Two equivalent realizations of this structure are shown in columns 2
and 3.
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2. Basic phenomena

2.1. Fundamental theoretical concepts

It is useful to enumerate the most fundamental
questions which arise in connection with orientational
ordering phase transitions. These are

A) What kind of order parameter is required to
describe orientational ordering? Clearly, different
systems may require different types of order para-
meters.

B) What is the form of the Landau expansion of the
free energy in terms of the aforementioned order pa-
rameters? The most obvious consequence of such a
theory will be to predict (or explain) whether the
transition is continuous or discontinuous.

C) What is the nature of the symmetry operation
which takes one orientational ground state into ano-
ther? In particular, if this symmetry operation is con-
tinuous (e.g., uniform rotation in the case of an iso-
tropic ferromagnet), one expects the elementary
excitations to be gapless. In contrast, for discrete
symmetry (such as for the Ising model) there will be
no low energy elementary excitations.

D) In the case of continuous transitions, one would
like to determine the universality class of the transi-
tion. In particular, this will enable one to say some-
thing about the values of the critical exponenis that
characterize the transition.

E) Coupling between the so-called critical order
parameters and the non-critical (or nonordering)
fields can lead to interesting effects. In the case of
continuous transitions such coupling when suitably
increased can lead to a tricritical point where the
transition first becomes discontinuous. When the
non-critical fields are lattice distortions, anomalies in
elastic properties may become significant.

F) The problem of determining what molecular ar-
rangements are consistent with a given crystal sym-
metry can become quite subtle when the molecular
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symmetry is nontrivial (as in the case of the icosa-
hedral molecule, C).

G) The description of the dynamics at the level of
mean field theory is especially interesting when the
transition is either continuous or weakly discontinu-
ous. We will not review such calculations [9 ] here.

2.2. Fundamental experiments

Here we briefly review the major experimental
techniques that have been used to address the concep-
tual issues enumerated in the preceeding subsection.

A) Structure determination via diffraction. To
identify a siructural or orientational ordering transi-
tion the most straightforward technique is that of
powder diffraction of either x-rays (using the rela-
tively recently available high flux synchrotron sour-
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Fig. 1. Comparison of experimental and theoretical powder x-ray
diffraction vs scattering angle. Top: comparison with Pa3. Bottom:
comparison with Pm3 and Pn3. In the comparison with the Pm3
and Pn3 structures, the experimental peaks labeled 1 and 2 are
truncated, but can be seen on the other panel. As shown in Ref. 11,
these are the only space groups which are consistent with a four
sublattice structure of oriented icosahedra. (as W. 1. F: David has
pointed out, for a special value of the setting angle the Pn3 structure
actually becomes that of space group Pn3m.) The setting angle was
optimized for the Pa3 structure to be 21.5° and for the Pn3
structure to be 21.6°. The calculations were done by D. E. Cox and
the data are from P. A. Heiney et al. The setting angle ¢ is given in
the convention that the two equivalent orientations occur at 0 and
47°. The setting angle is the angle through which the molecules are
rotated away from the standard orientation (See Ref. 11).
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ces) or neutrons. The latter has a slight conceptual
advantage in that for nonmagnetic materials neutrons
are scattered by nuclei and therefore give direct
structural information, whereas x-ray are scattered
by electrons and thus, in principle, need a model to
yield structural information. (Usually the model as-
sumes an electronic form factor for spherical atoms.)
If hundreds of reflections are obtained, quite sensi-
tive structural information can be deduced from the
diffraction intensities. Solid hydrogen is a difficult
case because it has only a few electrons (to scatter
x-rays) and the proton has a large spin-dependent
cross section for neutron scattering leading to a large
incoherent scattering. The determination of the
orientational structure of C¢, was a particularly inter-

esting case [10-12]. We reproduce the structural
analysis of Ref. 11 in Fig. 1.

B) Inelastic scattering. Inelastic light scattering,
known as Raman scattering, can provide accurate in-
formation on the frequency and sometimes the width
of zero wave vector modes. When orientational order-
ing is accompanied by an enlargement of the unit cell
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Fig. 2. Raman scattering intensity for para-D as a function of

frequency for two different polarizations. The incident and
scattered photons propagate along the z and x-axes, respectively.
The polarization gives the coordinate axis of linear polarization
{along which the electric field of the photon is aligned).
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(i.e. when the ordered phase consists of more than
one orientational sublattice), one can observe optical
phonons and librational modes. The symmetry pro-
perties of the libron modes with respect to polariza-
tions provide a very sensitive way to test any proposed
structure. This technique was very useful in the case
of solid o-H, and Fig. 2 shows the data of Hardy et

al. [13]which can be well understood on the basis of
anharmonic lattice dynamics [14]. The presence of
orientational sublattices can also be detected via
infra-red absorption. The absorption intensity of op-
tical modes is then usually proportional to the square
of the orientational order parameter [15] (because
when the ordering disappears the unit cell reverts to
an orientationally disordered Bravais lattice.

C) Nuclear magnetic resonance and relaxation.
A common case is that of a molecule which contains
more than one nuclear spin with a magnetic moment.
Perhaps the best example of this is solid hydrogen in
its various isotopic variants. In the orientational dis-
ordered phase the nuclear magnetic resonance
(NMR) line is very narrow because the orientation
fluctuations are effective in completely averaging out
the dipolar interactions between the two protons (or
two deuterons) in the molecule. But in the ordered
phase the orientations of the molecule are preferen-
tially directed along the cubic body diagonals. Then,
the dipolar contribution to the local field depends on
the angle between the molecular axis and the exter-
nally applied magnetic field. In most experiments one
deals with a powder sample, in which case one obser-
ves the famous Pake line shape first observed in solid
o-H, by Reif and Purcell [16] and later extensively
studied by Meyer and collaborators, whose data [17]
we show in Fig. 3.

Observation of the nuclear spin-lattice relaxation
time, T, also provides information on orientational

ordering because, qualitatively speaking, a typical

Fig. 3. Solid curve: NMR lineshape of solid 65% o-H, at tempera-

ture 0.5 K (in the orientationally ordered phase). The dashed curve
is the theoretical curve for a powdered sample, taking into account
dipolar broadening. ’
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result for T, due to orientational fluctuations is of the
form [18]

2,
VT )

22

T ! =
1+w

1

where 1 is the orientational correlation time; w is the
NMR frequency; and V is the magnitude of the fluc-
tuating magnetic field, 4. In most diatomics 4 is the
dipole field created by one nucleus which acts on the
other nucleus. For C, the field A is due to the chemi-
cal shift tensor, whose axes fluctuate in orientation as
the molecule rotates. In principle, one could vary w
and determine v (at any given temperature) by find-
ing the minimum in T, (which occurs when wt = 1).

More usually, one varies the temperature and passes
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Fig. 4. The nuclear spin-lattice relaxation time of nearly pure ortho-
D, as a function of temperature. (All data are for the orientationally

ordered phase.) The fit to a formula similar to Eq. (2) yields a
libron energy, AE/kB, of about 15.4 K. For more precise

experimental details, see Ref. 19.
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Fig. 5. Libron and phonon dispersion curves for the ordered C60
from inelastic neutron scatiering (taken from Ref. 22).

from the limit wt <<'1 at high temperatures to the
reverse case when the orientational ordering has de-
veloped. In the orientationally ordered phase, T,

depends on the number of thermal orientational ex-
citations and therefore shows activated temperature
dependence:

T, x exp (AE/kB m, )

where AE is the energy needed to create a libron and
kp T is the thermal energy. Figure 4 shows data of

this type from Hardy and Berlinsky {19 ].

It is quite common to observe diffusional motion
this way, in which case a resull like Eq. (2) holds.
Data of this type [20 ] indicate that orientational dif-
fusion in the orientationally ordered phase of Ceo

requires surmounting a barrier of the order of
250 meV between successive minima in the orienta-
tional potential. This barrier can also be obtained
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from studies of how equilibration depends on cooling
rate {21 ].

D) Other technigues. An extremely powerful probe
is of course inelastic neutron scaitering, when it is
experimentally feasible. Obviously, for such experi-
ments it is desirable to have single crystals. There are.
some experiments of this type for C, [22]. The in-

terpretation of such experiments is not trivial because
there are several (12) libron modes and the details of
their crossing or near crossing are not easy to follow
without taking an extraordinary amount of data. We
show data of Pintschovius et al. [22]in Fig. 5.

E) Monte Carlo simulations. We should also men-
tion the «experiment» of theorists, namely Monte
Carlo simulations [23]. These have their good and
bad sides. The bad one is that they require a know-
ledge of the intermolecular potential which for com-
plicated molecules like the C,, and C,, fullerenes is

not known in great detail. The good one is that nu-
merical work, if done in great detail, avoids the li-
mitations of the analytic approximations. Note that
for C70 neither experiment [24 ] nor simulations have

really determined the low temperature ordered
phase. In the case of experiment the complicated mo-
noclinic structure wiil probably require single crystal
diffraction data. In the case of simulations the compli-
cated structure obviously depends sensitively on the
presently unknown details of the orientational poten-
tial.

3. Orientational order parameters

In this Section we turn to the description of orienta-
tional ordering in molecular crystals using order pa-
rameters. The simplest way to introduce an order
parameter is through a trial free energy. What one
invokes is an analog of the variational principle for
quantum wave functions, but here the variational idea
is applied to the free energy. This principle says that
the true free energy is the minimum (with respect to
variations of the density matrix p) of

Fria=TrlpH+ Tplnp], 3

where p, the trial density matrix, is normalized by
Trp=1,wesetk 5= 1, and H is the Hamiltonian of

the system. Mean field theory is obtained by looking
for the best trial density matrix which is a product of
single particle density matrices. That is, we set

p=]le:> “)
i
in which case

1
Fiig = 72 TrppjHy+ T 2 Trp;lnp; . (5)
L] t

Fizika Nizkikh Temperatur, 1996, v. 22, No 2
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Here we assumed that the Hamiltonian is a sum of
pairwise interactions: .

=1 6
_TZHU’ 6
‘ 7

In Eq. (5) one may interpret the first term as the
energy and the second term as —7'S, the entropic con-
tribution to the free energy. With such a density
matrix, each molecule finds the optimal state in the
average field of its neighbors. No correlations be-
tween the orientations of different molecules are con-
tained in this ansatz.

3. 1. Wavevector selection

To get the flavor of this approach, consideran Ising
model whose Hamiltonian is

= — J 2 si Sj N (7)
@)
where each §; assumes the values +1 and —1 and {i,/)

indicates a sum over pairs of nearest neighbors on
(say) a simple cubic lattice. Since experience tells us
that we can expect spin ordering in this model, we
take a trial density matrix for the i-th site in the form

=gl +0,5] . ®
We see that
(si)ETrsipi=a'. , )l

so that the order parameter o; is the thermal averaged

value of the spin at site i. Now we evaluate the trial
energy as

1
Fua==77 20,9-T250), 0
i i

where the entropy S(o) is given by
- 8(0) = [1 ;"lnlJ2’°+ l;alnlga] ~

~ 1+ 0" . . an

.

“To minimize the free energy, it is convenient to simp-
ly check the stability of the term in the trial free
energy which is quadratic in the order parameter. To
do that we introduce the Fourier transformed order
parameter:

1 .
o(q) = \/—7\1_- z o, exp (iqry) , (12)
i

where r; is the position of the i-th spin (or later mo-
lecule); qis the wave vector, and N is the total number
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of sites in the system. Then up to quadratic order in
o(q) one has

Fria = %2 [~Jy(Q) + T ] o(q)o(—q) =
q

=13 1 @o@o(-a) . 13)
q

The last line is the definition of the susceptibility
x(q). Here y(q) is the form factor for the interaction:

(@) = exp (iad) , 19
b4

where 3 is now summed over all nearest nieghbor
vectors. For a simple cubic lattice,

7(q) = 2 cos (g, a) + 2 cos (g, a) + 2cos (g, a) ,

where q is the lattice constant.
Now we must minimize Fiia with respect to the ¢’s.

This minimization will yield the actual thermal equi-
librium value of the order parameters, of course,
within the approximation of the mean field theory.
First suppose that J is positive, so that we are dealing

with a ferromagnet. We refer to Fig. 6, where we give

1

aplotofy™ " versus q for two temperatures.

The plot of x"l(q) indicates that for high tempera-
tures this quantity is always positive. Thus, at high
temperatures the minimal free energy occurs when
o(q) = 0 for all q. As the temperature is lowered, the
whole curve shifts downward and when T =
= Jy(g = 0) = 6J, then x(q = 0) becomes zero. The
vanishing of the coefficient of the quadratic term

02(q = 0) indicates that the disordered phase is un-
stable with respect to the formation of order for g = 0.
This means what we knew all along: the instability of
the disordered phase occurs with respect to a zero
wave vector condensation. That is so because J was
positive and we were dealing with a ferromagnet.

0 10 20 30 0 10 20 30

Fig. 6. Plot of x'l versus a q for positive J (@) and negative J (b).
Here the upper curve is for T = 7' and lower curve for T = T with

T1>T2
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When J is negative, the curve has its instability at
g = %/ a, as indicated in Fig. 6. This is obviously the
correct result for an antiferromagnet. The lesson is
that if we introduce position-dependent order para-
‘meters, the ¢ dependence of the inverse susceptibility
will tell us which wave vector becomes unsiable. Fora
modei with competing interactions, say, having near-

st and next nearest neighbor interactions, both an-
tlferromao‘ketxc the instability can come at an incom-
mensurate value of g determined by the ratio between
the competing interactions.

In summary, by introducing position-dependent
order parameters, we allow mean field theory to tell
us the wave vector at which order will occur. This is
what one might call «<wavevector selection». This prin-
ciple is an essential one when there is a possibility of
sublattice formation and we do not know beforehand
what the sublattice siructure actually is. In general
there are three cases. In the first case the instability
comes at zero wave vector. (This point is usually
called the I point of the zone, to use group theoretical
labelling.) In the second case, the instability comes at
a wave vector which is a special high-symmetry point
in reciprocal space. {(In the case of the antiferromag-
net, the instability occurs at the corner of the first
Brillouin zone, and does not depend in detail on the
exact values of the second-neighbor interaction.) The
third case is one which we will not consider in detail
here. In this case, the instability comes at an incom-
mensurate wavevector whose exact value will depend
on the coupling constants. In the first two cases the
ordered phase is described by a relatively small unit
cell. In the third case, the incommensurate wavevec-
tor will depend on all the parameters, including the
temperature. In cases two and three, i is important to
realize that if there is an instability at a wavevector
4, , there is an equivalent instability at all wave vec-

tors equivalent by symmetry to g . (In the case of the

antiferromagnet, the set of equivalent wave vectors
contains only a single member.)

For a given sublattice structure, it is easy to de-
termine the wave vectors needed to build up the
structure. Consider, for instance, the Pa3 struc-
ture, described in Table 1. Take linear combi-
nations  of ,:me waves havmg wavevectors
: 0 Q = (Zn/a)i = (2t/a)}, Q= (2n/a)k, where
1 ], and % are unit vectors along the X, ¥ and z coor-
dinate directions, respectively. Let the respective
amplitudes be Ag, A, Ay, and A, . Then the

amplitude on the sublattice at the origin is
Ao + Ax + Ay + A, , the amplitude on the sublattice

at (a/2,a/2,0)is Ay — A, — A + A, and so forth.
By adjusting these amplitudes 4; , we have arbitrary

amplitudes on each of the sublattices, That implies
that a four-sublattice order requires condensation at
these four wave vectors. However, we see that if we

124

had an instability only at zero wave vector, we would
have a uniform system. So, sublattice formation
reguires critical fluctuations at the wavevectors
Qx s Qy ,Q L As we will see in a moment, the fluctua-

tions at zero wave vector are noncritical. They may be
viewed as nonordering order parameter which are in-
duced by the critical order parameters.

3.2. Orientational order parameters

Finally, we discuss the order parameters which
describe orientaticnal ordering of a single molecule.
Consider a diatomic molecule like N, . (In this paper

«diatomic» always means «homonuclear diatomic».)
In general its density matrix will be of the form

(6, ) = [1 +EcMyM(e (p)] ., as

where we have introduced a full set of order parame-
ters CM 7 - (For such a classical situation, «trace» should

be interpreted to mean «integration over all angular
coordinates».) Since rotating the molecule through
180 degrees leaves it unchanged, C must vanish for

odd L. Although an accurate description would re-
quire keeping higher Cf ’s, we can get a qualitatively

correct theory, i.e. a theory that at least has the cor-
rect symmetry, by keeping only the terms with L = 2.
In generai, we should keep all L = 2 terms. In many
contexts one expects the probability distribution to be
uniaxial, i.e. to have cylindrical symmetry about a
preferred axis. However, it does not hurt to allow for
the possibility of biaxiality. (Biaxiality means that,
say, the maximal probability would be to point along
the z-axis, but the x and y-axes would have lesser, but
unequal probabilities.) To interpret the Cf ’s we note

that (for L # 0)
(yf):fd@ Y26, p)p®,0) =Y . A6

Thus, the ordering of a diatomic molecule is de-
scribed by the five components of a second rank ten-
sor, {}’12”) One can see that in general five parameters

are required: if the probability distribution is biaxial,
it takes three Euler angles to specify the coordinate
system for the principal axes of the distribution..
Given the principal axes, it takes two order parame-
ters to specify the three probabilities for a biaxial
distribution (in which the three probabilities add up
to unity). Alternatlvbly, and perhaps, more intutive-
ly, mstead of the CL s one can choose as the order

parame!er the symmetric traceless second-rank ten-
sor Q, defined by

= 1
Cup={nang=13,5) an

Fizika Nizklkh Temperatur, 1996, v. 22, No 2
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where J is the Kronecker delta, « and f label Car-
tesian coordinates, and 7 is a unit vector along the
molecular axis. This order parameter is the one
usually chosen to describe liquid crystals. If the mo-
lecule is preferentially aligned along, say, the x-axis
in a uniaxial distribution, then

ny=Q:z=—Qxx/2<O;
Quy=0Qu= yz=0 :

On the other hand, if the molecules preferentially
point along one of the crystal [111 ] directions (which
is a trigonal axis), then

0,,=0,,=Q,=0;

(18)

(19)
2 _ A2 2
Qxy T Xxz T Ryz
where the signs of the off-diagonal @Q’s depend on
which [111] direction is associated with the order.

Here we see the simplest case of the principle that all
order parameters of the type (Yﬁ"(@, p)) will vanish

identically if the molecule has sufficient symmetry
that

S AYME p) =0, 20)

where the sum, is over all atoms in the molecule. The
simplest example of this idea is that a homonuclear
diatomic molecule cannot have a dipole moment.
How are we to describe molecules that have even
higher symmetry than diatomics as, for instance, C6o

molecules? A convenient rule is the following: take the
most general interaction between molecules 7 and J of
the form

V(L= Y ®R+r1,-1), 210
enjed

where i € ] denotes atom { in molecule 7, Here R is the
vector displacement between molecules I and J and
r; (rj) is the location of atom i (j) relative to the center

of gravity of molecule I (J). Now expand the atom-
atom potential ® in a multipole moment series. Take
as dominant order parameters

L M= S AN, ey, @

el

for the lowest value of L which can be nonzero for the
given symmetry of the molecule [25]. These quan-
tities, analogs of the mass multipole moments, are
implicit functions of the three Euler angles which
would be needed to specify the orientation of the mo-
lecule. As mentioned before, for a full description one
should take !l multipole moments allowed by the
molecular symmetry. However, the correct symmetry
of the Landau expansion can be obtained by the
simplified procedure outlined here. In actual calcula-
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tion, for instance for C6O, it is convenient to take

symmetry adapted linear combinations of the order
parameters given here. To see that this results in &
simplification consider the following situation. Sup-
pose we have a diatomic molecule placed on a site
having a threefold (trigonal) axis. Then biaxiality is
impossible: it is not consistent with trigonal site sym-
metry. So in the order parameter description we
should only allow order parameters (Y;”) corsistent

with the local site symmetry. In principle, even if we
allowed such order parameters to be nonzero, they
would turn out to be zero, consistent with the local site
symmetry. One should also point out that although
taking the lowest L value for order parameters (Y%)

does give the correct symmetry of the Landau free
energy, it may not be adequate for quantitative cal-
culations, as has been shown for the case of C 60 126 ].

Finally, this discussion also implicitly assumes that
the molecule is not distorted when placed at a par-
ticular site in the crystal. That, of course, is not strict-
ly true. The molecule will suffer a distortion consis-
tent with the local symmetry. Thus, when the
icosahedral C) molecule is put into the site in the

Pa3 structure which has S6 (three fold with inversion)

symmetry, we can expect a corresponding uniaxial
distortion, such that (Yg) will be nonzero, where the

z axis is taken to coincide with the local trigonal axis.
Such distortions will be small to the exient that the
solid is really a molecular solid in which the intra-
molecular interactions dominate the intermolecular
ones. Thus, strictly speaking, the Cy, molecule wilt

have a guadrupolar distortion and it will have a non-
zero anisotropy of its polarizability tensor. (Such an
anisotropy would not be permitted for a true icosa-
hedron.) Physically, this anisotropy could give rise to
a nonzero intensity for the Raman activity of the lib-
ron modes {27 ].

3.3. Examples

Monolayers of diatomics. In this subsection we now
give some examples of the use of mean field theory to
describe orientation ordering. One simple case con-
cerns the ordering of N, or H, molecules on a
graphite substrate. We focus on the registered phase
in which the molecules form a monolayer consisting of
a triangular lattice. We follow Refs. 28 and 29. For
o-H, molecules, the fact that their orientational

ground state has angular momentum J = 1, dictates
that the averages (Yf) with L >2 vanish. Thus for
H, , and also as an approximation for N, , one may

truncate Eq. (15) to contain only the terms with
L= 2.1t is assumed that the molecules interact via
quadrupolar interactions between nearest neighbors
on a triangular lattice and that there is a potential

125
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Fig. 7. The HB phase (a). The axis of each molecule makes an
angle of 45 degrees with respect to the horizontal (x) axis. The PW
phase (b). In this phase molecule 1 tends to be perpendicular to the
substrate and; has no ordering in the plane of the substrate. Just
below the ordering temperature, the other three molecules in the
unit cell each assume one of the HB orientations. As the
temperature is decreased the PW angles will vary.

V.= = (5/6)V,>, (3cos’ 6, — 1)

due to the interaction of each molecule with the sub-
strate. The phase diagram of this model is a rather
rich one, but the most important phases are the so-
called «herringbone> (HB) and «pin-wheel» (PW)
phases, shown in Fig. 7. To describe the nature of the
order parameter in these two phases, it is convenient
to take the z-axis to be perpendicular to the graphite
plane. For these two phases the order parameters
which are nonzero are ofz(i) and a(z)(i). To avoid the
cumbersome prefactors of spherical harmonics, we
introduce the order parameters u,(i) =7,(i),

uy(i) = 1, (@), and uy()) = (i) = IqD by
(sin 0i) exp (£2ip()) = ()  in () 23
and
(3 cos? 6(i) — 1)/2 = o(i) . 24)

To see the significance of these order parameters,
note that if o(i) = 1, then the molecule is oriented out
of the plane, whereas if o(¢) = — 1/2, the molecule is
oriented in the plane. Intermediate values indicate
intermediate ordering. If the molecule is not oriented
precisely out of the plane, then the molecule will as-
sume a preferential orientation within the x—y plane
along an axis which makes an angle y with the crystal
x-axis, where

tan 2y = ny(i)/qm(i) . (25)

Notice that whatever 7, is, ¥ and y + 180° are equi-

valent, as they must be for a diatomic molecule.

One must now evaluate the trial free energy accord-
ing to Eq. (3). When (i) = 0, the equilibrium value
of o, is given by

126

l1-0
ﬁ—fjeiq = exp [-(V, — 271Tay/2)/T) ,  (26)
where T is the coupling constant which scales the
quadrupolar interactions. Notice that even at very
high temperatures this order parameter is nonzero.
This order parameter express the average alignment,
either perpendicular or parallel to the substrate, de-
pending on the sign of ¥, . Clearly, the nonzero value

of this order parameter does not indicate cooperative
ordering. Now we look at quadratic fluctuations rela-
tive to this equilibrium in the substrate «crystal field».
As mentioned, the important fluctuations are those
involving the quantities « (i) for @ = 1, 2, 3. Because

the equilibrium value of o(i) is determined so as to
minimize the free energy when 57,(i) = 0, there are no

terms linear in any of the order parameters. There-
fore the free energy at quadratic order in the u’s is of
the form ’

F=Fog)+53 HICEROPONCD
q aj

where now the susceptibility is a matrix, because the
order parameter is no longer a scalar, as for the Ising
model, but has five components (or in fact only the
three u's that matter) in the present case. It is known
that for quadrupolar interactions, the molecules pre-
fer to be approximately perpendicular to one another.
This explains why it is found that the eigenvalue of
x~! which first becomes zero is the one associated

with the wavevector Q, = qojl',\ where the x axis is
horizontal in Fig. 7 and g, = 2t/ (a\/?}_), where q is

the separation between molecules. Of course, we will
have equivalent instabilities at the equivalent wave-
vectors Q, and Q; , where

Q,=q,(V3i-1)/2 (28)

and

Q, =gy (—-V3i-7)/2. 29

Although we have discovered which wavevectors are '
selected, the type of order is not yet apparent. What
we need to know is the nature of the eigenvector as-
sociated with the eigenvalue of the stability matrix
-1 . . . .
¥ which first becomes zero. For Q, the eigenvalue is

Uy =1, . What kind of order does the molecule have if
7, =0 but 7, is nonzero? As we have said, if 7y posi-
tive such a molecule is aligned along an axis whose
orientation is given by Eq. (25). In this case p = 45°.
But for the wavevector Q | » as we move from one row
parallel to x to the next such row, the wavevector
dependence causes the order parameter to oscillate in
sign. This oscillation causes the angley of each row to
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oscillate between the two values +45° and —45°. Such
a structure is obviously the HB structure. On can per-
form a similar analysis for the other wavevectors Q,

and Q; . By symmetry we know what we will get:

these instabilities correspond to the development of
order in a phase in which the rows and orientations
are rotated through 120° from the one shown in Fig. 7.

If we call these critical fluctuation coordinates »

(associated with Q) and so forth, then the free ener-
gy is of the form

3
F=F(o,,) +%(T D) 21 v+

2 2 2.2 2.2 2.2 2
+ AL+ 5+ )T+ BODS + 9593 + )+, 30)

where the reader is referred to the original reference
for an explanation of the symmetry of the higher-
than-quadratic terms. If we stopped here, we would
conclude that, since A and B are positive, the transi-
tion is always continuous, at least within mean field
theory. However, it turns out that these critical de-
grees of freedom have nonlinear coupling to other
noncritical degrees of freedom. Such coupling must
obey all the symmetries of the system, and in par-
ticular, will have to conserve wavevector. If z;is such a

noncritical fluctuation, there are interaction terms of
the type

Y. Vg 2y - 3D

Because the z’s are noncritical, their susceptibility is
finite and therefore their quadratic free energy is de-
finitely stable. So the part of the free energy depend-
ing on z will be of the form

1 _
5F=72xwlzz+ % Yo Y8 2 - (32)
[24 a

(This equation is a bit schematic — for details see the
original reference.) Now, minimizing with respect to
z one sees that z ~ y2 and this term gives rise to an
additional fourth-order interaction in terms of the
critical order parameters y, . In other words, the coup-

ling to, noncritical degrees of freedom leads to a re-
normalization of the parameters A and B in Eq. (30)
so that they decrease remaining positive. In fact, now
it is found that for appropriate values of the para-
meters there is a critical point at which B changes
sign, and then eventually one where the entire fourth-
order term changes sign, leading to a first order tran-
sition at a tricritical point.

It is amusing to see what happens when the ani-
sotropy B in Eq. (30) changes sign. When B is posi-
tive, the directions in order parameter (y) space for
which only a single y is nonzero are favored. In con-
trast, when B is negative, it is favorable for all three y
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to simultaneously condense. That means that the sys-
tem condenses into a superposition of thrce HB
phases. By suitably adding the amplitudes in the focal
order parameters 7 (i), onc can show that a 2x2

structure forms in which one of the four moleculcs in
the unit cell has out of plane ordering. In fact, this
superposition leads to the PW structure.

One can also deduce other properties of the ordered
state. Because the orientations of the molecules can-
not be continuously modified within the HB or PW
phases, we expect that librational waves will have a
nonzero energy gap, even at zero wavevector. Onec
might want to consider how domains of the ordered
phase might arrange themselves. For the HB phase,
one sees that there are six equivalent ground states:
there are three choices of wavevectors, and for each
wavevectors we may adjust the phase of the ordering
so as to tell whether a given row is «up» or «down».

This case does illustrate the fact that wavevector
selection tells you what the allowed sizes of the unit
cell are. But to get detailed information on the nature
of the orientational ordering, one must keep track of

the components of Yﬁ' which are associated with the
instability.
Fullerene C,, . In this subsection we review the

mean field treatment of the orientational ordering in
solid C,, as given by Sachidanandam and Harris {30

and more completely by Callebaut and Michel [31].
We start with the observation that the C70 molecule is

essentially an ellipsoid of revolution. In the orienta-
tionally disordered phase the crystal structure is very
similar to that of C¢, : namely the molecules form an

fce lattice with no long-range orientational correla-
tions. The orientational ordering transition we seek to
describe here is that in which the ellipsoids pack with
their long axis parallel to one of the cubic [111 ] direc-
tions. Of course, once ordering of this type occurs,
there will be an associated lattice distortion, so that
the actual orientationally ordered structure is trigo-
nal. Thus we must consider both orientational and
strain degrees of freedom [30]. In this phase, the
molecule still can spin about their long axis. At some-
what lower temperature there is another phase transi-
tion below which spinning stops and complete order is
achieved [24 ). However, the structure of this phase is
not currently known with any precision. We will only
consider the higher temperature transition which in-
volves alignment of ellipsoids.

As we mentioned before, if these ellipsoidal mo-
lecules favor alignment along a [111 } direction we can
characterize their order parameter, Q , , by

Quu=0 (33)

and fora # 3 :
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Qaﬁ = Qe, €g > 34

where Q describes the magnitude of the ordering and
the epsilons |7, | = 1) indicaie which of the [111]
directions is the axis of alignment. (There are only
four inequivalent choices for the £’s because changing
the signs of all of them does not change the physical
state.) o

From the above discussion we conclude that the
ordering transition is the one in which only the order
parameters of Eq. (34) are important. Instead of con-
structing the free energy from an assumed Hamil-
tonian, we can construct its form, merely by requiring
that it have the correct symmetry. The fluctuations in
the disordered phase must be governed by a free en-
ergy whose symmetry is that of the fcc lattice. There-
by we conclude that the free energy (which we denote
by F o to indicate that this is the part of the free

energy that depends only on the orientational degrees
of freedom) is of the form

Fo= 3@ =TI, + Q%+ @) + 0, 0,, 0, +

+u QL+ QL+ QL+ u[0) + 0L+ QL]+

35

Note that in contrast to the previous example, we have
a third order term in the free energy. This guarantees
that the transition will be discontinuous. We see that
indeed the free energy of Eq. (35) can condense into
four equivalent minima in each of which the Q’s have
the same magnitude but the signs are chosen as in
Eq. (34).

Next we wish to include the elastic degrees of free-
cdom. For this purpese we introduce strains in the
usual way. If u(r) is the local displacement u at posi-
tion r, we have

R ] (36)
€af = 7 ar‘B ar, | °

Note that ¢ indicates an clongation in the « direc-
tion, whereas €8 (a # B) is a shear which we may

visualize as a distortion in which a square in the a—J
plane becomes a rhombus. One may also note that the
combination of three equal shears €.8 corresponds to

pulling the unit cube along a body diagonal. (It is
obvious that this last distortion is the one we hope to
encounter. ) It is now necessary to formulate an
analog of Eq. (32) where the strains play the role of
the noncriticial fluctuations. The part of the free
energy (per unit volume) that depends only on the
strains assumes a form familiar for a cubic crystal,
namely:
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F

1 2 2 2
el =7 11 [Exx + €y + 8zz] +

+ ey e +e e ]+

xx eyy + syy €2z xx “zz

1 2
+ 5 Caq ey + 832 + eiz] . 3D

Likewise the free energy due to the coupling between
the orientational and elastic degrees of freedom must
(by symmetry) be of the form

Fiter =~ E[Qxy Exy T Qyz €yz + 0,6t
2 2 2 '
+ G[Qxy + Qyz + Qe + €y +e,]. (3%

Now we have to minimize the total free energy, which
is the sum of FQ » Fo o and F . . To see what the

result is, let us assume that Q assumes the value
which minimizes the total free energy and which is
not much different from that value of Q which mini-
mizes FQ . So doing we find that

XY yr Xz (39)
Qxy Qyz sz

This result shows that the distortion is correctly cor-
related with the axis along which ordering occurs.

IV. Summary

In this paper I have tried to illustrate some general
feature of mean field theory. Similar work is de-
scribed elsewhere [32 1.
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