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The occurrence of autowaves at the interface as a result of a first-order phase transition had been

examined. The linear analysis of a system of the equations for a liquid which contains two components

shows that a phase transition at the interface can give rise to autowaves. A spectrum of these autowaves

depends on parameters of the system. For a special case of the system parameters an analysis is made of

the dependence of the spectrum of autowaves from a temperature gradient the interface. We show that

as a result of a interface instability in the bulk solid phase there are various periodic structures of

distribution of the component concentration. Surfaces of equal concentration for the spectra of the

autowaves are built. A qualitative and quantitative comparison of the numerical calculations with

experimental data is made.

PACS: 61.72.Ss, 66.30.—h

Introduction

We have shown [1-3], that a first-order phase
transition can give rise to various types of
autowaves of a component concentration at the
interface. We obtained a dependence of the change
in the spectrum of the autowaves on the tempera-
ture gradient at the interface.

The autowaves of the component concentration
form a nonuniform distribution of the component in
the solid phase as a result of the crystallization.
Modes of the autowaves define a structure of the
component distribution. Spatial period of the
autowaves defines characteristic size of this struc-
ture. In this study we analyze of the distribution of
the component concentration in the bulk solid phase

and consider the types of autowaves, which were
obtained in Ref. 3.

Formulation of the problem

Let T(y, z, 1) be the temperature normalized to
the phase transition temperature T,, and to the
initial component concentration C, ; C(y, 2, T) is
the component concentration normalized to the in-
itial concentration; y, z, T are the dimensionless
coordinates and the time: y=oay,, z=az,,
1= azxorr ; D is the dimensionless factor of diffu-
sion in a melt, D =D, /X, ; X = X,/Xo is the factor

© A.P.Gus'kov, 1998

of thermal diffusivity; € is the heat of phase transi-
tion normalized to the specific heat capacity and the
temperature of phase transition; v, , 2, , T,, D, , X,
and €, are dimensional quantities, X, = 107 m?2/s ,
and o =102 m™!. Let the conditions of melt cool-
ing be such that the flat front of crystallization in a
stationary regime is moving at a constant velocity V .

We take into account the heat conduction in the
solid and liquid phases and diffusion of the compo-
nent in the liquid phase. To reduce the calculations
in the equations, we do not write the coordinate x.
The values relating to the solid phase are designated
by a prime. In the coordinates y, z, T, which are
rigidly connected with the moving front, the origi-
nal system of equations has the form
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Here

where C(0) is the component concentration at the
interface in the stationary regime.

To study the stability of the stationary solutions
against small perturbations of the temperature and
concentration, we seek the solutions as

T'=T(2) + T, (2) exp (wt + Ky) ;
T=T()+T,(2) exp (Wt + Kyg) ;
C=Cy2) +C,(2) exp (w1 + Kp) ; 0= +iW, ;

K=K, +iK, T, '(2) << T(2); T, () << T|2);
Cle) << C,(2)

where T'(2) , T(2) , and C(2) are the solutions of
the stationary problem. We linearize the boundary
value problem to small T° (2) , T,(2) , C,(2) quan-
tities and find the solutions of the stationary prob-
lem and for small perturbations of the problem. The
homogeneous boundary value problem for small
perturbations gives the dispersion relation.

The dispersion relation contains all the parame-
ters that are contained in the boundary value prob-
lem. These parameters depend on the composition of
the material and on the external conditions of
crystallization. They are reduced to six dimension-
less parameters:

- X . - X - Y. - .
U1—ﬁ,|-12—;7p1—75,p2—?,
@—i:i

O eV, eV,

N

grad T (0) .

The solution of this task resulted in work in
Ref. 3. To find the spectrum of the autowaves we
used the maximum-growth-rate hypothesis.
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Distribution of the component concentration
in the solid phase

Let us consider the results form the physical
point of view. According to the examined theory,
the formation of the structure of the component
distribution begins in the liquid in front of the
interface. The liquid phase has a homogeneous dis-
tribution of the component at a sufficiently large
distance from the interface. The component concen-
tration becomes inhomogeneous near the interface
as a result of nonlinear processes at the interface. It
depends on both time and spatial coordinates. The
inhomogeneity of the component concentration in-
creases with decreasing distanse to the interface. As
a result, the component concentration is a flat
periodic structure at the interface. Upon moving the
interface, this structure is fixed into the solid phase.
Thus, the volumetric periodic structure of the distri-
bution components are formed in the solid phase.

Let k=2, p, =500, p,=1.5, P, =-206, and
P, =-4600. In this case the dispersion relation can
be presented as the dependence in Fig. 1. Here
grad T (0) is the temperature gradient at the inter-
face; L is a spatial period of the temporary oscilla-
tions and of the spatial distortions of the distribu-
tion of the component concentration in the solid
phase, which are obtained from the expressions
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Here L is the spatial period of the temporary
oscillations, and L, is the period of the spatial
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Fig. 1. Dependence of the spatial distortions L, and spatial pe-

riod of temporary pulsations LP on the temperature gradient
grad T (0).
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Fig. 2. Structure of distribution of the component concentra-
tion as grainy.

distortions. In the range 0 < grad 7 (0) <g, and
gs < grad T (0) < co the system is steady. In the ranges
g, < grad T(0) < g, and g5 < grad T (0) < g, the
system is unstable and the autowaves at the inter-
face have one mode of the temporary oscillations
and one mode of the spatial distortions. At
g, < grad T(0) < g5 the autowaves have two spa-
tial modes. At g, < grad T (0) < g5 the autowaves
have one spatial mode.

Let us consider the distribution of the component
concentration in the solid phase for each of these
modes of the autowaves. In a common case for a
regime with one mode of the temporary oscillations
and two modes of the spatial distortions, it is
possible to write the dependence of the component
concentration on x, y, and T at the interface as

clx, y, 1) = ¢, + %11 cos (K21x) cos (Ko y) +
+ A, cos (K,,x) cos (K22y)gsin (w70 . )
Let us define the coordinate z in the laboratory
system of coordinates as
1
z=Va1- . %11 cos (K,,x) cos (Ky,y) +

2

+ A, cos (Kyyx) cos (K22y)gcos (w0, ()

where A, and A, are the constant factors, and K, ,
and K,, are the wave numbers of the first and
second modes.

Let us consider a surface for a constant value of the
component concentration in the solid phase at the ranges
g, < grad T(0) <g, and g < grad T(0) <g, . To
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find the surface ¢(x, y, 1) = const = Q from Egs. (1)
and (2), we find 1T in Eq. (1) and substitute it in
Eq. (2). As a result, we obtain the dependence
z(x, y, 1), which is at the required surface
¢ (x, y, T) = const = Q in coordinates (x, y, 2). To
obtain the surface ¢ = const for autowaves with one
temporary mode and one spatial mode, let us assume
A, =0. For example at 0 =0.9, ¢, =1, V =1,
A =02, A,=0, w,=1, K,; =1. The surfaces of
the component concentration for these values of the
parameters are shown in Fig. 2. They correspond to
a grainy component distribution. The grains can be
elongate or flattened, depending on the ratio bet-
ween the initial parameters. For example, if
K, << w, , in the experiment, there will be a striated
component distribution in the solid phase. This case
corresponds to the range g5 < grad T (0) < g, .

In the ranges g, <gradT(0)<gs and
g, < grad T(0) < g, Eq. (1) has the form

c(x, y) = ¢, + A, cos(K,,x) cos (Kyy) +
+ A2 cos (K22x) cos (K22y) , (3)

i.e., in this case for any value of z the distribution
of the component concentration is the solution of
Eq. (3).

Let us assume that in the range
g, < grad T(0) < g5 the parameters have the values
0=08, ¢,=1, V.=1, A, =03, A,=0, and
K, =1. The surfaces ¢ =const for this case are
shown in Fig. 3. They represent columns which are
parallel to the z axis.

In the range g, < grad T(0) < g, we use the
values Q =0.7, c¢ =1, V. =1, 4, =0.1, 4, =0.3,
K,; =1, and K,, =6. The surfaces ¢ = const for

Fig. 3. Column structure distribution of the component concen-
tration.
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Fig. 4. Structure distribution of the component concentration as
columns settle down by the groups.

this case are shown in Fig. 4. They also represent
the columns parallel to the z axis. In contrast to the
previous case, however, these columns are arranged
by the groups located periodically at a certain
distance between these groups.

Comparison with experiment

We did not apply this model to calculations of
the phase transitions of systems with a low tempera-
ture. We want to demonstrate that in the problems
where the phase transitions together with the diffu-
sion are examined, there can be complex periodic
structures. We used the maximum-growth-rate hy-
pothesis to investigate this problem. It is not a
strict mathematical method of investigating the
stability problems. However, in this case it gives
not only qualitatively correct results, but also quan-
titative agreement of the numerical calculations
with experiments. We used this theory to investi-
gate crystallization of materials at usual tempera-
tures and obtained complete qualitative agreement
with the experimental data. All the structures
found above coincide with the structures of the
impurity distribution of real crystal materials. The
grains similar to a sphere are a grainy structure,
which is formed under the crystallization of large
ingots and microcrystal materials. In the same ma-
terials the elongated grains may be formed. Such a
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Fig. 5. Dependence of the distance between the columns of eu-
tectic composites on the velocity of a moving interface. (o) —

experimental data; (A) — numerical calculations at ¢ < Cout

(m) — numerical calculations atc_>c¢ , .
o0 eut

structure is called as columnar crystals. The forma-
tion of the striated impurity distribution is known
as crystal growth. The impurity distribution as
columns (Figs. 3 and 4) is formed as a result of
crystallization of eutectic composites.

Recently we have applied this theory to a real
experiment. The experiments performed in our labo-
ratory of M. Starostin gave the dependence of
distance between columns of eutectic composites on
the velocity of a moving interface [4]. We have
calculated this dependence using the model given
here. The results of calculations are in good agree-
ment with the experimental dependences. Figure 5
shows experimental and theoretical dependences [5].
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