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The paper analyzes an approach to the generalization of the conventional Bose–Einstein statistics based 
on the nonadditive entropy of Tsallis. A detailed derivation of thermodynamic functions is presented. The calcu-
lations are made for the specific heat of two model systems, namely, the ideal three-dimensional gas obeying 
the nonadditive modification of the Bose–Einstein statistics and the system with linear excitation spectrum at-
tempted as a qualitative approximation of liquid 4He thermodynamics. 
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1. Introduction 

A generalization of the classical Boltzmann–Gibbs en-
tropy was suggested by Tsallis [1]. The proposed nonaddi-
tive entropy might be relevant in descriptions of systems 
with long-range interactions, for non-Markovian processes 
or systems with “memory” and some others [2]. It has also 
been used in the description of complex systems beyond 
physics [3], for instance, to model DNA sequences [4], 
financial data [5] or distributions in linguistics [6]. 

In the present paper we will focus on the application of 
a nonadditive entropy for generalizations of quantum dis-
tributions [7–10]. For integrity, a presentation of the calcu-
lation scheme involving the density of states for a power-law 
excitation spectrum is followed by an introductory infor-
mation about the Tsallis statistics and the description of one 
possible generalization of the Bose-distribution. A detailed 
mathematical derivation of thermodynamic quantities is 
complemented by calculations for two systems a three-di-
mensional ideal Bose-gas and a rough model of 4He. 

We will consider the following simple scheme for the 
calculation of thermodynamic functions. The total number 
of particles is given as the sum of mean occupation num-
bers ( , , )jn T zε  over all the states with energies jε , 

 = ( , , ),j
j

N n T zε∑  (1) 

where T is temperature and z  is fugacity related to the 
chemical potential µ via /= e Tz µ . 

The dependence ( , )z T N  being the solution of Eq. (1) 
can be used to calculate the total energy of the system 

 = ( , , )j j
j

E n T zε ε∑  (2) 

as a function of temperature T and the number of particles N. 
Further on, we can obtain the equation of state, calculate 
heat capacities and other thermodynamic quantities. 

2. Density of states 

For generality, let us consider a system of spinless bos-
ons with the following elementary excitation spectrum 

 = ,b
p apε  (3) 

where | |p ≡ p  is the momentum absolute value and a, b  
are the spectrum parameters. In a D -dimensional space, 

2 2
1= Dp p p+ + . 

Suppose the particles reside in volume D . If it is mac-
roscopically large, the summation over states can be substi-
tuted by the integration over the phase space: 

 = ( , , ) = ( , , ),j p
j

N n T z d n T zε τ ε∑ ∫  (4) 

where the phase space element 

1 1
( )( )= , with ( ) = , ( ) = .
(2 )

D DD
dp dqd dp dp dp dq dq dqτ
π

 



 

For particles with spin σ , additional multiplicity factor of 
(2 1)σ+  would occur. 

This relation can be rewritten by introducing the density 
of states function ( )g ε : 

 
0

= ( ) ( , , ).N d g n T z
∞

ε ε ε∫  (5) 
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There is no dependence on coordinates in the spectrum 
pε , so the integration over coordinates ( )dq  is trivial: 

 1= ( ) ( ) = ( ) .
(2 ) (2 )

D
D Dd dp dq dpτ

π π∫ ∫ ∫ ∫  

 


 

Moreover, as the spectrum pε  depends only on the abso-
lute value of the momentum p, the integration over mo-
menta in (4) can be done in (hyper-)spherical coordinates, 

1
1 = D

D Ddp dp p dpd− Ω : 

 1

0

= ( , , ),D
D D pN dp p n T z

∞
−Ω ε∫  (6) 

where /2= 2 / ( / 2)D
D DΩ π Γ  is the solid hyper-angle in 

the D -dimensional space. 
Making the change of variables = bapε  we finally ob-

tain the density of states in the following form [11, p. 150]: 

/2
1 12( ) = = ,

( / 2) ( / 2 1)(2 ) (2 )

D s s
s sD

D D D
a sag

D Db

− −
− −π

ε ε ε
Γ Γ +π π 


   

  (7) 
where = /s D b. In particular, for a gas of free particles 
with 2= / 2p p mε  one gets [12] 

 
/2

/2 1
2( ) = .

( / 2) 2

D
DD mg

D
− 

ε ε Γ π 

  (8) 

Note that for a system of particles trapped to a harmon-
ic potential 2 2

1 1( , , ) = ( ) / 2D DV q q m ω + +ω   the density 
of states can be shown [12] to have the form 

 1
1

1 1( ) = , where = .
( ) ( )

D D
DDg

D
−ε ε ω ω ω

Γ ω




 (9) 

For convenience, we will introduce a shorthand nota-
tion for the constant in the density of states, 

 11 = , so that ( ) = .
( / 2 1) (2 )

s
s

DD
sa A g A

D

−
−ε ε

Γ + π 

  (10) 

Equation (5) thus becomes as follows: 

 1

0

= ( , , ).s

D

N A d n T z
∞

−εε ε∫
 (11) 

Note that the consideration of thermodynamic function 
implies the so called thermodynamic limit, / = constDN   
as N →∞  and D →∞ . For a system of harmonic oscilla-
tors this condition is written as = constDNω  as N →∞  
and 0ω→ . 

3. Nonadditive statistics of Tsallis 

In this section, we will briefly introduce an approach to 
generalize the conventional Boltzmann–Gibbs statistics. 

For W  microstates with probabilities jp  the generalized 
entropy as proposed by Constantino Tsallis [1] is given by 

=1 =1

1= 1 , whereas = 1,
1

W W
q

q jj
j j

S p p q
q

 
 − ∈
 −  
∑ ∑  . (12) 

In the limit of 1q →  one easily recovers the Boltzmann–
Gibbs entropy: 

 
( 1) ln1 = e 1 ( 1) ln
q pq j

jjp q p
−− + −   

so that 

 
=1 =1

1= 1 = = ln
1

W W
q

q j jj
j j

S p p p
q

 
 − −
 −  
∑ ∑   

as expected. 
While the conventional entropy is additive, 

( ) = ( ) ( )S A B S A S B+ +  in the case of a system split into 
two subsystems A  and B , the entropy from Eq. (12) can be 
shown to satisfy [2] 

 ( ) = ( ) ( ) (1 ) ( ) ( ),q q q q qS A B S A S B q S A S B+ + + −  (13) 

meaning it is not an additive quantity. So, the parameter q 
might be considered as a measure of nonadditivity. 

Similarly to the conventional entropy, qS  is maximal if 
all the probabilities are equal ( = 1/jp W  for all j ): 

 
1 1= .
1

q

q
WS

q

− −
−

 (14) 

In the limit of 1q → , the well-known relation = lnS W  
follows. 

Using the so-called q-logarithm, 

 
1

1
1ln , whereas ln = ln ,

1

q

q
xx x x

q

− −
≡

−
 (15) 

one can write the Tsallis entropy in the following Boltz-
mann-like form: 

 = ln .q qS W  (16) 

An inverse to the q-logarithm is given by the following 
function: 

1/(1 )

1/(1 )

exp( ), for = 1,

e = [1 (1 ) ] , for 1 and 1 (1 ) > 0,

0 , for 1 and 1 (1 ) 0,

x q
q

q

x q

q x q q x

q q x

−

−




+ − ≠ + −


≠ + − ≤

 

  (17) 

which is known as the Tsallis q-exponential [13]. Its 
graphs are shown in Fig. 1. 

There is a number of approaches based on the nonaddi-
tive entropy of Tsallis [14–17]. It appears in particular that 
the link between the entropy, energy, and temperature can-
not be trivially replicated from the Boltzmann–Gibbs sta-
tistics. Strategies to generalize the Bose–Einstein and Fer-
mi–Dirac distributions also vary [7,9,18,19]. 
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4. Generalization of the Bose-statistics 

We will demonstrate a rather simple approach to general-
ize the quantum Bose-distribution. The Gibbs factor 

( )/ 1 /e = eT Tzε−µ − ε  will be substituted to 1 /e T
qz− ε . Note that 

the Tsallis q-exponentials do not obey the factorization rule, 

 e e e ,x y x y
q q q
+ ≠  (18) 

but satisfy the following relations instead [20]: 

1 1 2
1 (1 )/(e e ) = (e ) (1 ) , e = e .

p pxx y q x y q x
q q q q q pq xy− + −

− −
 + −    (19) 

We thus cannot relate the chemical potential and fugacity 
by a simple link, /e T

qz µ≠ . On the other hand, such an ap-
proach facilitates comparisons between various types of 
fractional statistics via virial and cluster expansions [11], 
as shown for several nonadditive modifications in [21–23]. 

The generalized nonadditive Bose-distribution applied 
in this work is as follows 

 1 /
1( , , ) = .

e 1T
q

n z T
z− ε

ε
−

 (20) 

There is only a seemingly subtle difference between this 
definition and, for instance, the one proposed in [18,24], 
where the fugacity was introduced as /= e T

q qz µ  and the oc-
cupation numbers were 

 ( )/
1( , , ) = .

e 1T
q

n T
ε−µ

ε µ
−

  (21) 

However, this difference significantly affects the high-tem-
perature behavior, as we will see further. 

5. Critical temperature 

As 0e = 1q , we observe a situation similar to that in ordinary 
Bose-distribution. Namely, the ground-state contribution is 

 
1
1(0, , ) = ,

1
n z T

z− −
 (22) 

which tends to infinity at 1z → . Physically it means that 
the occupation of the ground state becomes macroscopical-
ly large, as in the ordinary Bose–Einstein condensation. On 
the other hand, this contribution is neglected if we consider 
the density of states (7) at > 1s  since ( )g ε  vanishes as 

0ε → . As a consequence, we should write the ground state 
occupation 0 (0, , )N n z T≡  explicitly, 

 
1

0 1 /
0

= ,
e 1

s

D T
q

dN N A
z

∞ −

− ε
ε ε

+
−∫  (23) 

where 0 = 0N  (i.e., it is a microscopic number, 0N N ) 
and < 1z  for temperatures above some critical value cT  
and 0 > 0N  and = 1z  below cT . The critical temperature is 
defined by the condition 

 
1

/
0

= .
e 1

s

D Tcq

dN A
∞ −

ε
ε ε

−
∫  (24) 

Eliminating the temperature dependence in the integrand 
we obtain 

 
1

0

= .
e 1

s
s

c x
D q

N x dxAT
∞ −

−∫
 (25) 

Evaluation of the integral in the definition of the critical 
temperature can be made similarly to the ordinary Bose-
statistics. So, 

 
11

1 1
1

=10 0 0

(e )
= = (e ) .

e 1 1 (e )

xs qs s x k
qx x

kq q

x dx dxx dxx
−∞ ∞ ∞ ∞−

− − −
−− −

∑∫ ∫ ∫   

For = 1q  this yields 

 
1

0

= ( ) ( ),
e 1

s

x
x dx s s

∞ −
ζ Γ

−∫   

where Riemann’s zeta-function reads (for > 1s ): 

 
=1

1( ) = .s
k

s
k

∞
ζ ∑  (26) 

Other cases, namely < 1q  and > 1q , should be treated a bit 
differently. 

For < 1q , the argument 1 (1 )q x+ −  remains positive for 
all 0x ≥ , so 

 [ ]
1

1 1
=10 0

= 1 (1 )
e 1

s k
s qx

kq

x dx dxx q x
∞ ∞∞−

−−
−+ − =

−
∑∫ ∫   

 
=1

1= B , ,
1(1 )s

k

ks s
qq

∞  
− −−  

∑  (27) 

where the beta-function B( , ) = ( ) ( ) / ( )u u uΓ Γ Γ +v v v . 

Fig. 1. (Color online) Tsallis q -exponential ex
q for different va-

lues of the parameter q . 
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For > 1q , one has to set the upper limit of integration 
0 = 1/ ( 1)x q − , where 1 (1 )q x+ −  becomes negative. So, 

 [ ]
01

1 1
=10 0

= 1 (1 )
e 1

xs k
s qx

kq

x dx dxx q x
∞ ∞−

−−
−+ − =

−
∑∫ ∫   

 
=1

1= B , 1 ,
1( 1)s

k

ks
qq

∞  
+ −−  

∑  (28) 

To be consistent with the = 1q  case we can formally in-
troduce a q-generalized zeta-function in the following man-
ner, cf. [18,24]: 

=1

=1

( ) for = 1,

1( ) = B , for < 1,
1(1 ) ( )

1 B , 1 for > 1,
1( 1) ( )

q s
k

s
k

s q

ks s s q
qq s

ks q
qq s

∞

∞


ζ



 ζ −  −− Γ  


  +  −− Γ  

∑

∑

 (29) 

so that 

 
1

0

= ( ) ( )
e 1

s

qx
q

x dx s s
∞ −

ζ Γ
−∫  (30) 

with the definition of the critical temperature in Eq. (25) 
becoming consistent with the ordinary Bose-condensation 
temperature: 

 = ( ) ( ).s
c q

D

N AT s sζ Γ


 (31) 

As a bonus from such a form, the factor of ( )sΓ  explicitly 
present in the above formula cancels the same factor in the 
denominators of the density of states given by Eqs. (8), (9). 

Note that from the asymptotic behavior of the beta-func-
tion at large v while keeping u  fixed, 

 B( , ) ( ) ,uu u −Γv v   

one easily recovers Eq. (26) from ( )q sζ  in the limits of 
1q → . Unfortunately, a general closed-form expression for 

( )q sζ  without infinite summations has not been found. 

6. Low temperature 

For temperatures below the critical one cT , where = 1z , 
the calculations are quite simple. From Eq. (23) using (30) 
we obtain 

 
1

0 0/
0

= = ( ) ( ),
e 1

s
s

D D qT
q

dN N A N A T s s
∞ −

ε
ε ε

+ + ζ Γ
−∫   (32) 

or applying the critical temperature definition (31), 

 0 = 1 ,
s

c

N T
N T

 
−  
 

 (33) 

which coincides with the expression for the condensate 
fraction (relative number of particles with zero momenta) 
in ordinary ideal Bose-gas. 

The calculation of energy is also simple 

 1
/

0

= = ( 1) ( 1),
e 1

s
s

D D qT
q

dE A A T s s
∞

+
ε
ε ε

ζ + Γ +
−∫   (34) 

which can be written as 

 
( 1)

= ,
( )

s
q

q c

s TE s NT
s T

ζ +  
 ζ  

 (35) 

again being consistent with the energy of an ideal Bose-gas 
at = 1q . 

The isochoric heat capacity is thus proportional to sT : 

 
( 1)

= = ( 1) .
( )

s
q

V
q cV

sE TC s s N
T s T

ζ +  ∂  +   ∂ ζ   
 (36) 

The calculations above cT  would require a more elabo-
rated approach involving in particular a q-generalization of 
the polylogarithm function ,Li ( )q s z . For instance, at < 1q , 
the number of particles is defined by the integral 

 [ ]
1

1 11
=10 0

= 1 (1 )
e 1

s k
k s qx

kq

x dx z dxx q x
z

∞ ∞∞−
−−
−−

+ − =
−

∑∫ ∫   

 ,
=1

1= B , ( )Li ( )
1(1 )

k
q ss

k

kz s s s z
qq

∞  
− ≡ Γ −−  

∑ , (37) 

and similarly for > 1q . This new function reduces to the 
ordinary polylogarithm at 1q → , 

 1,
=1

Li ( ) Li ( ) = .
k

s s s
k

zz z
k

∞
≡ ∑  (38) 

However, no simple recursive relations can be written for 
derivatives ,Li ( )q s z , unlike the undeformed case ( = 1q ) or 
the approach of [18,24]. Consequently, only a cumbersome 
expression would be obtained for the heat capacity calling 
rather for simple numerical evaluation instead. 

In particular, one can show that the behavior of the iso-
choric heat capacity at the critical temperature is qualita-
tively the same as in the ordinary ideal Bose-system [25]. 
Namely, VC  is continuous for 1 < < 3 / 2s , there is a cusp 
on the VC  curve for = 3 / 2s , and there is a discontinuity 
(a finite jump) of VC  for > 3 / 2s . 

7. High temperatures and classical limit 

At high temperatures, fugacity tends to zero, so approxi-
mately 

 ( ) 11 /

0

= e .s T
D qN z A d

∞ −− εεε∫  (39) 
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In the same approximation, energy is given by 

 ( ) 1/

0

= e .s T
D qE z A d

∞ −εεε∫  (40) 

The change of variables = /x Tε  yields 

 ( ) 11

0

= es s x
D qN zT A dxx

∞ −−∫  (41) 

and 

 ( ) 11

0

= e .s s x
D qE zT A dxx

∞ −+ ∫  (42) 

The integration in the above expressions is made using the 
same approach as applied in Eqs. (27) and (28), consider-
ing the cases of < 1q  and > 1q  separately and keeping 
only first terms in the sum. 

So, for < 1q  

1( )
11= B , =

1 1(1 ) (1 )
1

s
sD

Ds s

s s
qzT AN s s zT A

qq q
q

 
Γ Γ − −   − −  −   − Γ − 


  

  (43) 
and 

 
1

1= B 1,
1(1 )

s
D
s

zT A qE s s
qq

+

+
 

+ − = −−  


  

 1

1

( 1)
1

= .
1(1 )

1

s
D

s

qs s
q

zT A
q

q

+

+

 
Γ + Γ − − 

 
− Γ − 

  (44) 

Eliminating fugacity between the above two equations we 
obtain 

 = .
( 1)

sE NT
q s s+ −

 (45) 

For > 1q  we have 

 
( )

1
= B , =

1( 1) ( 1)
1

s
sD

Ds s

qs
qzT A qN s zT A

q qq q s
q

 
Γ Γ −   

 −  −   − Γ + − 


   

  (46) 
and 

 
1

1= B 1,
1( 1)

s
D
s

zT A qE s
qq

+

+
 

+ = −−  


  

 1

1

( 1)
1

= .
( 1) 1

1

s
D

s

qs
q

zT A
qq s

q

+

+

 
Γ + Γ − 

 
− Γ + + − 

  (47) 

These again yields for energy the same result as for < 1q , 
namely: 

 = .
( 1)

sE NT
q s s+ −

 (48) 

In the case of = 1q  it reduces to the well-known classical 
limit for energy in the form =E sNT . For instance, a gas 
of free particles ( = 2b ) in three dimensions ( = 3D  and 

= / = 3 / 2s D b ) yields the textbook expression: 

 3= .
2

E NT   

The isochoric heat capacity at hight temperatures is thus 

 = = .
( 1)V

V

E sC N
T q s s
∂ 

 ∂ + − 
 (49) 

Note that the nonadditivity parameter must satisfy the con-
dition > / ( 1)q s s +  ensuring that this classical limit re-
mains positive. 

8. Results in three dimensions 

To demonstrate the application of the developed approach 
we have performed calculations for two systems. The first 
one is the three-dimensional gas of free particles while 
the second one might be considered as a rough model for 
liquid 4He. 

The density of states (8) of the free 3D system is given by 

 
3/2

3/2 1
2( ) =

(3 / 2) 2
V mg − 

ε ε Γ π 

 (50) 

with V  standing for the 3D volume 3V ≡  . The critical 
temperature is defined by 

 
3/2

2
3= .
22

c
q

mTN
V

   ζ   
 π 

 (51) 

The plots for the specific heat /VC N  are shown in Fig. 2 
for several values of the nonadditivity parameter q. 

When comparing the obtained dependences with [18,24] 
we can see the discrepancies in the high-temperature be-
havior of the specific heat, especially for < 1q , where the 
approach of [18,24] yielded a minimum on the VC  curve at 

> cT T . Moreover, it can be shown that the asymptotic is 
(1 ) /[1 (1 ) ]q s q s

VC T − − −∝  (see Appendix), not the expected 
classical constVC → . These differences demonstrate the 
importance of the fugacity definition in the deformed sta-
tistics. 

The second system was attempted as a rough model 
for the specific heat of 4He [26–28], which was historically 
the first Bose-system extensively studied both experimen-
tally and theoretically. 

The phonon branch of the elementary excitation spec-
trum in 4He leads to the temperature dependence of the iso-
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choric heat capacity at low temperatures as 3T , like in the 
Debye model of the solid. So, it fixes the value of = 3s . 
The classical limit for the heat capacity of a monoatomic 
gas, which is the case of helium, equals = 3 / 2VC N . Thus, 
from Eq. (48) we obtain 

 3= =
( 1) 2V

sC N N
q s s+ −

 (52) 

yielding = 5 / 4q . 
Generally, one can expect that in realistic physical sys-

tems the value of q does not significantly deviate from 
unity. For instance, an effective accounting for interactions 
in a weakly-interacting Bose system can be achieved with 

0.978q   [21]. Larger deviations, as obtained from (52), 
can occur if strong interactions come into play. 

The results of calculations are shown in Fig. 3. Note the 
discontinuity at the critical temperature occurring both in 
real 4He and in the model nonadditive system, but not in 
the ordinary 3D ideal Bose-gas. 

As one can see, the specific heat curves are plotted in 
the relative temperature scale. The reason is that the criti-
cal temperature of the ideal Bose gas with 4He mass and 
density is = 3.14cT  K versus the lambda-transition tem-
perature in liquid 4He = 2.17Tλ  K. Such a discrepancy can 
be solved in particular by introducing the notion of an ef-
fective mass [30] calculated within various approaches 
[31–35]. 

It appears that within the proposed nonadditive model 
we cannot achieve simultaneous agreement between the cri-
tical temperature and the speed of sound determining the 
factor at 3T  in the specific heat as both these values are 
defined by a single parameter A  in the density of states. 

The values of the q-generalized zeta function appearing 
in calculations are as follows: 

 5/4
16(3) = (ln8 2) = 0.423688
3

ζ − , (53) 

 5/4
32(4) = (ln 64 1) = 0.184431 ,
3

ζ − π−   (54) 

These yield upon putting = 2.17cT  K in (31) and (36): 

 31 65 [K ]N
A V

  (55) 

and 

 3( 1)
= ( 1) 0.51

( )

s
qV

q c

sC Ts s T
N s T

ζ +  
+  ζ  

  (56) 

with temperature in Kelvins. For the specific heat of a bo-
sonic phonon system with spectrum =p cpε  one obtains: 

 
3

5
3

16= ,
15 ( )

VC V T
N N hc

π  (57) 

where c is the speed of sound and 2h ≡ π. With 4He pa-
rameters, / = 0.02185N V  Å 3−  and = 237c  m/s this gives 

 30.01 .VC
T

N
  (58) 

The discrepancy between Eqs. (56) and (58) means that 
the speed of sound in the model system is about 64 m/s. 
Such a difference is explained by the fact that the 3T  be-
havior of the heat capacity holds only at very low tempera-
tures ( < 0.6T  K) and for higher temperatures other types 
of excitations, in particular the so called rotons, should be 
considered as well [26,27]. In order to adjust the proposed 

Fig. 2. (Color online) Specific heat of the three-dimensional ideal 
Bose-gas with nonadditive statistics compared to the ordinary 
Bose-gas. Green lines show the results consistent with the ap-
proach of [18,24]. Red dashed line joins the cusps of the respec-
tive curves corresponding to critical temperatures. For conven-
ience, the units of temperature and energy are fixed by 

3/222 = 1N
V m

 π 
 
 

 . 

 

Fig. 3. (Color online) Specific heat of 4He (circles, data from [29]) 
compared to the ordinary 3D ideal Bose-gas (IBG) and the non-
additive model with = 5 / 4q , = 3s . The data are plotted in the 
temperature scale relative to the critical temperatures for each 
system. 
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nonadditive model for 4He one may also try to define the 
value of s from the specific heat behavior at temperatures 
closer to the critical one, where 6 7

VC T ÷∝  [27]. 

9. Conclusions 

To summarize, we have proposed an approach to gener-
alize the Bose–Einstein distribution using nonadditive sta-
tistics of Tsallis. Detailed derivations of thermodynamic 
functions have been given for a D -dimensional system 
with the elementary excitation spectrum = b

p apε . A phe-
nomenon being an analog of the Bose-condensation has 
been detected and the corresponding critical temperature 
has been calculated. The low- and high-temperature behav-
ior of energy and specific heat has been analyzed. 

Both analytical and numerical calculations have been 
made for two model systems. From the analysis of the first 
one, an ideal 3D gas, the importance of the fugacity defini-
tion has been revealed in comparison with other approaches. 
The second system could be a rough model for the specific 
heat of 4He. Its limitations have been briefly discussed. In 
particular, it became clear that a single nonadditivity pa-
rameter q is not sufficient to agree both the value of the 
critical temperature and the speed of sound with experi-
mental data. 

The results of the present work would be useful in ap-
plications of unconventional types of statistics as effective 
models of real physical systems. 
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Appendix A 

Consider the expression for the number of particles N  and 
energy E  in the approach of [18,24]: 

 ( )/ ( )/
0 0

( ) ( )= , = .
e 1 e 1T T

q q

g d g dN E
∞ ∞

ε−µ ε−µ
ε ε ε ε ε

− −∫ ∫  (A1) 

Note that these authors originally used a mirrored defini-
tion of the q-exponential with the parameter q  related to 
the parameter q of the present paper via 1 = 1q q− − . 

Upon making a numerical analysis one can conclude 
that in the limit T →∞  the chemical potential has the fol-
lowing behavior: 

 | |= .
T T
µ µ

− → −∞  (A2) 

In such a limit, the unity in the denominator of the expres-
sion for occupation numbers can be neglected, so 

1 1( )/ 1 | |/

0 0

( ) e = e .T s s x T
q D qN d g AT dxx

∞ ∞− −ε−µ − + µ   ε ε    ∫ ∫

  (A3) 

For definiteness, we will consider < 1q . The number of 
particles is thus 

 

1
11

0

| |1 (1 ) qs s
DN AT dxx q x

T

−∞
−−  µ  + − +    ∫   

 

11
11 1

0
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| |

qqs s
D

TAT q x x
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−− −  µ − + =   µ   ∫   

 

1
1| | 1= | | (1 ) B , .

1
qs

D A q s s
T q

−  µ µ − −   −   
  (A4) 

In the same fashion the energy is 

 

1
11

0

| |1 (1 ) qs s
DE AT dxx q x
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1
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  (A5) 

So, 

 

1B 1, 1
1
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1B ,

1

s s
qE
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s s
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− − 

 (A6) 

while 

 

1
1 (1 )1

11 (1 )| | = .
1B ,

1

s q
q

D

N q T
A

s s
q

− −
−

 
 − µ
  

−  −  


 (A7) 

Therefore, the specific heat depends on temperature as 

 
(1 )

1 (1 ) = .
q s

s qVC
T T

N

−
γ− −∝  (A8) 

Such a relation can be shown to hold for > 1q  as well. The 
numerical values are, in particular, for = 3 / 2s  (see also 
Fig. 4): 

 0.1763= 0.9 : = , ,
17 Vq C T +γ + ∝   (A9) 

 0.2303= 1.2 : = , .
13 Vq C T −γ − ∝   (A10) 
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Ідеальний бозе-газ з неадитивною статистикою 

А. Ровенчак 

Проаналізовано підхід до узагальнення традиційної ста-
тистики Бозе–Ейнштейна на основі неадитивної ентропії Цал-
ліса. Подано докладне виведення термодинамічних функцій. 
Зроблено розрахунки для питомої теплоємності двох модель-
них систем, а саме: ідеального тривимірного газу, що підкоря-
ється неаддитивній модифікації статистики Бозе–Ейнштейна, 
та системи з лінійним спектром елементарних збуджень, 
прийнятої за якісне наближення термодинаміки рідкого 4He. 

Ключові слова: статистика Бозе–Ейнштейна, ентропія Цаллі-
са, неадитивна статистика, ідеальний бозе-газ, 4He. 

Идеальный бозе-газ с неаддитивной статистикой 

А. Ровенчак 

Проанализирован подход к обобщению традициионной 
статистики Бозе–Эйнштейна на основе неаддитивной энтро-
пии Цаллиса. Представлен подробный вывод термодинами-
ческих функций. Сделаны расчеты для удельной теплоемкости 
двух модельных систем, а именно: идеального трехмерного 
газа, подчиняющегося неаддитивной модификации статисти-
ки Бозе–Эйнштейна, и системы с линейным спектром эле-
ментарных возбуждений, принятой как качественное при-
ближение термодинамики жидкого 4He. 

Ключевые слова: статистика Бозе–Эйнштейна, энтропия Цал-
лиса, неаддитивная статистика, идеальный бозе-газ, 4He. 

Fig. 4. (Color online) Specific heat of the three-dimensional ideal 
Bose-gas with nonadditive statistics according to the approach of 
[18,24]. Red dashed lines show the high-temperature behavior 
(A8). The units of temperature are fixed as in Fig. 2. 
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