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Supersaturated superfluid *He"He liquid mixture, separating into the 3He-concentrated c-phase and *He-

diluted d-phase, represents a unique possibility for studying macroscopic quantum nucleation and quantum

phase-separation kinetics in binary mixtures at low temperatures down to absolute zero. One of possible hetero-

geneous mechanisms for the phase separation of supersaturated d-phase is associated with superfluidity of this

phase and with a possible existence of quantized vortices playing a role of nucleation sites for the c-phase of lig-

uid mixture. We analyze the growth dynamics of vortex core filled with the c-phase and determine the tempera-

ture behavior of c-phase nucleation rate and the crossover temperature between the classical and quantum nucle-

ation mechanisms.
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1. Introduction

This year E.Ya. Rudavskii celebrates 80. Our meeting
with Eduard Yakovlevich has taken place about the same
time when the Department of Physics of Quantum Fluids
and Crystals has started the systematic experimental study
on the phase separation kinetics of supersaturated "He— He
mixtures. This study has laid the foundations for new field
of physics, namely, macroscopic quantum nucleation or kinet-
ics of first-type phase transitions in condensed matter at tem-
peratures so close to absolute zero that the classical thermal-
activation phase-transition mechanism becomes complete-
ly ineffective. Under the influence of pioneer experiments
and personal charm of Eduard Yakovlevich we, keen at that
time with the theory of macroscopic quantum tunneling and
the role of dissipative processes, have turned to the study of
the low-temperature phase-separation kinetics of liquid 3He—

He mixtures and the energy dissipation effects associated
mainly with the diffusion of impurity 3He atoms.

In 1969 during the study of degenerated SHe—"He lig-
uid mixtures there is demonstrated a possibility of prepar-
ing the metastable state of supersaturated superfluid "He—
4He liquid mixture in the lack of free liquid-vapor sur-
face [1]. For 7 < 70 mK, there are obtained the long-lived
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supersaturated liquid mixtures staying in the metastable
state for two and more hours. The experimental studies of
phase separation kinetics in liquid ’He-*He mixtures
have been started by Brubaker and Moldover [2] and then
continued in 80-ies [3-5]. The experiments were per-
formed in the high-temperature (7> 0.5 K) region and
the main attention was paid for the phase separation in
the vicinity of the tricritical point in the connection with
the type-II phase transition fluctuation theory developing
rapidly those years. The experimental observations have
adequately been described within the framework of the
classical thermal-activation nucleation theory.

Later in the early 90-ies the study is started of the phase
separation kinetics of superfluid He*He liquid mixtures
in the region of lower temperatures 7'< 200 mK with the
aim of detecting the transition from the thermal-activation
phase-separation regime to the quantum underbarrier one.
There have been used new methods of experimental study.
One method, developed in Kharkov in B. Verkin Institute
for Low Temperature Physics and Engineering, is based on
a continuous change in the 3He concentration directly in
the course of experiment at constant pressure and tempera-
ture due to varying the osmotic pressure and fountain pres-
sure. The variation rate in the "He concentration is usually
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about 10~ percent per second. The state of the liquid mix-
ture is recorded by two methods [6—10]. The acoustic meth-
od is based on the sound velocity variation in the course of
phase separation of liquid mixture and the capacitive one is
based on the measurement of dielectric permittivity. The
jump-like reduction in the 3He concentration, recorded sim-
ultaneously with the sound and capacitive methods, corre-
sponds to separating a metastable supersaturated liquid mix-
ture into two phases.

As is known, due to existence of the effects of osmotic
gresshlre and fountaining in a superfluid phase of liquid

He— "He mixture the temperature inhomogeneity leads
readily to the pressure and concentration inhomogeneity.
To avoid the effect of this factor, the process of preparing a
supersaturated liquid mixture should occur under invariable
temperature and sufficiently slowly in order not to set the
3He atoms in motion. Thus, employing the dependence of
the separation line on the pressure, the authors of work [11]
have proposed another scheme of continuous pressure varia-
tion using a thin capillary (superleak) through which the
superfluid "He component alone can flow. This results in
changing the pressure and 3He concentration in the exg)er-
imental cell. In the course of experiment the total "He
amount in the cell remains unvaried. The rate of pressure
variation is about 0.25 atm/h, corresponding to the ‘He
flow as about a microgram per second and as a concentra-
tion rate 6:10°° percent per second. This is smaller by a
factor of 10°-10° as compared with that in the phase sepa-
ration experiments on liquid mixtures in the vicinity of the
tricritical point. The final results of the research and their
discussion are given in work [12].

So far, the theoretical interest [13,14] has mainly been
focused on the homogeneous mechanism of phase separa-
tion in the supersaturated d-phase of liquid He*He mix-
ture. In spite of careful analysis a scepticism has remained.
The possible mechanisms for inhomogeneous phase sepa-
ration of liquid mixture have not received a proper atten-
tion. In particular, this concerns a possibility of the pres-
ence of remnant quantized vortices and an estimate of the
crossover temperature for the thermal and quantum re-
gimes of phase separation.

Here we consider one of possible heterogeneous mecha-
nisms for the phase separation in the supersaturated d-phase
of liquid 3He—4He mixture, which is associated with
superfluidity of d-phase and with possibility of existence of
quantized vortices. The vortices, in its turn, can play a role
of nucleation sites for the c-phase of liquid mixture. The
idea goes directly back to works [15-17] where the phe-
nomenon was analyzed of "He atom adsorption onto the
quantized vortex core in superfluid He-II. Unlike the previ-
ous works [18] dealing with the thermal-activation nuclea-
tion mechanism alone, we here concentrate our attention on
the growth dynamics of vortex core filled with the c-phase
and determine the nucleation rate in the quantum region as
well as the thermal-quantum crossover temperature.
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2. The quantized vortex structure in the saturated
He—'He liquid mixture

Let us consider the structure, core radius and energy of
rectilinear vortex with one circulation quantum in the satu-

rated superfluid d-phase of liquid He-*He mixture. It is
well known that 3He atoms tend to be localized and trapped

with the vortex core. Below we analyze a simple model
with the rigid core for quantized vortex in the saturated

superfluid He-"He liquid mixture, assuming the vortex
core to be filled with the c-phase. Beyond the vortex core
of radius R the superfluid velocity Vs at distance r from
vortex line is subjected to equation: V (r)=h/myr as a
result of circulation quantization

v, di =2mhimy,

The condition for equilibrium of d-phase in the bulk re-
quires the constancy of thermodynamic potentials and tem-
perature

2
(P, T, Z, VS)+‘79=constE<D(P, T,z2) __,
J=oc0

Z(P,T,c,Vy)=const=Z(P,T, c)|r: ,
T :constsﬁ
=

Here ® =y, / my, potential Z = Wy / my —4 / my is conju-
gated to the mass “He concentration, and L3 4 and ms 4 are
the chemical potentials and masses of "He and "He atoms,
respectively.
Using the known variations for the thermodynamic po-
tentials
2
50 = _gor—coz-Prsl Vs |
p p 2

2
57=2(Llop— Psr4 Zoo_ Pug| Vs |
dc\ p dc dc p 2

we find that the variations of concentration ¢ and pressure
P are determined with the following equations:

2 2
e Lsgle  gpo oyl
dc p dc 2 )

Let us put P, ¢ and T for the magnitudes of pressure,
concentration and temperature far from the vortex at the
infinity 7 = eo. Next, while the pressure and concentration
variations are small, i.e., 8P < P and dc < ¢, we find ap-
proximately

VZ
P(r)—P=—p,—5-
(r) Ps DI
2
c(r)—-c= _9py/de. V—Y )
pdZ/dc 2
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As is seen from the last equation, the concentration var-
iation in the superfluid liquid mixture is completely due to
dependence of superfluid density p, upon the 3He concen-
tration. Since the condition for the thermodynamic stability
of liquid mixture implies always dZ / dc > 0 and the super-
fluid density reduces with the growth of concentration, i.e.
dps /dc <0, the *He concentration enhances always in the
regions with the larger magnitudes of superfluid velocity.
From the physical point of view it is also evident from a
possibility to reduce the kinetic energy of the superfluid
component p SVSZ /2 with decreasing the superfluid density.
The pressure reduction with the growth of superfluid veloci-
ty can be ascribed to the role of the Bernoulli pressure.

In a dilute unsaturated liquid mixture we have

Z T

dc  mye

This gives the known [15] Boltzmann concentration distri-
bution c(r) = c exp(—U.g/T) with the effective attractive
potential

ap,/dc m3VS2 (r)

Uegr (r) = >

This distribution can only be justified for the distances pro-
vided that the *He concentration does not exceed the magni-
tudes corresponding to the condition of nondegeneracy

) 2/3
Te~t (P ) <1
2I’VI3 I’VI3

For the smaller distances or in the degenerate liquid
mixture, the growth of concentration occurs slower and
power-like. For the more realistic estimate of the concen-
tration behavior at the close distances to the vortex core, it
is necessary to know the detailed behavior of quantities
Z=Z(P,c, V;z) and p; =p,(P,c, VY2)~

Note that the "He concentration in the d-phase, in any
case, cannot exceed magnitude ¢, corresponding to the A-
line at which the superfluid component density p, vanishes
or the magnitude Cop corresponding to the spinodal line at
which the derivative 0Z /dc =0 and the d-phase becomes
absolutely unstable. These conditions restrict the minimum
size of vortex core. Emphasize that the concentration is
¢y, > ¢sp at the temperatures below the tricritical point tem-
perature 7; and, on the contrary, at 7> T, the A-line lies
ahead of the spinodal and the transition to the c-phase occurs
continuously in concentration. Accordingly, we can expect
the distinctions in the vortex structure at temperatures above
and below the tricritical point temperature, namely, the con-
centration discontinuity at a vortex radius if 7' <7, and the
continuous variation with a kink at the vortex radius if
T>T,.

For the temperature region 7' > T;, when the phase sepa-
ration of liquid 3He*He mixture does not take place but
only the d-to-c phase transition occurs at some temperature

and pressure-dependent concentration ¢, , the vortex core
radius can grow infinitely as the liquid mixture concentra-
tion c approaches the c) one. In fact, for radius R) where
the "He impurity concentration reaches the magnitude ¢; ,
we have c(R) ) = ¢) (P(Ry,)). According to Eq. (2)

2 2
V. ap,/dc V,
o | P=Psis 2= Pl s
2 pdZ/dc 2
or approximately on the account of the A-line dependence
on the pressure and superfluid velocity, we arrive at
dCx VSZ aps /aVSZ 2 _

CK(P)_psE )

.9,/ V.
poZ/dc 2

ap,/dc *
Hence we find
op,/dc dey,
4|~ TPs—
pdZ/dc dP
2\/§7i(c;L - c)l/2

2 \l/2
ZapY /aVV
dp,/dc

R;L = —> oo
as c— .

In order to realize the vortex of large core radius below
the tricritical point temperature 7;, one should have the im-
purity concentration close to that at the spinodal. In other
words, the liquid 3He—*He should already be supersaturated,
i.e., it should be in the metastable region. As will be seen
below, the presence of a vortex, playing a role of nucleation
site, prevents from achieving the highly supersaturated state
of the d-phase. Thus, the vortex core radius remains finite
and cannot exceed some maximum value, starting from
which the vortex becomes absolutely unstable against the
core expansion. This entails the phase separation of a liquid
mixture.

In the d-phase the above distinctions and specific fea-
tures in the vortex core behavior as a function of tempera-
ture and concentration could be observed with the aid of
second sound. The second sound absorption is very sensi-
tive to the presence of the c-phase, allowing us to detect
the variation in the total volume of the normal c-phase in
vortices under varying the liquid mixture concentration.

3. Energy of nucleation on a vortex

First, we find the energy of rectilinear vortex in the d-
phase close to saturation. As a liquid mixture separates, the
vortex core is progressively filling with the normal c-phase
playing a role of a nucleus of new phase. We need to know
the energy of the system as a function of vortex core radius
R. In equilibrium the thermodynamical potentials and
temperature of the normal c-phase obey the following re-
quirements:

(P, Z’,T") = const,
Z'(P',c’,T"Y=const and T = const.

This yields the ordinary conditions: ¢’(r)=const and
P’(r) = const.
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The boundary conditions at the vortex core » = R, usual
for the equilibrium between two phase, imply an equality
of thermodynamical potentials, temperatures, and pressures

involving the Laplace pressure:
2

V.
O(P,Z',TY=D(P, Z, T, VS)+% =

E(I)(PnZ)Tal/Tg:O)‘r s

=00

Z'(P, <\ T)=Z(P.c, T, V)= Z(P,c, T, Vs =0) __,

T’=T and P'=P(R)+a/R. 3)

The surface tension coefficient o= o(P —P,c’—c), in
general, depends on a difference of the pressures and con-
centrations at the interface. For brevity, we omit the nota-
tion for temperature.

Let us denote the impurity concentration far from the
vortex at r =oco as ¢ = (P)+Ac and, correspondingly,
impurity concentration 1n51de the core as ¢’ = cpS (P)+Ac’.
Here ¢, s(P) and c s (P) are the 3He impurity concentra-
tions at the phase separation line. Assuming Ac < Cps (P)
and Ac’ < ¢, s(P) as well as P=a/R+P(r=R)-P to
be small, we expand Egs. (3) in deviations

(P, ¢ 1+B —c ai,Ac' =
dc
9z
=®O(P, cps(P))—c EAC,
and
Z'(P, ¢} (P)) ANy
p’c oc

oZ
=Z(P, Cps (P))+ gAc

where coefficients 3 and B’ are defined as usual

N
p dc p’ de

Hence we arrive readily at the deviations of concentration
and pressure from their equilibrium magnitudes inside the
vortex

1, aZ
AP=p (cps (P)_cps (P))gA
Cp (P
Ac'=|1+p| 1 ?S( ) 0Z/dc .

cps(P) || 92"/ e
Thus, if d-phase is saturated (Ac = 0), the impurity concen-

tration inside the core is equilibrium ¢’ = ¢/, s (P). Introduc-
ing the imbalance between the phases

A = [} (P)— s (P)] g—ZA

we arrive at the equation determining the core radius R:

AP=0./R+P(R)-P=p'Ad.

To find pressure P(R), we involve the behavior of su-
perfluid density p, as a function of P, c, VS2 and use rela-
tions (1). Then we have

V2
s gpy Poyey BV,

\Y
Ps = oP dc

s o2

Al
N

where B is equal to

_p, @logp,/9c)* dp, ,dlogp,
p  09Z/dc P " r2

>

and the superfluid density is approximately given with the
following equation:

2
py(r) = ps[l BV;F)]

From VP =—p, (r)V(V2 /2) we find the pressure

2 4
K0, B0,

P(r)=P-p, =" +p,B

Accordingly, core radius R satisfies

2 4
, o Vo (R) V. (R)
—p'AD+——p = +p . B-E +...=0
p R Ps ) Ps 3
or
S h? nt
—pAD+——p, +p,B +...=0.
R " omiR? 7 8miR?

Multiplying it with 2R and integrating over R, we obtain
the energy U(R) per unit length for a c-phase nucleus in
the form of quantized vortex

2
U(R) = —p’A®TR? +2m0R +p, %1n£+
my
2 4
+8_oc8ps/acnh 1 =h SEL @
dc poZ/dc mi R 8 R2

Here surface tension a is assumed to be only dependent

on the *He impurity concentration at the c—d interface but a
possible pressure and core radius dependence is neglected.
The length L is a usual cutoff one for a vortex. The origin
for the terms in the vortex energy is obvious. Note only
that the third and fifth terms arise wholly from the kinetic

energy of superfluid component (l/Z)J P (r)VS2 (r)dzr. In

essence, Eq. (4) represents an expansion of linear energy of
a nucleus in its inverse radius [19].

4. Thermal and quantum nucleation rate on the vortex.
The crossover temperature to the quantum regime

We consider here the quantum nucleation rate of c-
phase on the vortex at zero temperature and the thermal-
quantum crossover temperature in nucleation. First of all, it
is necessary to understand the behavior of potential nucle-
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Fig. 1. The behavior of potential energy U as a function of vortex core radius R in the various ranges of imbalance AD.

us energy U(R). To simplify and to obtain the clear analyt-
ical formulae, we restrict ourselves with the three first
terms of expansion in Eq. (4):

2
U(R) = —p’ADTR? + 2m0R +p, L
m; R

As is seen from Fig. 1, energy U(R) as a function of
imbalance A® has a various behavior and a different num-
ber of extrema depending on the vortex core radius. For
unsaturated (A® <0) liquid mixture, there is a single
extremum and the corresponding vortex state is absolutely
stable (Fig. 1(a)). Within the intermediate imbalance range
0 <A® <A, there are two extrema in the potential en-
ergy (Fig. 1(b)) as a function of core radius at

R 2
—*= —(1 TJl1-p ) ,
Ry p )
_ kPp, _AD
20(m4 ' Aq)cr

Here R, is the core radius in the saturated liquid mixture
A® = 0. For the imbalance larger than the critical one
2.2
o o my
= (6)

PAD, =—— ,
cr 4R, 2psh2

there are no extrema (Fig. 1(d)). This entails an appearance
of the line of absolute instability. In other words, vortices
which sizes exceed R, =2R; become unstable against
vortex core expansion and the phase separation of a liquid
mixture proves to be unavoidable. Hence, only for the im-
balance range O0<A® <AP_.  corresponding to
Ry <R <2R,, we observe the metastable state which can
be destabilized as a result of thermal or quantum fluctua-
tions depending on the temperature. These specific features
are well evident in Fig. 2.

Such behavior of nucleus energy as a function of nucle-
us size and imbalance differs in kind from the case of ho-
mogeneous nucleation of spherical drop. The point is that
there is a competition of two opposite factors in the pres-
ence of a defect similar to vortex. If, for instance, a nucleus
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grows, the contribution associated with the surface tension
increases and the other due to effect of a defect decreases.
For negative and small positive AD, these two contribu-
tions result in the minimum for the potential energy
(Figs. 1(a) and 1(b)). On the contrary, if the imbalance is
large and the critical nucleus is small, the effect of surface
tension is small as well. Then, for A® > A®_,, the total
energy is determined, in the first turn, with the terms de-
creasing gradually and, therefore, has neither minimum nor
maximum. This results in the unstable state. All these fea-
tures, involving the similar phase diagrams R—A® hold for
other defects [20], e.g., for a charged ion which influence
decays with the distance together with electric field.

At the first sight, due to existence of critical value AD,
one may expect that the phase separation of a liquid mixture
with the quantized vortex will occur at the same magnitude
of imbalance in all experiments. However, the process of
phase separation can take place in the metastable region
0 <A®D <A®D_. before the critical imbalance is achieved.
Since the phase separation of metastable state is a random
process described with some probability and dependent on
imbalance, the experimental magnitudes acquire some dis-

R
unstable
G critical point
R, '
stable metastable
0 AD AD

cr

Fig. 2. The diagram for the equilibrium between vortex line and
superfluid 3'He—4He liquid mixture. Here R is the vortex core
radius and A® is the imbalance of a liquid mixture.
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persion around certain magnitude A® < A® ... This magni-
tude and dispersion of data depend both on the decay prob-
ability and on the rate of varying the liquid mixture imbal-
ance in experiment.

For the high temperatures, the nucleation rate, deter-
mined as a nucleation probability per unit time at one nu-
cleation site, is governed with the usual Arrhenius formula
for thermal fluctuations

L =vexp(-U./T),

where v is the frequency of attempts. The activation ener-
gy U for a vortex of length L is expressed as U; = LAU|,
with AUy =U(R,)—-U(R_) determined from the differ-
ence between the maximum and the minimum of energy
U(R) (Fig. 1(b)):

\/—11+1p

ZTC(XRO p 1-p
4
$0=p" for P21,
E—lni for p—0.
V4 p

It is seen that the nucleation rate enhances drastically as
p=A®P/AD . — 1 due to vanishing the potential barrier.

As the temperature approaches absolute zero tempera-
ture, the quantum fluctuations become predominant. To
estimate the quantum nucleation rate, we employ the theo-
ry of quantum nucleation in the two-dimensional
systems [21]. Within the exponential accuracy we estimate
the zero-temperature nucleation rate as

I,=v, exp(—4; / h).

Here v, is the attempt frequency and 4; = AL is the dou-
bled underbarrier action for vortex length L where 4 is the
quantity per unit length of a vortex.

To calculate the quantum probability, it is necessary to
estimate the effective mass of the expanding vortex core.
We treat the boundary conditions at the vortex core surface
r = R(t) as for the boundary between two different phases.
First of all, we have a conservation for the radial compo-
nent of mass flow across the boundary

_p,R = jr (R) _pR’
=P, Vn 0V
Here we assume that the c-phase of density p” in the vortex
core is at rest (V" = 0). The second condition is a continuity

for the tangential component of momentum flux density
tensor IT;;

Mg, — joR =Ty, — joR,
where for the superfluid phase

Hlk = pn ni nk +pst sk +P81k

Accordingly, we have

annO(Vnr _R) +Ps V5o (Vs _R) =0.

Treating the normal component of superfluid d-phase as a
liquid with the properties of an ordinary viscid fluid, we
should require an equality of tangential components for the
velocities of adjacent fluids. Then we have

Vao(R) =Vg(R) =0.

From the above three equations we find the magnitudes of
velocities at the boundary » = R(¢)

Ver (R) = R,
Vnr(R):_ P —ans

n

V,6(R)=0.

As is seen, the mass transfer across the surface of the ex-
panding vortex core is connected with the normal compo-
nent flow alone.

On the neglect of the compressibity of a liquid mixture
the distribution for the radial components of superfluid and
normal velocities is equal to

Ver (M) = Ver (ROR 7,

V@)=V, (R)R/r, r>R(?).

In the logarithmic quasistationary approximation and on
the analogy with the two-dimensional nucleation [21] we
can estimate the kinetic energy of the expanding vortex
core as

AR R* _

2P R In = Lyuwr?

with the following effective density p.g:

’ 2
peir =y + 2P ™
Pn
The cutoff parameter A(R) is of the order of the sound
velocity multiplied with the typical time of the core expan-
sion A(R) = Segr T(R). Since there are two sound velocities
in the superfluid liquid mixture, velocity s is some
weighted average of first and second sound velocities. In
other words, length A(R) is an effective size of sound
propagation region for the time of the underbarrier nuclea-
tion evolution, i.e., size of the perturbed medium surround-
ing the nucleus. Here we do not consider possible energy
dissipation effects due to viscosity and diffusion in the
process of vortex core growth.
So, action A is calculated between the classical turning
points in the potential AU(R)=U(R)-U(R_) as

RC
A=2 j 2M(R)AU(R)dR, (8)
R_
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where R, is the exit point from the barrier U(R,) =U(R_).
Since the logarithm is a slowly varying function, for our
aim it is sufficient to estimate the growth time of a nucleus

as follows:

1/2
M(R)R?

2U(R)

R=R,

The analytical expressions for the effective action are
succeeded to obtain for the two limiting cases. For the
small degree of imbalance p = A®/AdD_. <1, the contri-
bution to the vortex energy, associated with the superfluid
motion, plays a minor role and the effective action is main-
ly governed with the magnitude of the surface tension:

1/2
32In 5 SszRO
572 [ PeffRolneT o<
p p

o (A®) V1 2(a) ™!

AT =0)=

The quantum critical radius R, exceeds significantly the
core radius R, in a weakly supersatured liquid mixture

The typical time of nucleus growth reads
1/2

3
pefch o (A(D)_3/2 .
Rlod

wR) =

Let us turn to the other limit p = A®/A® . — 1. In this
case the imbalance is close to the line of absolute instability
when the potential barrier, separating two states, vanishes. In
this case, as usual, the potential barrier can be approximated

with a cubic parabola
R-R_ : _1(R-R_ ’
3\ R

As p — 1, the distance between the points of entrance R_
and exit R, reduces to

R.—R_=3R_

1-p,
but the growth time of a nucleus increases

NV
8petr Rp

“loicp

With the help of Eq. (8) the action per unit length can be
estimated as

1/2

1927
p)5/4

2
4= (1- 85t Pett Ko
5 o

5
oper Ry In T,

Thus, effective action vanishes with approaching to the in-
stability. Accordingly, the probability of quantum nucleation
grows drastically.

The next important point in the low-temperature kinet-
ics is a crossover temperature 7, between the quantum and
classical nucleation regimes. A simple estimate for 7, can
be obtained from comparing the classical and quantum
actions under assumption v, = v. So,

Tq:hUL/AL'

Hence we have in the limit of small p =A®/AD . <1
imbalance

12
2 o2

I, = 7 EP NC)
8V2T\ pegr Ry In[segr Pesr Ry / (0p)]

In this region of imbalance the crossover temperature
grows as the imbalance enhances.

On the other hand, as the imbalance tends to the critical
value, i.e. 1—p <1, the crossover temperature starts to
reduce according to relation

1/2
1/4 ah?

Pefr g In [Ssesz Petr Ro / (0‘\/@ )]
(10)

The total behavior for the crossover temperature T, asa
function of imbalance is shown in Fig. 3. Note here that the
crossover temperature maximum 7, ... is shifted in the
direction to the line of absolute instability. Another specif-
ic feature, apparently, inherent in all transitions near the
spinodal, is that the nucleation mechanism becomes again
the thermal one instead of quantum as a function of
supersaturation A® or imbalance degree [20] in the inter-
mediate vicinity to the line of absolute instability
(spinodal). This takes place though the temperature is less
than 7, .. For a rectilinear vortex, the crossover temper-
ature 7, is naturally independent of its length.

We do not consider here the effect of dissipative phe-
nomena on the nucleation rate of c-phase nucleus at the

5
T =—(1-
p 72( p)

T
thermal |
activation |
Tq, max [*TTTTTTTTTTTTTTTTTTTTTT S i
i absolute
| instability
quantum i
nucleation |\!
AD, AD

Fig. 3. The various types of the c-phase nucleation onto a
quantized vortex in a supersaturated *He*He liquid mixture. The
solid line shows the thermal-quantum crossover temperature. The
dashed line is the spinodal, separating the metastable states from
absolutely unstable ones.
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quantized vortex core, which can be associated with vis-
cosity, impurity *He diffusion, and impossibility of using
the quasistationary approximation for rectilinear vortex. In
principle, one can here distinguish the hydrodynamical and
ballistic regimes of nucleus growth. However, for the re-
gion of supersaturation close to critical value, a possibility
of hydrodynamical R, > [(T) regime, where /(T) is the
mean free path of excitations in a liquid mixture, is unlike-
ly in the quantum nucleation region since the quantum vor-
tex core radius R, in the nucleus growth does not exceed
several vortex core radii Ry in the saturated liquid mixture
(about a few tens of angstrom). For the ballistic R, < I(T)
regime, one can suppose that the friction coefficient is di-
rectly proportional to the core area. Accordingly, the fric-
tion coefficient per unit length is LW(R) o< R. In the viscous
M (R)T_I(R) < W(R) limit a simple estimate gives

T, = o - AP Ak AD,:
2RO “(2RO ) ACI)cr
2

]<2R0>2u(zzeo> 1%

AD
A(T<Tq)z2n[l—Aq)

cr

and in the other A® < AD ;. limit

2noh

*TWRIR, (ADY’, R, =2R) (AD < ADy);
C C

AT <T,) = W(RRZ o= (AD) .

Comparing these formulae with the previous ones, it is
seen that the qualitative character for the behavior of effec-
tive action A(7) and crossover temperature 7, remains
unchanged as a function of imbalance A®. The diagram
T,—A® conserves its shape in kind (Fig. 3) though the
quantum nucleation region reduces and the thermal activa-
tion region increases beside the instability line.

5. Rapid nucleation line and the numerical estimates

Below we discuss some consequences from the equa-
tions above and perform the numerical estimates connected
with the c-phase nucleation on a quantized vortex in the
supersaturated superfluid SHe-*He liquid mixture. First,
we analyze in kind the possible positions of the rapid nu-
cleation line in the 7-A® diagram of nucleation regimes.
The rapid nucleation line exists also as in the case of ho-
mogeneous nucleation of spherical drops [13,14] due to
very drastic dependence of nucleation rate on the imbal-
ance. The rapid nucleation line separates the region where
the nucleation rate is practically zero and supersaturated
liquid mixture does not separate infinitely long on the time
scale of experimental period from the region where the
phase separation occurs almost instantaneously.

After preparing the metastable state 0 < AD <AD, at
temperature 7 the liquid mixture separates eventually for
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the expectation time T,s. Thus the nucleation probability
is approximately equal to unity

W(AD, T, Tps» Npue) = Tobs Ve TADT) =1, (11)

Here I" stands for either I'; or T’y in the correspondence
with the temperature range and N, is the number of nu-
cleation sites. Equation (11) determines the rapid nuclea-
tion line A, (T') in diagram 7—A®. This corresponds to
the experimentally achievable supersaturation.

For the nucleation probability, we have

oM, ve— AR/ _
obs” "nuc

W=z

 [obs Nnuc Vet Xp(-UL (A®, T) if T > T, (AD),
Tobs NnucVy €XP(—A, (AD, T) if T <T,(AD).

Hence one can see that the position of the rapid nucleation
line depends on the temperature, the number of nucleation
sites, and the rate of sweeping the liquid mixture imbal-
ance. Since the shape of potential energy U(R) depends
strongly on the closeness to the instability line, the effect
of the sweep rate on the position of the rapid nucleation
line here is more essential as compared with the case of
homogeneous nucleation.

Depending on the expectation time T, and the number
of nucleation sites, one can discern two opposite cases in the
position of the rapid nucleation line in the T-A® diagram
(Fig. 4). The first case is restricted with the inequality

1/2
0Peir R . 5Pt R
(VT p, Noye) > 324272 [ peff2 0L |, SeftPeff 0
h o

(12)
and corresponds to the limit of low nucleation rates I". This
corresponds to the large lifetime of a supersaturated liquid
mixture against the decay channel considered. In this case
(Fig. 4(a)) the rapid nucleation line lies far from the insta-
bility line and A®y, < AD,. Therefore, the existence of
the instability line has no significant effect on the nuclea-
tion kinetics. In the classical thermal activation region the

attainable supersaturation is strongly temperature-
a
() (b) instant
7| |thermal jnqpang T
nucleation
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Fig. 4. The schematic for the rapid nucleation lines (solid lines):
(a) for low nucleation rates I' and large expectation time T,
(b) for high nucleation rates I" and small expectation time T, .
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dependent according to A® o<1/7. In the quantum
T <T, region the attainable supersaturation is almost inde-
pendent of temperature. Correspondingly, the crossover
temperature 7, , proportional to (AD, )3/ 2, is significantly
smaller than the maximum crossover temperature 7;, . -

For the opposite case of high nucleation rates when ine-
quality (12) is invalid, the existence of instability affects
essentially the position of the rapid nucleation line at suffi-
ciently low temperatures (Fig. 4(b)). As the temperature
lowers, the rapid nucleation line should closer approach the
instability line since the smallness of potential barrier can
compensate a decrease of temperature in the classical ex-
ponent, providing us the high nucleation rates. As a result,
in the thermal activation regime the temperature behavior
for the attainable critical supersaturations should go over

from drastic A®,, o 1/T to the smoother one

APy = ADg, (1-(7/7)3)

in the low-temperature region if 7" S 7, .. Here Tx is
some typical temperature which can be determined from
Eq. (11) with the classical exponent at p — 1. From the
experimental point of view this distinctive feature, associat-
ed with the closeness to instability, can deliver some trouble
in determining the crossover temperature between the classi-
cal and quantum regimes, imitating the genuine crossover
with the transition to almost temperature-independent be-
havior for the observable imbalance of a liquid mixture.

Another specificity is associated with the presence of two
regions for the thermal activation regime at various A® for
the same temperature 7' <T,max (Fig. 3). However, as is
seen from Fig. 4(a) and 4(b), the observation of such reen-
trant behavior is impossible under the fixed nucleation rate
I'. To do this, it is necessary to vary any parameter in
Eq. (11), e.g., the number of nucleation sites N.. In liquid

He-"He mixture this can be done with introducing vortices
intentionally before the start of the phase separation process
in the d-phase of a liquid mixture.

Let us turn to the numerical estimates of the results ob-
tained. We start from the calculation of the critical value
A® . which plays a key role in comprehending the phase
separation in a superfluid liquid mixture with quantized
vortices. As for the surface tension, we take the magnitude
for the flat interface between the bulk phases of liquid mix-
ture at zero pressure o = 0.0239 erg/om2 [22]. Using sim-
plest estimates (5) and (6), we find p’A®. =0.011 bar
and, correspondingly, R, =12.7 A. A relatively large crit-
ical vortex core justifies an applicability of macroscopic
approximation to some extent. On account of estimating
the derivative 9Z /dc = 0.9-10% erg/g for the limiting criti-
cal value of saturation responsible for the vortex core in-
stability, we arrive at Ax., =(1.9-2.0)% [19]. Thus the
estimate agrees with that obtained in work [18].

Expansion (4) in the inverse core radius involves the
inhomogeneous distribution of concentration, pressure and
superfluid density in the d-phase. However, the effect of
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these terms proves to be small and counts about 5%. If we
neglect the contribution associated with coefficient B
in (4), putting B = 0, and expecting the order-of-magnitude
estimate of do./ dc = o, we find somewhat smaller but the
close value for the limiting supersaturation Ax,, =1.80%.
This is connected with the relatively large critical core ra-
dius. Note also that value R =12.7 A correlates with the
core radius Ry, = 125A calculated under assumption that
the *He concentratlon at the core boundary corresponds to
the spinodal of the bulk d-phase and equals xg, ~16%.

The important characteristic for nucleation kinetics is
the thermal-quantum crossover temperature 7,. To esti-
mate the latter, it is necessary to know the effective density
Perr (7) which proves to be approximately equal to
Pefr = 2.2p, at the phase separation line and lies within the
range 0.23-0.40 g/cm™. The highest possible crossover tem-
perature 7, .., can be estimated either from (9) at p =1 or
from (10) at p = 0.5. This results in relatively small temper-
atures T’ <T, ¢ < 2.3 mK necessary for a possible obser-
vation of quantum nucleation.

To conclude, we have analyzed the c-phase nucleation
in the supersaturated d-phase when a quantized vortex
plays a role of nucleation site. Though the maximum pos-
sible supersaturation of the d-phase in the presence of vor-
tices proves to be in the almost satisfactory agreement with
the observable magnitudes of supersaturation, the estimate
for the crossover temperature to the quantum nucleation
regime is rather small as compared with the temperature at
which the transition in temperature behavior is observed
for the critical supersaturation Ax, of a liquid mixture.
Varying the values of physical parameters in order to in-
crease T, nax, We have an enhancement of the maximum
attainable concentration at which the vortex core instability
occurs. Then the agreement with experiment becomes worse
in this parameter. So, the assumption about the heterogene-
ous phase separatlon mechanism in a supersaturated super-
fluid He*He liquid mixture with quantized vortices as
nucleation sites, apparently, cannot describe the experimen-
tally observed picture of phase separation on the whole.

An obstacle for quantitative comparison arises from the
exponential behavior of nucleation rate. In such situation
from the experimental point of view it would be useful to
study the effect of the number of nucleation sites on the
phase separation of a liquid mixture under the planned and
controlled introduction of quantized vortices into the d-
phase. One of possibilities is an experiment in a rotating
cryostat and the study of the phase separation rate of liquid
mixture as a function of rotation velocity. Since in the limit
of small density of vortices the nucleation rate is proportion-
al to the number of vortex lines, the observable nucleation
rate should also be proportional to the rotation velocity.

For the large rotation velocities, especially when the
spacing between the vortex lines is comparable with the core
sizes, the critical value of supersaturation A®_. and the po-
tential barrier, separating the metastable state from unstable,
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are strongly suppressed. Accordingly, the phase separation
rate of a liquid mixture should drastically grow in the limit
of high rotation velocities. In addition, due to difference in
the centrifugal energy of *He and “He atoms the spatial

He distribution becomes inhomogeneous over the bulk of
a rotating fluid, facilitating the reduction of the critical
supersaturation A® .. In any case it is known that the *He
impurities strongly affect the Process of nucleating the
quantized vortices in superfluid He.
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3apoOKOTBOPEHHS Ha KBaHTOBaHMX BUXOpax Ta
reTeporeHHuin posnoain gas B nefecmzleme
HaaNNUHHKX pigKuX po3dmHax “He—"He

C.H. bypwicTpos, J1.B. [ly6oBcbkui

IMepecnueni HaAIUTMHHI PiaKi PO3YMHH 3I-IejHe, SIKI TIOZIIS-
IOTBCS Ha 3He—KOHHeHTpOBaHy c-¢pazy Ta 3He-po36aBneHy d-dazy,
HaJal0Th YHIKaIbHY MOXJIMBICTH JUISl BUBYCHHS MaKPOCKOMIYHOTO
KBaHTOBOI'O 3apOJKOTBOPEHHS Ta KBAHTOBOI KIHETHKH PO3MOALIY
(a3 y 6iHapHHX CyMilllaX IIPY HU3BKUX TEMIIepaTypax ax 1o abco-
moTHOTrO HyJs1. OfMH 3 MOXKIJIMBUX Ie€TEPOrCHHUX MEXaHi3MiB da-
30BOTO PO3MOJLUTY IrepecudeHoi d-(a3u mop's3aHuil 31 HAATUTUH-
HicTIO 11i€l (ha3u Ta MOXKJIMBHM iCHYBaHHSIM KBAHTOBUX BHXPIB, IO
TParOTh POJIb LEHTPIB 3aPOAKOTBOPEHHS sl c-(ha3u pigKol CyMilii.
IIpoananizoBaHO AMHAMIKY 3pOCTaHHS BUXPOBOTO Kopa 3 c-(ha3oto
Ta BU3HAYEHO TEMIIEPATYpHY MOBEIIHKY IIBHAKOCTI 3apODKEHHS
c-(a3u 1 TeMrepaTypu KpocoBepa MK KIACHYHHMH Ta KBaHTOBH-
MU MeXaHi3MaMH 3apOIKOTBOPEHHSI.

KirouoBi ciioBa: MakpOCKOIIiYHE KBAaHTOBE 3apOIKOTBOPEHHSI,

. L. 3 4 o
HepecuyeHl HaAIUIMHHI piaki po3uunu ~He— He, xBaHTOBaHuMi
BUXOD, TETEPOreHHUI pO3NOALT (a3.

3apogaplweobpasoBaHne Ha KBAHTOBAHHbLIX BUXPSX U
reTeporeHHoe pasgerneHue gas B NePEChILLEHHbIX
CBEPXTEKYYUX XUOKUX pacTBopax ~“He— He

C.H. bBypmuctpos, J1.b. [ly6oBckuii

[lepechlllieHHBIE CBEPXTEKYUHME JKUAKHE PacTBOPbI ’He—*He,
KOTOpbIE Pa3NeNsiorcs Ha ~He-KOHUEHTPUPOBAHHYIO c-(hasy H
’He-pasbapieHnyio d-(asy, NPEIOCTABIAIOT YHHKATHHYIO BO3-
MOKHOCTb JAJISl U3y4EHUSI MAKPOCKOIIMYECKOIO KBAHTOBOTO 3apo-
JbIIIC00pa30BaHus U KBAaHTOBOW KHMHETUKH pasfieneHus Qa3 B
OMHApHBIX CMecsAX IPU HU3KHUX TeMIeparypax BIUIOTh J0 abco-
JFOTHOTO HyIsl. OIMH U3 BO3MOKHBIX F€TEPOr€HHBIX MEXaHH3MOB
(a3oBOTO pasneneHus MepechIIeHHON d-(a3bl CBsI3aH CO CBEPX-
TEKYy4eCThbIO 3T0H (ha3bl M BO3MOXKHBIM CYLIECTBOBAHHEM KBAHTO-
BaHHBIX BUXpEH, UTPaIONUX POJb IEHTPOB 3apojblnieo0pa3oBa-
HUSL A7 c-(a3el xuakoi cMecu. [IpoaHann3upoBaHa JUHAMHKA
pocTa BUXPEBOTO Kopa ¢ c-(ha30i U OIpeseNICHO TeMIIepaTypHOe
HOBEACHUE CKOPOCTH 3apOXKAEHUs c-(pa3bl U TEMIEepaTypbl Kpoc-
coBepa MEXIy KIACCHUYSCKMMH M KBAHTOBBIMU MEXaHU3MaMH
3apoAbIIe00pa3oBaHUs.

KiroueBble ci10Ba: MakpOCKONMYECKOE KBAHTOBOE 3apOIbIIIeo0-
pa3oBaHHe, TEPECHIIEHHbIE CBEPXTEKY4HE MHUIKHE PacTBOPHI
’He—*He, KBaHTOBAHHEIH BUXpb, F€TEPOreHHOE paseneHue dhas.
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