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Supersaturated superfluid 3He–4He liquid mixture, separating into the 3He-concentrated c-phase and 3He-
diluted d-phase, represents a unique possibility for studying macroscopic quantum nucleation and quantum 
phase-separation kinetics in binary mixtures at low temperatures down to absolute zero. One of possible hetero-
geneous mechanisms for the phase separation of supersaturated d-phase is associated with superfluidity of this 
phase and with a possible existence of quantized vortices playing a role of nucleation sites for the c-phase of liq-
uid mixture. We analyze the growth dynamics of vortex core filled with the c-phase and determine the tempera-
ture behavior of c-phase nucleation rate and the crossover temperature between the classical and quantum nucle-
ation mechanisms. 
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1. Introduction

This year E.Ya. Rudavskii celebrates 80. Our meeting 
with Eduard Yakovlevich has taken place about the same 
time when the Department of Physics of Quantum Fluids 
and Crystals has started the systematic experimental study 
on the phase separation kinetics of supersaturated 3He–4He
mixtures. This study has laid the foundations for new field 
of physics, namely, macroscopic quantum nucleation or kinet-
ics of first-type phase transitions in condensed matter at tem-
peratures so close to absolute zero that the classical thermal-
activation phase-transition mechanism becomes complete-
ly ineffective. Under the influence of pioneer experiments 
and personal charm of Eduard Yakovlevich we, keen at that 
time with the theory of macroscopic quantum tunneling and 
the role of dissipative processes, have turned to the study of 
the low-temperature phase-separation kinetics of liquid 3He–
4He mixtures and the energy dissipation effects associated
mainly with the diffusion of impurity 3He atoms.

In 1969 during the study of degenerated 3He–4He liq-
uid mixtures there is demonstrated a possibility of prepar-
ing the metastable state of supersaturated superfluid 3He–
4He liquid mixture in the lack of free liquid-vapor sur-
face [1]. For T < 70 mK, there are obtained the long-lived 

supersaturated liquid mixtures staying in the metastable 
state for two and more hours. The experimental studies of 
phase separation kinetics in liquid 3He–4He mixtures
have been started by Brubaker and Moldover [2] and then 
continued in 80-ies [3–5]. The experiments were per-
formed in the high-temperature (T > 0.5 K) region and 
the main attention was paid for the phase separation in 
the vicinity of the tricritical point in the connection with 
the type-II phase transition fluctuation theory developing 
rapidly those years. The experimental observations have 
adequately been described within the framework of the 
classical thermal-activation nucleation theory. 

Later in the early 90-ies the study is started of the phase 
separation kinetics of superfluid 3He–4He liquid mixtures
in the region of lower temperatures T < 200 mK with the 
aim of detecting the transition from the thermal-activation 
phase-separation regime to the quantum underbarrier one. 
There have been used new methods of experimental study. 
One method, developed in Kharkov in B. Verkin Institute 
for Low Temperature Physics and Engineering, is based on 
a continuous change in the 3He concentration directly in
the course of experiment at constant pressure and tempera-
ture due to varying the osmotic pressure and fountain pres-
sure. The variation rate in the 3He concentration is usually
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about 10–4 percent per second. The state of the liquid mix-
ture is recorded by two methods [6–10]. The acoustic meth-
od is based on the sound velocity variation in the course of 
phase separation of liquid mixture and the capacitive one is 
based on the measurement of dielectric permittivity. The 
jump-like reduction in the 3He concentration, recorded sim-
ultaneously with the sound and capacitive methods, corre-
sponds to separating a metastable supersaturated liquid mix-
ture into two phases. 

As is known, due to existence of the effects of osmotic 
pressure and fountaining in a superfluid phase of liquid 
3He–4He mixture the temperature inhomogeneity leads 
readily to the pressure and concentration inhomogeneity. 
To avoid the effect of this factor, the process of preparing a 
supersaturated liquid mixture should occur under invariable 
temperature and sufficiently slowly in order not to set the 
3He atoms in motion. Thus, employing the dependence of 
the separation line on the pressure, the authors of work [11] 
have proposed another scheme of continuous pressure varia-
tion using a thin capillary (superleak) through which the 
superfluid 4He component alone can flow. This results in 
changing the pressure and 3He concentration in the exper-
imental cell. In the course of experiment the total 3He 
amount in the cell remains unvaried. The rate of pressure 
variation is about 0.25 atm/h, corresponding to the 4He 
flow as about a microgram per second and as a concentra-
tion rate 6·10–6 percent per second. This is smaller by a 
factor of 104–105 as compared with that in the phase sepa-
ration experiments on liquid mixtures in the vicinity of the 
tricritical point. The final results of the research and their 
discussion are given in work [12]. 

So far, the theoretical interest [13,14] has mainly been 
focused on the homogeneous mechanism of phase separa-
tion in the supersaturated d-phase of liquid 3He–4He mix-
ture. In spite of careful analysis a scepticism has remained. 
The possible mechanisms for inhomogeneous phase sepa-
ration of liquid mixture have not received a proper atten-
tion. In particular, this concerns a possibility of the pres-
ence of remnant quantized vortices and an estimate of the 
crossover temperature for the thermal and quantum re-
gimes of phase separation. 

Here we consider one of possible heterogeneous mecha-
nisms for the phase separation in the supersaturated d-phase 
of liquid 3He–4He mixture, which is associated with 
superfluidity of d-phase and with possibility of existence of 
quantized vortices. The vortices, in its turn, can play a role 
of nucleation sites for the c-phase of liquid mixture. The 
idea goes directly back to works [15–17] where the phe-
nomenon was analyzed of 3He atom adsorption onto the 
quantized vortex core in superfluid He-II. Unlike the previ-
ous works [18] dealing with the thermal-activation nuclea-
tion mechanism alone, we here concentrate our attention on 
the growth dynamics of vortex core filled with the c-phase 
and determine the nucleation rate in the quantum region as 
well as the thermal-quantum crossover temperature. 

2. The quantized vortex structure in the saturated  
3He–4He liquid mixture 

Let us consider the structure, core radius and energy of 
rectilinear vortex with one circulation quantum in the satu-
rated superfluid d-phase of liquid 3He–4He mixture. It is 
well known that 3He atoms tend to be localized and trapped 
with the vortex core. Below we analyze a simple model 
with the rigid core for quantized vortex in the saturated 
superfluid 3He–4He liquid mixture, assuming the vortex 
core to be filled with the c-phase. Beyond the vortex core 
of radius R the superfluid velocity Vs at distance r from 
vortex line is subjected to equation: 4( ) = /sV r m r  as a 
result of circulation quantization 

4= 2 /sV dl mπ∫ 



. 

The condition for equilibrium of d-phase in the bulk re-
quires the constancy of thermodynamic potentials and tem-
perature 
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Here 4 4= / mΦ µ , potential 3 3 4 4= / /Z m mµ − µ  is conju-
gated to the mass 3He concentration, and 3,4µ  and 3,4m  are 
the chemical potentials and masses of 3He and 4He atoms, 
respectively. 

Using the known variations for the thermodynamic po-
tentials 
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we find that the variations of concentration c and pressure 
P  are determined with the following equations: 
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Let us put P , c and T  for the magnitudes of pressure, 
concentration and temperature far from the vortex at the 
infinity =r ∞. Next, while the pressure and concentration 
variations are small, i.e., P Pδ   and c cδ  , we find ap-
proximately 
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As is seen from the last equation, the concentration var-
iation in the superfluid liquid mixture is completely due to 
dependence of superfluid density sρ  upon the 3He concen-
tration. Since the condition for the thermodynamic stability 
of liquid mixture implies always / > 0Z c∂ ∂  and the super-
fluid density reduces with the growth of concentration, i.e. 

/ < 0s c∂ρ ∂ , the 3He concentration enhances always in the 
regions with the larger magnitudes of superfluid velocity. 
From the physical point of view it is also evident from a 
possibility to reduce the kinetic energy of the superfluid 
component 2 / 2s sVρ  with decreasing the superfluid density. 
The pressure reduction with the growth of superfluid veloci-
ty can be ascribed to the role of the Bernoulli pressure. 

In a dilute unsaturated liquid mixture we have 

 
3

.Z T
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This gives the known [15] Boltzmann concentration distri-
bution eff( ) = exp ( / )c r c U T−  with the effective attractive 
potential 
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This distribution can only be justified for the distances pro-
vided that the 3He concentration does not exceed the magni-
tudes corresponding to the condition of nondegeneracy 
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For the smaller distances or in the degenerate liquid 
mixture, the growth of concentration occurs slower and 
power-like. For the more realistic estimate of the concen-
tration behavior at the close distances to the vortex core, it 
is necessary to know the detailed behavior of quantities 

2= ( , , )sZ Z P c V  and 2= ( , , )s s sP c Vρ ρ . 
Note that the 3He concentration in the d-phase, in any 

case, cannot exceed magnitude cλ  corresponding to the λ-
line at which the superfluid component density sρ  vanishes 
or the magnitude spc  corresponding to the spinodal line at 
which the derivative / = 0Z c∂ ∂  and the d-phase becomes 
absolutely unstable. These conditions restrict the minimum 
size of vortex core. Emphasize that the concentration is 

sp>c cλ  at the temperatures below the tricritical point tem-
perature tT  and, on the contrary, at > tT T  the λ-line lies 
ahead of the spinodal and the transition to the c-phase occurs 
continuously in concentration. Accordingly, we can expect 
the distinctions in the vortex structure at temperatures above 
and below the tricritical point temperature, namely, the con-
centration discontinuity at a vortex radius if < tT T  and the 
continuous variation with a kink at the vortex radius if 

> tT T . 
For the temperature region > tT T , when the phase sepa-

ration of liquid 3He–4He mixture does not take place but 
only the d-to-c phase transition occurs at some temperature 

and pressure-dependent concentration cλ , the vortex core 
radius can grow infinitely as the liquid mixture concentra-
tion c approaches the cλ  one. In fact, for radius Rλ  where 
the 3He impurity concentration reaches the magnitude cλ , 
we have ( ) = ( ( ))c R c P Rλ λ λ . According to Eq. (2) 
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or approximately on the account of the λ-line dependence 
on the pressure and superfluid velocity, we arrive at 
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Hence we find 
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as c cλ→ . 
In order to realize the vortex of large core radius below 

the tricritical point temperature tT , one should have the im-
purity concentration close to that at the spinodal. In other 
words, the liquid 3He–4He should already be supersaturated, 
i.e., it should be in the metastable region. As will be seen 
below, the presence of a vortex, playing a role of nucleation 
site, prevents from achieving the highly supersaturated state 
of the d-phase. Thus, the vortex core radius remains finite 
and cannot exceed some maximum value, starting from 
which the vortex becomes absolutely unstable against the 
core expansion. This entails the phase separation of a liquid 
mixture. 

In the d-phase the above distinctions and specific fea-
tures in the vortex core behavior as a function of tempera-
ture and concentration could be observed with the aid of 
second sound. The second sound absorption is very sensi-
tive to the presence of the c-phase, allowing us to detect 
the variation in the total volume of the normal c-phase in 
vortices under varying the liquid mixture concentration. 

3. Energy of nucleation on a vortex 

First, we find the energy of rectilinear vortex in the d-
phase close to saturation. As a liquid mixture separates, the 
vortex core is progressively filling with the normal c-phase 
playing a role of a nucleus of new phase. We need to know 
the energy of the system as a function of vortex core radius 
R . In equilibrium the thermodynamical potentials and 
temperature of the normal c-phase obey the following re-
quirements: 
 ( , , ) = const,P Z T′ ′ ′ ′Φ   

 ( , , ) = const and = const.Z P c T T′ ′ ′ ′ ′   

This yields the ordinary conditions: ( ) = constc r′  and 
( ) = constP r′ . 
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The boundary conditions at the vortex core =r R , usual 
for the equilibrium between two phase, imply an equality 
of thermodynamical potentials, temperatures, and pressures 
involving the Laplace pressure: 
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The surface tension coefficient = ( , )P P c c′ ′α α − − , in 
general, depends on a difference of the pressures and con-
centrations at the interface. For brevity, we omit the nota-
tion for temperature. 

Let us denote the impurity concentration far from the 
vortex at =r ∞ as ps= ( )c c P c+ ∆  and, correspondingly, 
impurity concentration inside the core as ps= ( )c c P c′ ′ ′+ ∆ . 
Here ps ( )c P  and ps ( )c P′  are the 3He impurity concentra-
tions at the phase separation line. Assuming ps ( )c c P∆   
and ps ( )c c P′ ′∆   as well as = / ( = )P R P r R Pδ α + −  to 
be small, we expand Eqs. (3) in deviations 
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where coefficients β and ′β  are defined as usual 
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Hence we arrive readily at the deviations of concentration 
and pressure from their equilibrium magnitudes inside the 
vortex 
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Thus, if d-phase is saturated ( = 0c∆ ), the impurity concen-
tration inside the core is equilibrium ps= ( )c c P′ ′ . Introduc-
ing the imbalance between the phases 
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we arrive at the equation determining the core radius R : 

 / ( ) = .P R P R P ′∆ ≡ α + − ρ ∆Φ   

To find pressure ( )P R , we involve the behavior of su-
perfluid density sρ  as a function of P , c, 2

sV  and use rela-
tions (1). Then we have 
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and the superfluid density is approximately given with the 
following equation: 

 
2 ( )

( ) = 1 .
2

s
s s

V r
r B

 
ρ ρ − 

 
  

From 2= ( ) ( / 2)s sP r V∇ −ρ ∇  we find the pressure 
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Multiplying it with 2 Rπ  and integrating over R , we obtain 
the energy ( )U R  per unit length for a c-phase nucleus in 
the form of quantized vortex 
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Here surface tension α is assumed to be only dependent 
on the 3He impurity concentration at the c–d interface but a 
possible pressure and core radius dependence is neglected. 
The length L  is a usual cutoff one for a vortex. The origin 
for the terms in the vortex energy is obvious. Note only 
that the third and fifth terms arise wholly from the kinetic 
energy of superfluid component 2 2(1/2) ( ) ( )s sr V r d rρ∫ . In 

essence, Eq. (4) represents an expansion of linear energy of 
a nucleus in its inverse radius [19]. 

4. Thermal and quantum nucleation rate on the vortex. 
The crossover temperature to the quantum regime 

We consider here the quantum nucleation rate of c-
phase on the vortex at zero temperature and the thermal-
quantum crossover temperature in nucleation. First of all, it 
is necessary to understand the behavior of potential nucle-
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us energy ( )U R . To simplify and to obtain the clear analyt-
ical formulae, we restrict ourselves with the three first 
terms of expansion in Eq. (4): 
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As is seen from Fig. 1, energy ( )U R  as a function of 
imbalance ∆Φ  has a various behavior and a different num-
ber of extrema depending on the vortex core radius. For 
unsaturated ( < 0∆Φ ) liquid mixture, there is a single 
extremum and the corresponding vortex state is absolutely 
stable (Fig. 1(a)). Within the intermediate imbalance range 

cr0 < <∆Φ ∆Φ  there are two extrema in the potential en-
ergy (Fig. 1(b)) as a function of core radius at 
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Here 0R  is the core radius in the saturated liquid mixture 
= 0∆Φ . For the imbalance larger than the critical one 
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m
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there are no extrema (Fig. 1(d)). This entails an appearance 
of the line of absolute instability. In other words, vortices 
which sizes exceed cr 0= 2R R  become unstable against 
vortex core expansion and the phase separation of a liquid 
mixture proves to be unavoidable. Hence, only for the im-
balance range cr0 < <∆Φ ∆Φ  corresponding to 

0 0< < 2R R R , we observe the metastable state which can 
be destabilized as a result of thermal or quantum fluctua-
tions depending on the temperature. These specific features 
are well evident in Fig. 2. 

Such behavior of nucleus energy as a function of nucle-
us size and imbalance differs in kind from the case of ho-
mogeneous nucleation of spherical drop. The point is that 
there is a competition of two opposite factors in the pres-
ence of a defect similar to vortex. If, for instance, a nucleus 

grows, the contribution associated with the surface tension 
increases and the other due to effect of a defect decreases. 
For negative and small positive ∆Φ , these two contribu-
tions result in the minimum for the potential energy 
(Figs. 1(a) and 1(b)). On the contrary, if the imbalance is 
large and the critical nucleus is small, the effect of surface 
tension is small as well. Then, for cr>∆Φ ∆Φ , the total 
energy is determined, in the first turn, with the terms de-
creasing gradually and, therefore, has neither minimum nor 
maximum. This results in the unstable state. All these fea-
tures, involving the similar phase diagrams R –∆Φ  hold for 
other defects [20], e.g., for a charged ion which influence 
decays with the distance together with electric field. 

At the first sight, due to existence of critical value cr∆Φ  
one may expect that the phase separation of a liquid mixture 
with the quantized vortex will occur at the same magnitude 
of imbalance in all experiments. However, the process of 
phase separation can take place in the metastable region 

cr0 < <∆Φ ∆Φ  before the critical imbalance is achieved. 
Since the phase separation of metastable state is a random 
process described with some probability and dependent on 
imbalance, the experimental magnitudes acquire some dis-

Fig. 1. The behavior of potential energy U as a function of vortex core radius R in the various ranges of imbalance ∆Φ. 

Fig. 2. The diagram for the equilibrium between vortex line and 
superfluid 3He–4He liquid mixture. Here R is the vortex core 
radius and ∆Φ is the imbalance of a liquid mixture. 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 10 1263 



S.N. Burmistrov and L.B. Dubovskii 

persion around certain magnitude cr<∆Φ ∆Φ . This magni-
tude and dispersion of data depend both on the decay prob-
ability and on the rate of varying the liquid mixture imbal-
ance in experiment. 

For the high temperatures, the nucleation rate, deter-
mined as a nucleation probability per unit time at one nu-
cleation site, is governed with the usual Arrhenius formula 
for thermal fluctuations 

 cl = exp( / )LU TΓ ν − ,  

where ν is the frequency of attempts. The activation ener-
gy LU  for a vortex of length L  is expressed as 0=LU L U∆  
with 0 = ( ) ( )U U R U R+ −∆ −  determined from the differ-
ence between the maximum and the minimum of energy 

( )U R  (Fig. 1(b)): 
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It is seen that the nucleation rate enhances drastically as 
cr= / 1p ∆Φ ∆Φ →  due to vanishing the potential barrier. 

As the temperature approaches absolute zero tempera-
ture, the quantum fluctuations become predominant. To 
estimate the quantum nucleation rate, we employ the theo-
ry of quantum nucleation in the two-dimensional 
systems [21]. Within the exponential accuracy we estimate 
the zero-temperature nucleation rate as 

 = exp( / ).q q LAΓ ν −    

Here qν  is the attempt frequency and =LA AL is the dou-
bled underbarrier action for vortex length L  where A  is the 
quantity per unit length of a vortex. 

To calculate the quantum probability, it is necessary to 
estimate the effective mass of the expanding vortex core. 
We treat the boundary conditions at the vortex core surface 

= ( )r R t  as for the boundary between two different phases. 
First of all, we have a conservation for the radial compo-
nent of mass flow across the boundary 

 = ( ) ,rR j R R′−ρ − ρ    

 = .n n s sρ + ρj V V   

Here we assume that the c-phase of density ′ρ  in the vortex 
core is at rest ( = 0V ′ ). The second condition is a continuity 
for the tangential component of momentum flux density 
tensor ikΠ  
 = ,'
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where for the superfluid phase 
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Accordingly, we have 
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Treating the normal component of superfluid d-phase as a 
liquid with the properties of an ordinary viscid fluid, we 
should require an equality of tangential components for the 
velocities of adjacent fluids. Then we have 

 ( ) = ( ) = 0.nV R V Rθ θ′   

From the above three equations we find the magnitudes of 
velocities at the boundary = ( )r R t  

 ( ) = ,srV R R   

 ( ) = ,n
nr

n
V R R

ρ − ρ′
−

ρ
   

 ( ) = 0.nV Rθ   

As is seen, the mass transfer across the surface of the ex-
panding vortex core is connected with the normal compo-
nent flow alone. 

On the neglect of the compressibity of a liquid mixture 
the distribution for the radial components of superfluid and 
normal velocities is equal to 

 ( ) = ( ) / ,sr srV r V R R r   

 ( ) = ( ) / , > ( ).nr nrV r V R R r r R t   

In the logarithmic quasistationary approximation and on 
the analogy with the two-dimensional nucleation [21] we 
can estimate the kinetic energy of the expanding vortex 
core as 

 
2

2 2
eff

( ) 12 ln = ( )
2 2

R RR M R R
R

Λπρ


   

with the following effective density effρ : 

 
2

eff
( )

= .n
s

n

′ρ − ρ
ρ ρ +

ρ
 (7) 

The cutoff parameter ( )RΛ  is of the order of the sound 
velocity multiplied with the typical time of the core expan-
sion eff( ) ( )R s RΛ ≈ τ . Since there are two sound velocities 
in the superfluid liquid mixture, velocity effs  is some 
weighted average of first and second sound velocities. In 
other words, length ( )RΛ  is an effective size of sound 
propagation region for the time of the underbarrier nuclea-
tion evolution, i.e., size of the perturbed medium surround-
ing the nucleus. Here we do not consider possible energy 
dissipation effects due to viscosity and diffusion in the 
process of vortex core growth. 

So, action A  is calculated between the classical turning 
points in the potential ( ) = ( ) ( )U R U R U R−∆ −  as 

 = 2 2 ( ) ( )
Rc

R

A M R U R dR
−

∆∫ , (8) 
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where cR  is the exit point from the barrier ( ) = ( )cU R U R− . 
Since the logarithm is a slowly varying function, for our 
aim it is sufficient to estimate the growth time of a nucleus 
as follows: 

 
1/22( ) .

2 ( )
R Rc

M R R
U R

≈

 
τ ≈    

  

The analytical expressions for the effective action are 
succeeded to obtain for the two limiting cases. For the 
small degree of imbalance cr= / 1p ∆Φ ∆Φ  , the contri-
bution to the vortex energy, associated with the superfluid 
motion, plays a minor role and the effective action is main-
ly governed with the magnitude of the surface tension: 

 
1/222

5 eff 0
eff 05/2

32 2( = 0) = ln
s R

A T R
pp

 π
αρ ∝ α 

  

 5/2 11/2( ) ( ) .ln− −∝ ∆Φ ∆Φ   

The quantum critical radius cR  exceeds significantly the 
core radius 0R  in a weakly supersatured liquid mixture 

 0
0

82= = .c
R

R R
p

α
′ρ ∆Φ

   

The typical time of nucleus growth reads 

 
1/23

3/2eff( ) ( ) .
8

c
c

R
R − ρ

τ ≈ ∝ ∆Φ  α 
  

Let us turn to the other limit cr= / 1p ∆Φ ∆Φ → . In this 
case the imbalance is close to the line of absolute instability 
when the potential barrier, separating two states, vanishes. In 
this case, as usual, the potential barrier can be approximated 
with a cubic parabola 

 
2 3

0

( ) 1= 1 .
2 3

R R R RU R p
R R R

− −

− −

   − −∆
− −   πα    

  

As 1p → , the distance between the points of entrance R−  
and exit cR  reduces to 

 = 3 1cR R R p− −− − ,  

but the growth time of a nucleus increases 

 
1/23

eff 08
.

1
R

p

 ρ
τ ≈   α − 

  

With the help of Eq. (8) the action per unit length can be 
estimated as 

 
1/22

5/4 5 eff eff 0
eff 0

8192= (1 ) ln .
5 1

s R
A p R

p

 ρπ − αρ  α − 
  

Thus, effective action vanishes with approaching to the in-
stability. Accordingly, the probability of quantum nucleation 
grows drastically. 

The next important point in the low-temperature kinet-
ics is a crossover temperature qT  between the quantum and 
classical nucleation regimes. A simple estimate for qT  can 
be obtained from comparing the classical and quantum 
actions under assumption qν ≈ ν . So, 
 = / .q L LT U A   

Hence we have in the limit of small cr= / 1p ∆Φ ∆Φ   
imbalance 

 
1/23/2 2

3 2
eff 0 eff eff 0

= .
8 2 ln[ / ( )]

q
pT

R s R p

 α
 

π ρ ρ α 



 (9) 

In this region of imbalance the crossover temperature 
grows as the imbalance enhances. 

On the other hand, as the imbalance tends to the critical 
value, i.e. 1 1p−  , the crossover temperature starts to 
reduce according to relation 

 ( ) ( )

1/2
2

1/4
3 2

eff 0 eff eff 0

5= 1 .
72 ln 8 / 1

qT p
R s R p

 
α −   ρ ρ α −   

   

  (10) 

The total behavior for the crossover temperature qT  as a 
function of imbalance is shown in Fig. 3. Note here that the 
crossover temperature maximum ,maxqT  is shifted in the 
direction to the line of absolute instability. Another specif-
ic feature, apparently, inherent in all transitions near the 
spinodal, is that the nucleation mechanism becomes again 
the thermal one instead of quantum as a function of 
supersaturation ∆Φ  or imbalance degree [20] in the inter-
mediate vicinity to the line of absolute instability 
(spinodal). This takes place though the temperature is less 
than ,maxqT . For a rectilinear vortex, the crossover temper-
ature qT  is naturally independent of its length. 

We do not consider here the effect of dissipative phe-
nomena on the nucleation rate of c-phase nucleus at the 

Fig. 3. The various types of the c-phase nucleation onto a 
quantized vortex in a supersaturated 3He–4He liquid mixture. The 
solid line shows the thermal-quantum crossover temperature. The 
dashed line is the spinodal, separating the metastable states from 
absolutely unstable ones. 
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quantized vortex core, which can be associated with vis-
cosity, impurity 3He diffusion, and impossibility of using 
the quasistationary approximation for rectilinear vortex. In 
principle, one can here distinguish the hydrodynamical and 
ballistic regimes of nucleus growth. However, for the re-
gion of supersaturation close to critical value, a possibility 
of hydrodynamical ( )cR l T  regime, where ( )l T  is the 
mean free path of excitations in a liquid mixture, is unlike-
ly in the quantum nucleation region since the quantum vor-
tex core radius cR  in the nucleus growth does not exceed 
several vortex core radii 0R  in the saturated liquid mixture 
(about a few tens of angstrom). For the ballistic ( )cR l T  
regime, one can suppose that the friction coefficient is di-
rectly proportional to the core area. Accordingly, the fric-
tion coefficient per unit length is ( )R Rµ ∝ . In the viscous 

1( ) ( ) ( )M R R R−τ µ  limit a simple estimate gives 

 cr
0 0 cr

1 , ;
2 (2 )qT

R R
α ∆Φ≈ − ∆Φ → ∆Φ
µ ∆Φ
   

 ( ) ( ) ( )
2

2
0 0 2

cr
< 2 1 2 2 1

3
q

q

TA T T R R
T

  ∆Φ  ≈ π − µ −   ∆Φ   
  

and in the other cr∆Φ ∆Φ  limit 

 2
0 cr

2 ( ) , = 2 ( );
( )q c

c c
T R R

R R
πα

≈ ∝ ∆Φ ∆Φ ∆Φ
µ



   

 2 3( < ) ( ) ( ) .q c cA T T R R −≈ µ ∝ ∆Φ   

Comparing these formulae with the previous ones, it is 
seen that the qualitative character for the behavior of effec-
tive action ( )A T  and crossover temperature qT  remains 
unchanged as a function of imbalance ∆Φ . The diagram 

qT −∆Φ  conserves its shape in kind (Fig. 3) though the 
quantum nucleation region reduces and the thermal activa-
tion region increases beside the instability line. 

5. Rapid nucleation line and the numerical estimates 

Below we discuss some consequences from the equa-
tions above and perform the numerical estimates connected 
with the c-phase nucleation on a quantized vortex in the 
supersaturated superfluid 3He–4He liquid mixture. First, 
we analyze in kind the possible positions of the rapid nu-
cleation line in the T−∆Φ diagram of nucleation regimes. 
The rapid nucleation line exists also as in the case of ho-
mogeneous nucleation of spherical drops [13,14] due to 
very drastic dependence of nucleation rate on the imbal-
ance. The rapid nucleation line separates the region where 
the nucleation rate is practically zero and supersaturated 
liquid mixture does not separate infinitely long on the time 
scale of experimental period from the region where the 
phase separation occurs almost instantaneously. 

After preparing the metastable state cr0 < <∆Φ ∆Φ  at 
temperature T  the liquid mixture separates eventually for 

the expectation time obsτ . Thus the nucleation probability 
is approximately equal to unity 

 obs nuc obs nuc( , , , ) ( , ) = 1.W T N N T∆Φ τ ≡ τ Γ ∆Φ  (11) 

Here Γ  stands for either clΓ  or qΓ  in the correspondence 
with the temperature range and nucN  is the number of nu-
cleation sites. Equation (11) determines the rapid nuclea-
tion line sat ( )T∆Φ  in diagram T –∆Φ . This corresponds to 
the experimentally achievable supersaturation. 

For the nucleation probability, we have 

 ( , )/
obs nuc= e A TW N − ∆Φτ ν =   

 
obs nuc cl

obs nuc

exp( ( , ) if > ( ),

exp( ( , ) if < ( ).
L q

q L q

N U T T T

N A T T T

τ ν − ∆Φ ∆Φ=  τ ν − ∆Φ ∆Φ
  

Hence one can see that the position of the rapid nucleation 
line depends on the temperature, the number of nucleation 
sites, and the rate of sweeping the liquid mixture imbal-
ance. Since the shape of potential energy ( )U R  depends 
strongly on the closeness to the instability line, the effect 
of the sweep rate on the position of the rapid nucleation 
line here is more essential as compared with the case of 
homogeneous nucleation. 

Depending on the expectation time obsτ  and the number 
of nucleation sites, one can discern two opposite cases in the 
position of the rapid nucleation line in the T –∆Φ  diagram 
(Fig. 4). The first case is restricted with the inequality 

 
1/25 2 2

2 eff 0 eff eff 0
obs nuc 2ln( ) 32 2 ln

R L s R
N

 αρ ρ
ντ π  α 





  

  (12) 
and corresponds to the limit of low nucleation rates Γ . This 
corresponds to the large lifetime of a supersaturated liquid 
mixture against the decay channel considered. In this case 
(Fig. 4(a)) the rapid nucleation line lies far from the insta-
bility line and sat cr∆Φ ∆Φ . Therefore, the existence of 
the instability line has no significant effect on the nuclea-
tion kinetics. In the classical thermal activation region the 
attainable supersaturation is strongly temperature-

Fig. 4. The schematic for the rapid nucleation lines (solid lines): 
(a) for low nucleation rates Г and large expectation time obsτ , 
(b) for high nucleation rates Г and small expectation time obsτ . 
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dependent according to sat 1/ T∆Φ ∝ . In the quantum 
< qT T  region the attainable supersaturation is almost inde-

pendent of temperature. Correspondingly, the crossover 
temperature qT , proportional to 3/2

sat( )∆Φ , is significantly 
smaller than the maximum crossover temperature ,maxqT . 

For the opposite case of high nucleation rates when ine-
quality (12) is invalid, the existence of instability affects 
essentially the position of the rapid nucleation line at suffi-
ciently low temperatures (Fig. 4(b)). As the temperature 
lowers, the rapid nucleation line should closer approach the 
instability line since the smallness of potential barrier can 
compensate a decrease of temperature in the classical ex-
ponent, providing us the high nucleation rates. As a result, 
in the thermal activation regime the temperature behavior 
for the attainable critical supersaturations should go over 
from drastic sat 1/T∆Φ ∝  to the smoother one 

 ( )2/3
sat cr *= 1 ( / )T T∆Φ ∆Φ −   

in the low-temperature region if ,maxqT T . Here *T  is 
some typical temperature which can be determined from 
Eq. (11) with the classical exponent at 1p → . From the 
experimental point of view this distinctive feature, associat-
ed with the closeness to instability, can deliver some trouble 
in determining the crossover temperature between the classi-
cal and quantum regimes, imitating the genuine crossover 
with the transition to almost temperature-independent be-
havior for the observable imbalance of a liquid mixture. 

Another specificity is associated with the presence of two 
regions for the thermal activation regime at various ∆Φ  for 
the same temperature ,max< qT T  (Fig. 3). However, as is 
seen from Fig. 4(a) and 4(b), the observation of such reen-
trant behavior is impossible under the fixed nucleation rate 
Γ . To do this, it is necessary to vary any parameter in 
Eq. (11), e.g., the number of nucleation sites nucN . In liquid 
3He–4He mixture this can be done with introducing vortices 
intentionally before the start of the phase separation process 
in the d-phase of a liquid mixture. 

Let us turn to the numerical estimates of the results ob-
tained. We start from the calculation of the critical value 

cr∆Φ  which plays a key role in comprehending the phase 
separation in a superfluid liquid mixture with quantized 
vortices. As for the surface tension, we take the magnitude 
for the flat interface between the bulk phases of liquid mix-
ture at zero pressure 9= 0.023α  erg/cm2 [22]. Using sim-
plest estimates (5) and (6), we find cr 0.011′ρ ∆Φ ≈  bar 
and, correspondingly, cr 12= .7 ÅR . A relatively large crit-
ical vortex core justifies an applicability of macroscopic 
approximation to some extent. On account of estimating 
the derivative 80.9 1/ 0Z c∂ ∂ ⋅≈  erg/g for the limiting criti-
cal value of saturation responsible for the vortex core in-
stability, we arrive at ( )cr 1.9 – 0 %= 2.x∆  [19]. Thus the 
estimate agrees with that obtained in work [18]. 

Expansion (4) in the inverse core radius involves the 
inhomogeneous distribution of concentration, pressure and 
superfluid density in the d-phase. However, the effect of 

these terms proves to be small and counts about 5%. If we 
neglect the contribution associated with coefficient B  
in (4), putting = 0B , and expecting the order-of-magnitude 
estimate of / c∂α ∂ ≈ α , we find somewhat smaller but the 
close value for the limiting supersaturation cr 1 %= .80 .x∆  
This is connected with the relatively large critical core ra-
dius. Note also that value cr 12= .7 ÅR  correlates with the 
core radius sp 12.5 ÅR ≈  calculated under assumption that 
the 3He concentration at the core boundary corresponds to 
the spinodal of the bulk d-phase and equals sp 16%.x   

The important characteristic for nucleation kinetics is 
the thermal-quantum crossover temperature qT . To esti-
mate the latter, it is necessary to know the effective density 

effρ  (7) which proves to be approximately equal to 
eff 2.2 sρ ≈ ρ  at the phase separation line and lies within the 

range 0.23–0.40 g/cm3. The highest possible crossover tem-
perature ,maxqT  can be estimated either from (9) at = 1p  or 
from (10) at = 0.5p . This results in relatively small temper-
atures ,max 2.3 mKqT T <≤



 necessary for a possible obser-
vation of quantum nucleation. 

To conclude, we have analyzed the c-phase nucleation 
in the supersaturated d-phase when a quantized vortex 
plays a role of nucleation site. Though the maximum pos-
sible supersaturation of the d-phase in the presence of vor-
tices proves to be in the almost satisfactory agreement with 
the observable magnitudes of supersaturation, the estimate 
for the crossover temperature to the quantum nucleation 
regime is rather small as compared with the temperature at 
which the transition in temperature behavior is observed 
for the critical supersaturation crx∆  of a liquid mixture. 
Varying the values of physical parameters in order to in-
crease ,maxqT , we have an enhancement of the maximum 
attainable concentration at which the vortex core instability 
occurs. Then the agreement with experiment becomes worse 
in this parameter. So, the assumption about the heterogene-
ous phase-separation mechanism in a supersaturated super-
fluid 3He–4He liquid mixture with quantized vortices as 
nucleation sites, apparently, cannot describe the experimen-
tally observed picture of phase separation on the whole. 

An obstacle for quantitative comparison arises from the 
exponential behavior of nucleation rate. In such situation 
from the experimental point of view it would be useful to 
study the effect of the number of nucleation sites on the 
phase separation of a liquid mixture under the planned and 
controlled introduction of quantized vortices into the d-
phase. One of possibilities is an experiment in a rotating 
cryostat and the study of the phase separation rate of liquid 
mixture as a function of rotation velocity. Since in the limit 
of small density of vortices the nucleation rate is proportion-
al to the number of vortex lines, the observable nucleation 
rate should also be proportional to the rotation velocity. 

For the large rotation velocities, especially when the 
spacing between the vortex lines is comparable with the core 
sizes, the critical value of supersaturation cr∆Φ  and the po-
tential barrier, separating the metastable state from unstable, 
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are strongly suppressed. Accordingly, the phase separation 
rate of a liquid mixture should drastically grow in the limit 
of high rotation velocities. In addition, due to difference in 
the centrifugal energy of 3He and 4He atoms the spatial 
3He distribution becomes inhomogeneous over the bulk of 
a rotating fluid, facilitating the reduction of the critical 
supersaturation cr∆Φ . In any case it is known that the 3He 
impurities strongly affect the process of nucleating the 
quantized vortices in superfluid 4He. 
 _______  

1. J. Landau, J.N. Tough, N.R. Brubaker, and D.O. Edwards, 
Phys. Rev. Lett. 23, 283 (1969). 

2. N.R. Brubaker and M.R. Moldover, Proc. 13th Int. Conf. on Low 
Temp. Phys. (1972), W.J. O’Sullivan, K.D. Timmerhaus, and 
E.F. Hammel (eds.), Plenum Press, NY (1973), vol. I, p. 612. 

3. J.K. Hoffer, L.J. Campbell, and R.J. Bartlett, Phys. Rev. Lett. 
45, 912 (1980). 

4. P. Alpern, Th. Benda, and P. Leiderer, Phys. Rev. Lett. 49, 
1267 (1982). 

5. J. Bodensohn, S. Klesy, and P. Leiderer, Europhys. Lett. 8, 
59 (1989). 

6. V.A. Mikheev, E.Ya. Rudavskii, V.A. Chagovets, and G.A. 
Sheshin, Fiz. Nizk. Temp. 17, 444 (1991) [Low Temp. Phys. 17, 
233 (1991)]. 

7. V.A. Maidanov, V.A. Mikheev, N.P. Mikhin, N.F. Omelaenko, 
E.Ya. Rudavskii, V.K. Chagovets, and G.A. Sheshin, Fiz. Nizk. 
Temp. 18, 943 (1992) [Low Temp. Phys. 18, 663 (1992)]. 

8. V.A. Mikheev, E.Ya. Rudavskii, V.K. Chagovets, and G.A. 
Sheshin, Fiz. Nizk. Temp. 18, 1091 (1992) [Low Temp. Phys. 
18, 761 (1992)]. 

9. V.A. Mikheev, E.Ya. Rudavskii, V.K. Chagovets, and G.A. 
Sheshin, Fiz. Nizk. Temp. 20, 621 (1994) [Low Temp. Phys. 
20,485(1994)]. 

10. V.K. Chagovets, V.A. Mikheev, E.Ya. Rudavskii, and G.A. 
Sheshin, J. Low Temp. Phys. 110, 827 (1995). 

11. T. Satoh, M. Morishita, M. Ogata, and S. Katoh, Phys. Rev. 
Lett. 69, 335 (1992). 

12. E. Tanaka, K. Hatakeyama, S. Noma, S.N. Burmistrov, and 
T. Satoh, J. Low Temp. Phys. 127, 81 (2002). 

13. I.M. Lifshitz, V.N. Polesskii, and V.A. Khokhlov, ZhETF 
74, 268 (1978) [Sov. Phys. JETP 47, 137 (1978)]. 

14. S.N. Burmistrov, L.B. Dubovskii, and V.L. Tsymbalenko, 
J. Low Temp. Phys. 90, 363 (1993). 

15. L.S. Rent and I.Z. Fisher, ZhETF 55, 722 (1968) [Sov. Phys. 
JETP 28, 375 (1969)]. 

16. T. Ohmi, T. Tsuneto, and T. Usui, Progr. Theor. Phys. 
(Japan) 41, 1395 (1969). 

17. L. Senbetu, J. Low Temp. Phys. 32, 571 (1978). 
18. D.M. Jezek, M. Guilleumas, M. Pi, and M. Barranco, Phys. 

Rev. B 51, 11981 (1995). 
19. S. Burmistrov, V. Chagovets, L. Dubovskii, E. Rudavskii, T. 

Satoh, and G. Sheshin, Physica B 284–288, 321 (2000). 
20. S.N. Burmistrov, Phys. Rev. B 85, 214501 (2012). 

21. S. N. Burmistrov and L.B. Dubovskii, J. Low Temp. Phys. 
96, 131 (1994). 

22. L.S. Balfour, J. Landau, S.G. Lipson, and J. Pipman, J. de 
Phys. 39, Colloque C6, 203 (1978). 

 ___________________________ 

Зародкотворення на квантованих вихорах та 
гетерогенний розподіл фаз в пересичених 

надплинних рідких розчинах 3Не–4Не 

С.Н. Бурмістров, Л.Б. Дубовський 

Пересичені надплинні рідкі розчини 3Не–4Не, які поділя-
ються на 3He-концентровану c-фазу та 3He-розбавлену d-фазу, 
надають унікальну можливість для вивчення макроскопічного 
квантового зародкотворення та квантової кінетики розподілу 
фаз у бінарних сумішах при низьких температурах аж до абсо-
лютного нуля. Один з можливих гетерогенних механізмів фа-
зового розподілу пересиченої d-фази пов'язаний зі надплин-
ністю цієї фази та можливим існуванням квантових вихрів, що 
грають роль центрів зародкотворення для c-фази рідкої суміші. 
Проаналізовано динаміку зростання вихрового кора з с-фазою 
та визначено температурну поведінку швидкості зародження 
c-фази і температури кросовера між класичними та квантови-
ми механізмами зародкотворення. 

Ключові слова: макроскопічне квантове зародкотворення, 
пересичені надплинні рідкі розчини 3Не–4Не, квантований 
вихор, гетерогенний розподіл фаз. 

Зародышеобразование на квантованных вихрях и 
гетерогенное разделение фаз в пересыщенных 

сверхтекучих жидких растворах 3Не–4Не 

С.Н. Бурмистров, Л.Б. Дубовский 

Пересыщенные сверхтекучие жидкие растворы 3He–4He, 
которые разделяются на 3He-концентрированную c-фазу и 
3He-разбавленную d-фазу, предоставляют уникальную воз-
можность для изучения макроскопического квантового заро-
дышеобразования и квантовой кинетики разделения фаз в 
бинарных смесях при низких температурах вплоть до абсо-
лютного нуля. Один из возможных гетерогенных механизмов 
фазового разделения пересыщенной d-фазы связан со сверх-
текучестью этой фазы и возможным существованием кванто-
ванных вихрей, играющих роль центров зародышеобразова-
ния для c-фазы жидкой смеси. Проанализирована динамика 
роста вихревого кора с с-фазой и определено температурное 
поведение скорости зарождения c-фазы и температуры крос-
совера между классическими и квантовыми механизмами 
зародышеобразования.  

Ключевые слова: макроскопическое квантовое зародышеоб-
разование, пересыщенные сверхтекучие жидкие растворы 
3He–4He, квантованный вихрь, гетерогенное разделение фаз. 
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