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We consider graphene disclination networks (DNs) — periodic distributions of disclination defects. Discli-
nations manifest themselves as 4-, 5-, 7- or 8-member carbon rings in otherwise 6-member ring ideal 2D graphene 
crystal lattice. Limiting cases of graphene-like 2D carbon lattices without 6-member motives, i.e., pseudo-
graphenes, are also studied. The geometry and energy of disclinated 2D carbon configurations are analyzed with the 
help of molecular dynamics (MD) simulation technique. A comparison of the obtained MD results with analytical 
calculations within the framework of the theory of defects of elastic continuum is presented. 
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1. Introduction

With the discovery and mass fabrication of graphene 
[1,2] and with a large number of experimental studies of 
graphene structure, see for example [3–18], the theoretical 
interest to 2D atomic crystals has grown considerably. 
Along with the analysis of the properties of ideal graphene 
lattice containing only 6-member carbon rings (hexagons) it 
was found that various defects exist in graphene and 
graphene-like carbon lattices, i.e. rings in the form of square, 
pentagon, heptagon, or octagon [19–21]. Big efforts were 
then spent to the understanding the behavior of graphene 
with defect walls and chains, i.e., polycrystalline graphenes 
with grain and intercrystallite boundaries [18–34]. In partic-
ular, the effect of the localized defects on the physical and 
mechanical properties of graphene was analyzed. The stud-
ies of defects distributed throughout the graphene sheet have 
so far been less developed [35–37]. In the limiting case of a 
dense packing of pentagons with octagons or heptagons in 
graphene, two 2D carbon modifications (pseudo-graphenes) 
were described: pentagon–octagon (PO) graphene [35] and 
phagraphene [37]. 

The main technique to model graphene and other 2D 
crystals with defects and without them is molecular dy-
namics (MD) simulation, e.g. see Refs. 28, 33, 34. Within 
MD approach, the information about equilibrium atomic 

configurations and the energy of these configurations can 
be delivered. The other known approach to investigate de-
fects in 2D crystals operates with the analytical methods of 
the theory of defects in solids [38–43]. 

Important feature of defects, which are possible in 
graphene lattice, is their intrinsic connection to disclinations 
— defects of rotational type [44,45]. Using disclination no-
menclature, 4-, 5- or 7-, 8-member rings are viewed as 
disclinated rings and are classified as the cores of positive or 
negative wedge disclinations, respectively [45]. 

In the present work, we report on the results of model-
ing graphene and graphene-like carbon structures with dis-
tributed disclinated rings utilizing both methods of MD 
simulation and theory of elasticity for 2D solid structures. 

2. Background

Low-dimensional systems in the condensed matter phys-
ics have always provoked genuine interest among research-
ers. Wherein an analysis of their defective structure is a hot 
topic in scientific periodicals. For example in Refs. 38, 41, 42 
Natsik and Smirnov presented the theoretical study of the 
properties of intrinsic dislocation- and crowdion-type struc-
tural defects in 2D crystals. The results obtained by using the 
continual theory were improved by comparing with the re-
sults of numerical analysis by the methods of MD simulation 
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of atomic structure of dislocations and crowdions in a hexa-
gonal lattice 2D crystals. 

In addition to concept of dislocations, pioneering ideas 
on the disclinations in 2D crystals have been outlined four 
decades ago by Harris [46]. In this sense, the use of the 
disclination concept in two-dimensional hexagonal graphene 
lattice seems reasonable. Typical defects in 2D hexagonal 
graphene lattice — square, pentagonal, heptagonal, octago-
nal carbon rings- and their ensembles such as internal 
boundaries and two-dimensional distributions were success-
fully described by wedge disclinations [19,33,34]. In addi-
tion, disclinations can move 2D flat crystal into the third 
dimension, thereby lowering the energy of elastic distor-
tions, as it occurs in fullerene macromolecules [47]. 

In the theory of defects in 3D solids, two types of lin-
ear defects, namely, dislocations as carriers of transla-
tional deformation modes and disclinations that are re-
sponsible for rotational deformation modes, are 
distinguished [44]. Despite the fact that the concept of 
disclinations was introduced by Vito Volterra into me-
chanics in solids in 1907, the approach based on the anal-
ysis of rotational deformation modes in real crystals actu-
ally revealed itself only at the end of the last century [45]. 
It should be noted that the disclination approach is effec-
tive for describing the properties of 3D crystals in the 
form of small particles and microcrystals with pentagonal 
symmetry [48,49]. 

Fig. 1. (Сolor online) Volterra’s procedure for the formation of wedge disclinations in 2D hexagonal crystal lattice: (a) negative 
disclination and associated 7-member ring; (b) negative disclination and associated 8-member ring; (c) positive disclination and asso-
ciated 5-member ring; (d) positive disclination and associated 4-member ring. Minimal magnitude of disclination strength in hexagonal 
lattice is ω = π/3. Negative and positive disclinations are denoted by empty and black triangles, respectively (adopted from [34]). 
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Volterra’s procedure for the formation of wedge 
disclinations in 2D hexagonal crystal lattice is presented 
in Fig. 1. Wedge disclinations are formed by inserting or 
removing a wedge of 60 or 120 degrees from a hexagonal 
lattice [34,44–46], leaving in the vertex of this wedge, 7-, 
5-, 8- or 4-member carbon rings, in another words, 
disclinated rings. The strength (or charge) of the wedge 
disclination ω  is determinate by the magnitude of the 
wedge angle: ω = – π/3, + π/3, – 2π/3, + 2π/3. 

It is known, that single disclination introduces global dis-
tortion in the crystal lattice, see for example Refs. 44, 45, 
and, according to the continual theory of disclinations, its 
energy for plane elasticity depends quadratically on the 
characteristic size of the crystal [44]. In particular, energy E 
of the wedge disclination in the center of elastically isotropic 
disk obeys formula [44]: 

 2 2
0

1
8

E D R= ω , (1) 

where ω is the strength of the disclination, 0R  is the radius 
of the disk, (1 )/2D G= + ν π  for a 2D disk [38,40,44], G  
is the shear modulus in units Force/Length, and ν  is Pois-
son ratio. 

Disclinations in solids are realized in the form of self-
screening ensembles, i.e., dipoles and quadrupoles [44,45]. In 
graphene, self-screening ensembles of disclinations can be 
present in the form of grain boundaries and intercrystallite 
boundaries, i.e. in the form of linear defects, see in details in 
Refs. 18, 27, 33, 34, 40. 

3. Numerical and analytical methods used 

In this paper, we utilize the method of molecular dy-
namics (MD) simulation as a numerical approach, the re-
sults of which are also used as an input for analytical mod-
elling in the framework of the disclination theory. We 
would like to answer the question whether we can estimate 
the energy of disclination configurations in graphene using 
formulas for the energies of screened disclinational config-

urations without any additional MD simulation. In this 
sense, the sharing and comparison of the results of two 
independent methods such as theoretical and numerical 
approaches give an algorithm for choosing a method for 
solving a particular class of problems when describing 
graphene-like configurations. 

MD simulations of ideal graphene and graphene with 
disclinated carbon rings were performed with LAMMPS 
software package [50]. The interatomic interactions were 
described by the adaptive AIREBO potential [51]. The 
post-processing and images of equilibrium atomic struc-
tures were produced with software package OVITO [52]. 
The MD simulation was performed at zero temperature, 
and Polak–Ribiere version of the conjugate gradient algo-
rithm for energy minimization was used [53]. 

To find the energies of disclination ensembles in 
graphene in the framework of the analytical approach one 
can use the results of Ref. 54 for energy NE  of N 
disclinations in an elastic disk. In Fig. 2 the geometrical 
scheme for calculation of energy NE  is shown. In such a 
geometry NE  is expressed by the following formula: 

____________________________________________________ 
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_______________________________________________ 

where iω  is a strength of the i-disclination; ir  is a dis-
tance between center of disk and i-disclination; ijθ  is an 
angle between radiuses of i- and j- disclinations; R  is a 
radius of the disc. In Eq. (2) we take into account that the 
disk is infinitely thin, i.e., is a 2D solid. 

4. Results and discussion 

The essence of our MD simulation is as follows. In 
Fig. 3, MD modelled graphene-like sheets with the most 
dense networks of disclinations are presented. These 2D 
crystals cannot be called “graphene”, because they have 

Fig. 2. Schematics for calculating energy of the disclination en-
semble in an elastic disk. 
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either very few 6-member atomic rings characteristic for 
hexagonal graphene lattice (Fig. 3(a)), or do not have them 
at all (Figs. 3(b)–(d)). They can be better classified as 
graphene-like carbon structures or pseudo-graphenes. 

One of the crystals composed with 5- and 7-member car-
bon rings (Figs. 3(a),(b)) is phagraphene [37] (Fig. 3(a)), in 
which 6-member rings, usual for graphene, are required for 
joining disclinated rings. The disclination strengths ω in 
phagraphene and crystal “5–7 B” (Fig. 2(a),(b)) are + π/3 and 
– π/3. Pseudo-graphene, composed with 5- and 8-member 
carbon rings (Fig. 2(b)), is pentagon–octagon (PO) graphene 
[35], where ω = + π/3 and – 2π/3. Pseudo-graphene, com-
posed with 4- and 8-member carbon rings is presented in 
Fig. 3(c). In this case, ω = +2π/3 and – 2π/3. In our classifica-
tion, previously adopted for structural units in graphene and 
linear defects composed of them [33,34], these crystals have 
the designations “5–7 A”, “5–7 B”, “5–8–5 D” and “4–8” 
(Fig. 3). 

The pseudo-graphenes, considered here, can be con-
structed using the linear defects of 2D hexagonal lattice. For 
example, phagraphene can be constructed from the favorite 
symmetric grain boundaries “docked” to each other [27,40] 
and PO graphene can be composed from linear defects first 
described in Ref. 18 and then also modelled in Ref. 34, and 
pseudo-graphene “4–8” can be composed from linear de-
fects “4–8”, introduced and described in Ref. 34. 

In Fig. 4, the differences between the average energies 
per atom for the pseudo-graphenes ae  and the ideal 
graphene 0

ae  are presented: 0
a a ae e e∆ = − . In diagram, 

zero energy is the energy per atom for the ideal graphene 
0

ae . On the one hand, when aρ  and 0
aρ  are the atomic den-

sities of pseudo-graphene and the ideal graphene, corre-
spondingly, the energy 0 0

a a a ae e e∆ = ρ − ρ  is the difference 

in the energies of the pseudo-graphene and graphene per 
unit area of the crystal. Therefore e∆  can be treated as the 
average energy per unit area of the disclination network 
(DN) DNe  embedded into the graphene crystal (Fig. 3). 

The energy DNe  can be also found with the analytical 
formulas of disclination theory, i.e., Eq. (2), for each of 
studied pseudo-graphenes. To do this, the self-screened 
DN should be chosen. If ensemble of N disclinations sat-
isfies the following conditions: zero disclination charge 
and zero disclination dipole moment, then it is self-
screened configuration, and its energy does not depend 
on the external screening parameter R. The simplest self-
screening disclination ensembles are quadrupoles in the 
forms of a rectangle or line, and their energies are known, 

Fig. 3. (Сolor online) Pseudo-graphene crystals with disclination 
networks (DNs). Red circles denote carbon atoms. Empty and black 
triangles denote negative and positive disclinations, respectively. 

Fig. 4. Energy of the modeled pseudo-graphenes. 

Fig. 5. Self-screened disclination quadrupoles. Parallelogram (a), 
special cases of parallelogram: a rectangle (b), a rhombus (c), a quad-
rate (d), and line quadrupoles (e), (f) as  degenerate parallelograms. 
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e.g., see Refs. 44, 45. Additional analysis of Eq. (2) 
shows that the most general self-screening ensembles, 
i.e., those with the energies that do not depend on the 
external parameter R, are quadrupoles in the form of par-
allelograms and their particular cases (Fig. 5). These 
quadrupoles can be recognized in graphene structures as 

repetitive self-screening ensembles, and hence their ener-
gies should be used to calculate the energy of disclination 
networks DNE  as a whole. 

The energies of quadrupoles, shown in Fig. 5, have the 
following algebraic representations: 

____________________________________________________ 

(a) for the parallelogram (Fig. 5(a)) 
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(b) for the rectangle (Fig. 5(b)) 
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(c) for the rhombus (Fig. 5(c)) 
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(d) for the square (Fig. 5(d)) 
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(e) for the line quadrupole (Fig. 5(e)) 
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(f) for the line quadrupole (Fig. 5(f)) 
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_______________________________________________ 

Formulas (3(b), (d)–(f) were originally given in Ref. 44. 
For each crystal with a periodic DN, a suitable 

disclination quadrupole can be determined for calculating 
DN energy per unit area DNe . For example, for 
phagraphene (Fig. 3(a)) this is the disclination quadrupole 
in the form of the parallelogram (Fig. 5(a)), for structure 
“5–7 B” (Fig. 3(b)) this is the rhombus (Fig. 5(c)), for 
structure “5–8–5 D” (Fig. 3(c)) this is the line quadrupole 

(Fig. 5(f)), and for structure “4–8” (Fig. 3(d)) this is the 
square (Fig. 5(d)). 

In Fig. 6, the square DNs originated from Fig. 3(d) are 
presented for various motive periods. In Fig. 7, the average 
energies per atom for graphene with periodic alternating 
DNs, see Figs. 6(a)–(e), are shown. Crystal marked “4–8 g0” 
is a pseudo-graphene “4–8”. It follows from the diagram that, 
with the exception of the tightly packed structure “4–8 g0”, 
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the average energy per atom in the crystal depends weakly on 
the period of the DN. 

In Fig. 8, the average energy per unit area for structures 
in Fig. 6, as a function of the square of the DN period is 
shown. The energies are normalized to the energy of a 
tightly packed structure “4–8 g0”. The dependences are 
found from MD simulations (Fig. 8(a), blue dots), calculat-
ed with Eq. (3d) (Fig. 8(a), red line), and calculated with 
Eq. (2) adopted to 4 quadrupoles (Fig. 8(b), grey line). In 
disclination scheme (Fig. 8(b)), the area related to the 
quadrupole when calculating the DN energy is highlighted. 

Along with the investigation of the quadratic DNs shown 
in Fig. 6, we studied networks containing quadrupoles of 
disclinations with charges ω = +2π/3 and – 2π/3, which size 
is the smallest possible in a graphene crystal. In Fig. 7, the 
single disclination quadrupole in the graphene crystal and its 
possible formation scheme are given. It can be seen that 
such a single quadrupole has the shape of a rhombus, be-
cause the sizes of the 4-member and 8-member rings, which 
are the nuclei of disclinations with ω = +2π/3 and – 2π/3, 
respectively, are significantly different. The elastic distor-
tions induced by the quadrupole in the graphene lattice de-
cay rapidly over a distance of the order of the average size of 
the quadrupole (Fig. 9(b)). 

Fig. 6. (Сolor online) Networks of 4-member and 8-member car-
bon rings in graphene as a periodic structures of disclinations of 
stregth ω = +2π/3 and –2π/3. 

Fig. 7. Energy per carbon atom for graphenes with periodic struc-
tures of alternating disclinations, given in Fig. 6. Crystal marked 
“4–8 g0” is a pseudo-graphene “4–8”.  

Fig. 8. (Сolor online) Energy per unit area for structures “4–8”, as a 
function of the square of the disclination network (DN) period. The 
blue dots correspond to the energies calculated with the help of MD 
simulation; red (1) and grey (2) lines correspond to the dependenc-
es, calculated analytically taking into account 1 and 4 disclination 
quadrupoles, correspondingly. The energies are normalized to the 
energy of a tightly packed structure “4–8 g0” shown in Fig. 5(a). In 
disclination scheme (b), the area related to the quadrupole used in 
analytical calculation of DN energy, is highlighted. 
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In Fig. 10 the periodic structures of small disclination 
quadrupoles containing 4- and 8-member rings, named 
“4–8” quadrupoles, are shown. As can be seen from 
Fig. 10(a), tightly packed quadrupoles take the form of 
the quadrats. Quadrat quadrupoles “4–8” of large size are 
also observed in the DNs shown in the Figs. 6(b)–(e). 
Here they are also tightly packed, i.e. the size of the 
quadrupole is DN half-period. 

With increasing period of the quadrupole network (QN) 
their transformation is observed: they evolve from square 
(Fig. 10(a)) to parallelogram (Figs. 10(b)–(e). This is ex-
plained by considering the QN as composed of linear 
chains of quadrupoles “4–8” and 6-member carbon rings. It 
has been shown in the Ref. 34 that the intercrystallite 
boundary composed of only quadrupoles 4–8 does not in-
troduce a misorientation of the neighboring crystals. Ad-
ding 6-member rings between the quadrupoles in the 
intercrystallite boundary “4–8” leads to the appearance of 
the misorientation angle in interval 0°–60°. This is similar 
to the phenomenon found in the study of the “5–7” grain 
boundaries in graphene [40]. 

In Fig. 11, the diagram of the energy per atom for 
graphene with periodic QNs, given in Fig. 10, is shown. As 
expected, with an increase of the period of QN, the average 
energy per atom of the disclinated crystal decreases. 

5. Summary and Conclusions 

Resulting from our research, we formulate the following. 
(i) The average energy of graphene with alternating 

disclination networks (DNs) remains practically unchanged 
with increasing DN period. The exceptions are the crystals 
with the densest DNs. These crystals contain a minimal 
number of 6-member carbon rings typical for ideal graphene, 
or do not have them at all. It is correct to call such 2D carbon 
crystals pseudo-graphenes. Pseudo-graphenes are low-energy 

Fig. 9. (Сolor online) Quadrupole of wedge disclinations of 
strength ω = +2π/3 and –2π/3 in graphene. (a) The sequential pro-
cess of quadrupole formation by inserting two carbon atoms into 
a graphene lattice. (b) Disclination scheme of the quadrupole. 

Fig. 10. (Сolor online) Networks of disclination qudrupoles in 
pseudo-graphene and graphene-like structures. 

Fig. 11. Energy per atom for graphene-like 2D structures with 
periodic ensembles of disclination quadrupoles, given in Fig. 10. 
Crystal marked “4–8 g0” is a pseudo-graphene “4–8”. 
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containing disclination defects configurations. The energies 
of pseudo-graphenes “5–7 A” and “5–7 B” exceed the energy 
of an ideal graphene by only 0.28–0.38 eV/atom. 

(ii) For an approximate estimate of the energy of 
graphene with embedded alternating DNs, one can use the 
analytical formulas for the energy of a single disclination 
quadrupole in the form suitable for a given DN. 
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Ансамблі дисклінацій у графені 

М.А. Рожков, А.Л. Колеснікова, 
І.С. Ясніков, А.Е. Романов 

Розглянуто дисклінаційні сітки (DNs) — періодичні роз-
поділи дисклінаційних дефектів у графені. Дисклінації про-
являють себе як 4-, 5-, 7- або 8-членні вуглецеві кільця на 
відміну від 6-ланкових кілець, з яких складається двовимірна 
2D ідеальна гратка графена. Також досліджено граничні ви-
падки графеноподібних 2D вуглецевих граток без 6-ланкових 
кілець — так звані псевдографени. Геометрія та енергія дис-
клінованих 2D-вуглецевих конфігурацій аналізуються за 

допомогою метода молекулярної динаміки (MD). Наведено 
порівняння результатів MD моделювання та аналітичних 
розрахунків в рамках теорії дефектів пружного континууму. 

Ключові слова: графен, псевдографен, дисклінація, дисклі-
новане вуглецеве кільце, дисклінаційний квадруполь, сітка 
дисклінацій, молекулярна динаміка. 

Ансамбли дисклинаций в графене 

М.А. Рожков, А.Л. Колесникова, 
И.С. Ясников, А.Е. Романов 

Рассмотрены дисклинационные сетки (DNs) — периодиче-
ские распределения дисклинационных дефектов в графене. 
Дисклинации проявляют себя как 4- , 5-, 7- или 8-членные 
углеродные кольца в отличие от 6-звенных колец, из которых 
состоит двумерная (2D) идеальная решетка графена. Также 
исследуются предельные случаи графеноподобных 2D угле-
родных решеток без 6-звенных колец — так называемые псев-
дографены. Геометрия и энергия дисклинированных 2D угле-
родных конфигураций анализируются с помощью метода 
молекулярной динамики (MD). Представлено сравнение ре-
зультатов MD моделирования и аналитических расчетов, про-
веденных в рамках теории дефектов упругого континуума. 

Ключевые слова: графен, псевдографен, дисклинация, дискли-
нированное углеродное кольцо, дисклинационный квадруполь, 
сетка дисклинаций, молекулярная динамика. 
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