Экситонный спектр поглощения тонких пленок тройных соединений в системе AgBr–PbBr₂

Е.Н. Коваленко

Харьковский национальный университет радиоэлектроники, пр. Науки, 14, г. Харьков, 61166, Украина E-mail: olena.kovalenko@nure.ua

О.Н. Юнакова, Н.Н. Юнаков

Харьковский национальный университет, им. В.Н. Каразина, пл. Свободы, 4, Харьков, 61022, Украина E-mail: o.n.yunakova@gmail.com nnyunakov@ukr.net

Статья поступила в редакцию 21 января 2018 г., после переработки 16 февраля 2018 г., опубликована онлайн 27 июня 2018 г.

Исследованы экситонные спектры поглощения тонких пленок комплексных соединений AgPbBr₃, AgPb₂Br₅, AgPb₃Br₇ в интервале энергий фотонов 2–6 эВ. Установлено, что соединения относятся к прямозонным диэлектрикам, низкочастотные экситоны локализованы в структурных слоях (PbBr₈)^{6–} кристаллической решетки и носят квазидвумерный характер.

Досліджено екситонні спектри поглинання тонких плівок комплексних сполук AgPbBr₃, AgPb₂Br₅, AgPb₃Br₇ в інтервалі енергій фотонів 2–6 еВ. Встановлено, що сполуки відносяться до прямозонних діелектриків, низькочастотні екситони локалізовані в структурних шарах (PbBr₈)^{6–} кристалічної гратки та мають квазідвовимірний характер.

РАСS: 78.20.-е Оптические свойства массивных материалов и тонких пленок; 78.40.-q Спектры поглощения и отражения: видимые и ультрафиолетовые.

Ключевые слова: тонкие пленки, спектры поглощения, экситоны.

Интерес к тройным соединениям, производным от галогенидов свинца, обусловлен особенностями их физических свойств и возможным практическим применением. Особенности строения кристаллических решеток ряда соединений позволяют использовать их в качестве матриц при создании активных лазерных сред [1,2], некоторые соединения обладают высокой ионной проводимостью при относительно низкой температуре фазового перехода в суперионное состояние [3].

Соединения AgBr и PbBr₂ из-за различия их кристаллических структур и ионных радиусов Ag⁺ и Pb²⁺ не образуют твердых растворов. Но, согласно исследованиям фазовой диаграммы системы (AgBr)_{1-x}(PbBr₂)_x [4], при молярных концентрациях x = 0,5; 0,67 и 0,75 образуются устойчивые комплексные соединения AgPbBr₃, AgPb₂Br₅ и AgPb₃Br₇, имеющие низкосимметричные кристаллические решетки. AgPbBr₃ кристаллизуется в орторомбическую структуру (пространственная группа *C_{mcm}*) с параметрами решетки a = 9,88 Å, b = 13,46 Å, c = 4,215 Å, z = 4 [5], AgPb₂Br₅ — в моноклинную (пространствен-

ная группа C2/c, a = 7,981 Å, b = 16,697 Å, c = 7,053 Å, β = 95,95°, z = 4 [6]), AgPb₃Br₇ — в орторомбическую (пространственная группа C_{mcm} , a = 7,891 Å, b = 23,508 Å, c = 7,105 Å, z = 4 [5]).

В тройных соединениях ионы Ag^+ расположены внутри октаэдра, в вершинах которого находятся ионы Br⁻. Структурные элементы решетки (AgBr₆)⁵⁻ образуют слой, перпендикулярный направлению [010]. Ионы Pb²⁺ расположены внутри тригональной призмы, в вершинах которой расположены ионы Br⁻, еще два иона Br⁻ примыкают к боковым граням призмы [5,6]. Структурные элементы кристаллической решетки (PbBr₈)⁶⁻ также образуют слои, перпендикулярные направлению [010]. Кристаллические решетки тройных соединений отличаются количеством чередующихся слоев, содержащих ионы Ag⁺ и Pb²⁺. В AgPbBr₃ слой октаэдров с Ag⁺ чередуется со слоем из структурных элементов (PbBr₈)⁶⁻, в AgPb₂Br₅ чередуются слой с Ag⁺ и два слоя с Pb²⁺, в AgPb₃Br₇ — слой с Ag⁺ и три слоя с Pb²⁺ [4,5]. Ионная проводимость σ тройных соединений AgPbBr₃, AgPb₂Br₅ и AgPb₃Br₇ незначительная, при T = 523 K $\sigma = 1 \cdot 10^{-4}$ Om⁻¹·cm⁻¹ [5]. В чистом AgBr при той же температуре проводимость на порядок выше, $\sigma = 1 \cdot 10^{-3}$ Om⁻¹·cm⁻¹ [5]. Соединение AgPb₃Br₇ изоструктурно медьсодержащему соединению CuPb₃Br₇, проявляющему суперионные свойства при температуре свыше 433 K [3]. Однако в AgPb₃Br₇ суперионные свойства не обнаружены [5].

Несмотря на достаточную изученность кристаллической структуры и электрических свойств тройных соединений AgPbBr₃, AgPb₂Br₅ и AgPb₃Br₇, их спектры поглощения не исследовались. Представляет интерес изучение собственных полос поглощения и экситонных состояний в AgPbBr₃, AgPb₂Br₅ и AgPb₃Br₇ для установления строения их электронных спектров и сравнения со спектрами близких по структуре и химической связи соединений.

В настоящей работе приводятся результаты исследования спектров поглощения тонких пленок тройных соединений AgPbBr₃, AgPb₂Br₅ и AgPb₃Br₇ в спектральном интервале 2–6 эВ (T = 90 К и 290 К). Дана сравнительная характеристика спектров и экситонных состояний в ряду соединений AgPbBr₃, AgPb₂Br₅, AgPb₃Br₇, PbBr₂.

Эксперимент

Тонкие пленки AgPbBr₃, AgPb₂Br₅ и AgPb₃Br₇ приготавливались путем испарения в вакууме расплава смеси чистых порошков AgBr и PbBr₂ стехиометрического молярного состава на нагретые до 373 К кварцевые подложки с последующим их отжигом в течение часа при той же температуре. Такой метод применялся ранее для получения тонких пленок CuPb₃Br₇ [7]. Метод основан на том, что температуры плавления комплексных соединений AgPbBr₃ (553 K), AgPb₂Br₅ (568 K) и AgPb₃Br₇ (603 K) [5] существенно ниже температур плавления исходных бинарных соединений AgBr (707 K) и PbBr₂ (646 K), что позволяет получать монофазные пленки тройных соединений без примеси исходных компонентов.

Фазовый состав пленок контролировался по спектрам поглощения, измеренным при T = 90 К. Такой контроль возможен благодаря различию спектрального положения длинноволновых экситонных полос в тройных соединениях AgPbBr₃ (3,914 эВ), AgPb₂Br₅ (3,91 эВ), AgPb₃Br₇ (3,922 эВ) и исходных компонентах PbBr₂ (3,98 эВ [8]), AgBr (4,25 эВ [9]). При испарении расплава смеси стехиометрического состава примесь других фаз в пленках тройных соединений не наблюдалась.

Спектры поглощения измерялись в спектральном интервале 2–6 эВ при T = 90 и 290 К на спектрофотометре СФ-46. В области длинноволновой экситонной полосы (2,8–4,2 эВ) спектр поглощения измерялся в интервале температур 90–450 К. Для измерения спектров поглощения использовались пленки толщиной 80–90 нм.

Параметры длинноволновой полосы (положение E_m , полуширина Γ и $\varepsilon_{2m} = \varepsilon_2(E_m)$ — значение мнимой части диэлектрической проницаемости в максимуме полосы) определялись по методике [10], путем аппроксимации полосы одноосцилляторным симметричным контуром, представляющим собой линейную комбинацию лоренцева и гауссова контуров. Параметры экситонной полосы (E_m , Γ и ε_{2m}) подбирались такими, чтобы на длинноволновом склоне полосы расчетный и экспериментальный контуры согласовывались наилучшим образом.

Результаты эксперимента и их обсуждение

Спектры поглощения тонких пленок AgPbBr₃, AgPb₂Br₅ и AgPb₃Br₇ (рис. 1) подобны по структуре спектра и близки по спектральному положению полос поглощения. В спектрах AgPbBr₃, AgPb₂Br₅ и AgPb₃Br₇ на краю собственной полосы поглощения расположена узкая и интенсивная полоса *A*, в более коротковолно-

Puc. 1. Спектры поглощения тонких пленок AgPbBr₃ (t = 80 нм), AgPb₂Br₅ (t = 90 нм) и AgPb₃Br₇ (t = 85 нм) при T = 290 К (I) и 90 К (2).

вой области спектра наблюдаются широкие полосы C_1 и C_2 (спектральное положение полос поглощения приведено в табл. 1). С ростом температуры полосы A и Cсдвигаются в длинноволновую область спектра, уширяются и ослабляются за счет экситон-фононного взаимодействия, что указывает на их экситонное происхождение.

Таблица 1. Спектральное положение экситонных полос, ширина запрещенной зоны E_g и энергия связи экситона R_{ex} в соединениях AgPbBr₃, AgPb₂Br₅, AgPb₃Br₇, PbBr₂

Соединение	E_{mA} ,	E_{mC1} ,	E_{mC2} ,	<i>Еg</i> , эВ	$R_{\rm ex}$,
	эВ	эВ	эВ		эВ
AgPbBr ₃	3,914	4,77	5,6	4,105	0,19
AgPb ₂ Br ₅	3,91	4,77	5,63	4,08	0,17
AgPb ₃ Br ₇	3,922	4,86	5,63	4,12	0,2
PbBr ₂ [8]	3,98	4,86	5,69	4,23	0,25

После отделения полосы A симметричным одноосцилляторным контуром по точке перегиба края собственной полосы поглощения были определены ширина запрещенной зоны E_g и энергия связи экситона $R_{\rm ex} = E_g - E_A$ в AgPbBr₃, AgPb₂Br₅ и AgPb₃Br₇. Значения E_g и $R_{\rm ex}$ приведены в табл. 1.

Для интерпретации спектров тройных соединений целесообразно сравнить их со спектрами исходных бинарных соединений AgBr и PbBr₂. В AgBr край поглощения формируется непрямыми переходами $\Gamma - L'_3$ с $E_g = 3,05$ эВ [9]. Экситонные полосы, соответствующие прямым разрешенным переходам в AgBr $\Gamma_1 - \Gamma_{15}$, расположены при 4,25 и 4,82 эВ (T = 4,2 K), расстояние между ними обусловлено спин-орбитальным расщеплением в атоме Br [9].

В спектре PbBr₂ (T = 78 K) наблюдаются экситонные полосы A (3,98 эВ), C_1 (4,85 эВ), C_2 (5,7 эВ), C_3 (6,3 эВ) и D (10,12 эВ) [8]. Экситоны в PbBr₂ носят катионный характер. В модели катионного экситона спектр поглощения PbBr₂ трактуется исходя из переходов в ионе свинца. Верх валентной зоны PbBr₂ формируется орбиталями 6s Pb²⁺ и 4p Br⁻, дно зоны проводимости — орбиталями 6p Pb²⁺ [8,11].

По спектральному положению длинноволновая экситонная полоса A в тройных соединениях ближе к длинноволновой экситонной полосе в PbBr₂, чем в AgBr. Край поглощения в тройных соединениях, в отличие от AgBr, формируется прямыми разрешенными переходами, на что указывает резкий длинноволновый край полос A и их большая интенсивность. По структуре спектры поглощения тройных соединений подобны спектру PbBr₂. Все это позволяет предположить локализацию экситонов в подрешетке, содержащей ионы свинца. В пользу такого предположения свидетельствует также близкое спектральное положение длинноволновых экситонных полос в тройных соединениях, производных от PbBr₂. При T = 90 К низкочастотные экситонные полосы в соединениях AgPbBr₃, AgPb₂Br₅, AgPb₃Br₇, CuPb₃Br₇ и KPb₂Br₅ расположены при 3,914; 3,91; 3,922; 3,905 [7] и 3,84 эВ [2,12] соответственно. Близость энергий возбуждений 1*s*-экситонов в этих соединениях указывает на слабую зависимость E_{ex} от типа замещающих ионы Pb катионов, что подтверждает предположение о локализации экситонов в PbBr₂ подрешетке указанных соединений [7,12].

При такой локализации верх валентной зоны в тройных соединениях AgPbBr₃, AgPb₂Br₅, AgPb₃Br₇, как и в PbBr₂, формируется орбиталями 6s Pb²⁺ и 4p Br⁻, дно зоны проводимости — орбиталями 6p Pb²⁺. Экситоны в тройных соединениях, как и в PbBr₂, имеют катионный характер, на что указывает близость их спектров, а также близкое положение длинноволновых экситонных полос к примесным полосам Pb²⁺ в щелочно-галоидных кристаллах [13]. В модели катионного экситона длинноволновая экситонная полоса в тройных соединениях, как и в PbBr₂, генетически связана с переходом $6s \rightarrow 6p$ в ионе свинца.

Край поглощения в AgPb₃Br₇, AgPb₂Br₅ и AgPbBr₃ немного сдвинут в длинноволновую область спектра по отношению к PbBr2, что указывает на меньшую ионность соединений. PbBr2 кристаллизуется в орторомбическую решетку, в которой каждый ион Pb²⁺ окружен девятью ионами Br-. В соединениях AgPb3Br7, AgPb₂Br₅ и AgPbBr₃ ионы свинца расположены внутри тригональной призмы, в вершинах которой расположены ионы Br, еще два иона Br примыкают к боковым граням призмы [5,6]. Число ионов Br в первой координационной сфере в AgPb₃Br₇ равно 8 [5], в AgPb₂Br₅ — 7 [6], в AgPbBr₃ — 7 [5], что и обусловливает меньшую ионность тройных соединений по сравнению с PbBr2 и, соответственно, длинноволновый сдвиг края поглощения в ряду соединений PbBr₂, AgPb₃Br₇, AgPb₂Br₅ и AgPbBr₃.

Следует отметить, что в AgPbBr3 край поглощения немного более коротковолновый, чем в AgPb2Br5, что свидетельствует о сужении экситонных зон и росте ширины запрещенной зоны Еg в первом соединении по сравнению со вторым. По-видимому, это связано с особенностями строения кристаллических решеток соединений. Выше уже отмечалось слоистое строение кристаллических решеток соединений AgPb2Br5 и AgPbBr₃, в которых слои, содержащие ионы Pb^{2+} , pacположены перпендикулярно оси b. Ниже будет показано, что экситоны в обоих соединениях двухмерные, т.е. перенос энергии экситонов происходит в слое с ионами Pb²⁺. В AgPb₂Br₅ расстояния между эквивалентными ионами Pb²⁺ вдоль осей a (a/2 = 3,99 Å) и c (c/2 = 3,53 Å) близкие, соответственно, перенос энергии экситонов в обоих направлениях равновероятный. Напротив, в AgPbBr3 расстояние между эквивалентными ионами Pb^{2+} вдоль оси *с* (*c*/2 = 2,11 Å) намного меньше расстояния вдоль оси *а* (*a*/2 = 4,94 Å). Следовательно, перенос энергии экситонов в AgPbBr₃ происходит вдоль оси *с*, что определяет квазиодномерный характер экситонов в соединении. Из исследований спектров поглощения твердых растворов квазиодномерных кристаллов известно, что экситонные зоны в них более узкие по сравнению с 2D и 3D экситонными зонами [14,15]. Таким образом, квазиодномерный характер экситонов определяет меньшую ширину экситонных зон и, соответственно, более коротковолновый край поглощения в AgPbBr₃ относительно AgPb₂Br₅, несмотря на одинаковое координационное число ионов Br⁻ в обоих соединениях.

В области длинноволновой экситонной полосы спектр поглощения тройных соединений измерялся в интервале температур 90–450 К. В этом интервале температурная зависимость спектрального положения экситонной полосы $A E_{ex}(T)$ (рис. 2(a)) во всех трех соединениях линейная:

$$E_{\rm ex}(T) = E(0) + \beta T, \qquad (1)$$

Рис. 2. Температурная зависимость спектрального положения $E_m(T)$ (а) и полуширины $\Gamma(T)$ (б) длинноволновых экситонных полос *A* в тонких пленках AgPbBr3 (*I*), AgPb₂Br₅ (2) и AgPb₃Br₇ (*3*): точки — эксперимент, сплошные кривые — расчет по формулам (1) (а) и (3), (4) (б).

где $E(0) = 3,98; 3,95; 3,96 эВ и β = dE_{ex}/dT = -4,73 \cdot 10^{-4};$ -3,96 ·10⁻⁴; -4,33 ·10⁻⁴ эВ/К для AgPb₃Br₇, AgPb₂Br₅ и AgPbBr₃ соответственно. Полученные значения температурных коэффициентов сдвига экситонных полос dE_{ex}/dT типичные для ионных кристаллов, к которым относятся исследуемые соединения.

В ионных кристаллах преобладает взаимодействие экситонов с продольными оптическими (LO) фононами, приводящее к уширению экситонных полос с ростом *T* (рис. 2(б)). Уширение экситонной полосы за счет экситон-фононного взаимодействия $\Gamma_{ex-ph}(T)$ для экситонов различной размерности *d* (*d* = 1, 2, 3) по теории [16] определяется как

$$\Gamma_{\rm ex-ph}(T) \approx \left[\frac{\pi D^2}{\gamma (d/2)(2\pi B)^{d/2}}\right]^{\frac{2}{4-d}},\qquad(2)$$

где $\gamma(d/2)$ — гамма-функция, зависящая от d, B — ширина экситонной зоны и $D^2 = 0,5 C^2 \hbar \omega_{LO} \text{cth}(\hbar \omega_{LO}/2kT)$, $C^2/2$ — энергия релаксации решетки при возбуждении экситона, $\hbar \omega_{LO} = 22,9$; 22,3; 21,1 мэВ — энергия LO фононов в AgPb₃Br₇, AgPb₂Br₅ и AgPbBr₃ соответственно. Неизвестное значение $\hbar \omega_{LO}$ в AgPb₃Br₇, AgPb₂Br₅ и AgPbBr₃ мы оценили путем линейной интерполяции по величинам $\hbar \omega_{LO} = 24,8$ мэВ в PbBr₂ и $\hbar \omega_{LO} = 17,3$ мэВ в AgBr [9]. Значения $\hbar \omega_{LO}$ в PbBr₂ было найдено по известным частотам асимметричных колебаний молекул PbBr₂ [17].

При расчете общей полуширины экситонной полосы $\Gamma(T)$ необходимо учесть также вклад в нее остаточного уширения $\Gamma(0)$ за счет дефектов решетки. Так как форма экситонной полосы A при низких температурах в исследуемых соединениях близка к гауссовой, а при высоких — полностью гауссова, то с учетом остаточного уширения полную полуширину $\Gamma(T)$ можно представить как

$$\Gamma(T) = [\Gamma^2(0) + \Gamma_{\text{ex-ph}}^2]^{1/2},$$
(3)

где $\Gamma_{\text{ex-ph}}(T)$ определяется формулой (2) с неизвестным множителем Q, не зависящим от T. Обработка экспериментальных зависимостей $\Gamma(T)$ с помощью формулы (2) для разных d дает наилучшее согласие расчета с экспериментом при d = 2. В этом случае

$$\Gamma_{\text{ex-ph}}(T) = Q \operatorname{cth}\left(\hbar\omega_{LO}/2kT\right) \tag{4}$$

и зависимости $\Gamma(T)$ в координатах Γ^2 от cth²($\hbar\omega_{LO}/2kT$) линейные. Обработка этих зависимостей методом наименьших квадратов дает значения $\Gamma(0) = (0,14 \pm \pm 0,005)$ эВ; (0,138 ± 0,004) эВ; (0,21 ± 0,003) эВ и Q == (0,13 ± 0,001) эВ; (0,12 ± 0,001) эВ; (0,1 ± 0,001) эВ в AgPb₃Br₇, AgPb₂Br₅ и AgPbBr₃ соответственно. Рассчитанные по формулам (3), (4) температурные зависимости $\Gamma(T)$ с найденными значениями $\Gamma(0)$ и Q хорошо согласуются с экспериментальными (рис. 2(б). Из анализа температурных зависимостей $\Gamma(T)$ следует двухмерный характер экситонов в AgPb₃Br₇, AgPb₂Br₅ и AgPbBr₃, что согласуется со слоистым строением их кристаллических решеток.

Заключение

Исследован спектр поглощения тонких пленок AgPbBr₃, AgPb₂Br₅, AgPb₃Br₇ в спектральном интервале 2–6 эВ. В результате анализа спектров установлена локализация экситонов в подрешетке соединений, содержащей ионы Pb^{2+} . Экситонный спектр тройных соединений, как и спектр PbBr₂, определяется переходами в ионе Pb^{2+} . Длинноволновый сдвиг края поглощения в ряду PbBr₂, AgPb₃Br₇, AgPb₂Br₅ и AgPbBr₃ обусловлен уменьшением ионности соединений.

Меньшая ширина экситонных зон в AgPbBr₃ и, соответственно, более коротковолновый край поглощения относительно AgPb₂Br₅ обусловлены квазиодномерным характером экситонов в первом соединении.

Температурный ход спектрального положения $E_m(T)$ и полуширины $\Gamma(T)$ длинноволновой экситонной полосы A в тройных соединениях AgPbBr₃, AgPb₂Br₅ и AgPb₃Br₇ определяется взаимодействием экситонов с продольными оптическими фононами. Из анализа температурной зависимости $\Gamma(T)$ установлен двухмерный характер экситонов в AgPbBr₃, AgPb₂Br₅, AgPb₃Br₇, обусловленный слоистым строением их кристаллической решетки.

- P.A. Tanner, G. Jia, B.-M. Cheng, and M.G. Brik, *Phys. Status Solidi B* 249, 581 (2012).
- В.А. Пустоваров, И.Н. Огородников, Н.С. Бастрикова, А.А. Смирнов, Л.И. Исаенко, А.П. Елисеев, Оптика и спектр. 101, 247 (2006).
- B.K. Verma, O.P. Srivastama, and H.B. Lal, *Phys. Status* Solidi A 64, 467 (1981).
- Y. Otsubo, Y. Tanaka, and M. Miyahara, *Nippon Kagaku Zasshi* 92, 735 (1971).
- H. Ullmann, Strukturchemische und Mas-NMRspektroskopische Untersuchungen mit Quantenchemischen Berechnungen von Binärenn, Ternären und Quaternären Blei (II)-Halogeniden, Herbert Utz Verlag, München (1998).

- R. Boese, D. Bläser, and W. Hüben, Z. Kristallogr. 191, 136 (1990).
- Е.Н. Коваленко, О.Н Юнакова, Н.Н. Юнаков, ФНТ 42, 981 (2016) [Low Temp. Phys. 42, 769 (2016)].
- А.Ф. Малышева, В.Г. Плеханов, Опт. и спектр. 34, 527 (1973)
- Т.Х. Джеймс, *Теория фотографического процесса*, Химия, Ленинград (1980).
- О.Н Юнакова, В.К. Милославский, Е.Н. Коваленко, Оптика и спектр. 104, 631 (2008).
- R. Kink, T. Avarmaa, V. Kisand, A. Löhmus, I. Kink, and I. Martinson, *J. Phys. C* 10, 693 (1998).
- V.V. Kovalenko, E.N. Kovalenko , O.N. Yunakova, and N.N. Yunakov, *Functional. Mat.* 23, 570 (2016).
- 13. K. Schmitt, Phys. Status Solidi B 135, 389 (1986).
- 14. В.К. Милославский, О.Н. Юнакова, Е.Н. Коваленко, *Опт. и спектр.* **102**, 459 (2007).
- В.К. Милославский, О.Н. Юнакова, Е.Н. Коваленко, ФНТ 36, 418 (2010) [Low Temp. Phys. 36, 329 (2010)].
- M. Schreiber and Y. Toyasawa, J. Phys. Soc. Jpn. 51, 1528 (1982).
- 17. К.С. Краснов, Молекулярные постоянные неорганических соединений, Химия, Ленинград (1979).

The exciton absorption spectrum of thin films of ternary compounds in the AgBr–PbBr₂ system

E.N. Kovalenko, O.N. Yunakova, and N.N. Yunakov

Exciton absorption spectra in the photon energy range 2–6 eV were studied for thin films of complex compounds AgPbBr₃, AgPb₂Br₅ and AgPb₃Br₇. It is established that the compounds belong to the directband dielectrics, low-frequency excitons are localized in the structural layers $(PbBr_8)^{6-}$ of the crystal lattice and are quasi-two-dimensional in nature.

PACS: 78.20.-e Optical properties of bulk materials and thin films;
78.40.-q Absorption and reflection spectra: visible and ultraviolet.

Keywords: thin films, absorption spectra, excitons.