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We theoretically investigate the phase of the de Haas–van Alphen oscillations in topological line-node semi-
metals. In these semimetals the chemical potential of charge carriers can essentially depend on the magnetic 
field, and this dependence changes the phase of the oscillations as compared to the phase in a three-dimensional 
metal with a band-contact line. Our results elucidate recent experimental data on the Berry phase for certain elec-
tron orbits in ZrSiS, ZrSiTe, and ZrSiSe. 

PACS: 71.20.–b Electron density of states and band structure of crystalline solids; 
75.20.–g Diamagnetism, paramagnetism, and superparamagnetism; 
71.30.+h Metal-insulator transitions and other electronic transitions. 
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1. Introduction 

In recent years much attention has been given to the 
topological line-node semimetals in which the conduction 
and valence bands touch along lines in the Brillouin zone 
and disperse linearly in directions perpendicular to these 
lines [1–16]. It is necessary to emphasize that the contact of 
the electron energy bands along the lines is the widespread 
phenomenon in crystals [7,17–19]. For example, such con-
tacts of the bands occur even in many simple metals, and 
graphite [20], beryllium [21], aluminium [22], LaRhIn5 [23] 
are among them. However, the degeneracy energy of the 
bands, dε , is not constant along such lines, and this energy 

dε  varies in the interval from its minimum minε  to its max-
imum maxε  values. A crystal with the band-contact line 
can be named the topological semimetal if the difference 

max min 2ε − ε ≡ ∆  is sufficiently small and if the chemical 
potential ζ  of the electrons does not lie far away from the 
mean energy 0

max min( ) / 2dε ≡ ε + ε  of the line. 
Rhombohedral graphite [3,24,25], Ca3P2 [6] and CaAgP [9], 
Cu3NZn and Cu3NPd [7,8], ZrSiS [11,12,16], ZrSiTe [13], 
alkaline-earth germanides and silicides [14], PbTaSe2 [15] 
are examples of the line-node semimetals. 

The magnetization of electrons in a crystal with the 
band-contact line characterized by large ∆ was theoretical-
ly investigated many years ago [26,27], and it was found 
that the magnetic susceptibility of the electrons exhibits a 

giant anomaly when ζ  approaches one of the energies minε  
or maxε  which correspond to the points of the electron topo-
logical transitions of 3½ kind [18]. In the topological sem-
imetals the interval 2∆ is small, the critical energies minε  
and maxε  are close to each other, and the character of the 
anomaly in the susceptibility changes. The magnetic sus-
ceptibility in the case of the line-node semimetals was con-
sidered for weak magnetic fields in Ref. 28 and for arbi-
trary magnetic fields in Refs. 29, 30. 

It is well known [31,32] that at low temperatures the 
magnetization of electrons in metals exhibits the de Haas–
van Alphen oscillations. These oscillations are described 
by a periodic function of ex / ( ) 2cS e H − πγ  where exS  is 
the extremal cross-section area of the Fermi surface, and γ  
is the constant in the semiclassical quantization rule. This 
γ  is expressed in terms of the Berry phase BΦ  for the elec-
tron orbit in the extremal cross section (see Eq. (5) below). 
The characteristic feature of the topological line-node sem-
imetals is that the de Haas–van Alphen oscillations are 
shifted in phase [30] as compared to the case of metals for 
which the band-contact lines are absent, and = 0BΦ , 

= 1/ 2γ . The shift is due to the Berry phase π for electron 
orbits surrounding the band-contact line [33]. Recently, the 
de Haas–van Alphen [34,35], Shubnikov–de Haas [36–39], 
and thermoelectric power [40] oscillations in magnetic 
fields were experimentally investigated in the line-node 
semimetals ZrSiS, ZrSiTe, and ZrSiSe, and intermediate 
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values of the Berry phase (other than 0 and π) were ob-
tained for a number of the electron orbits. In this paper we 
suggest an explanation of these unusual values of BΦ  de-
tected in the experiments. 

Our explanation is based on the following considerations: 
Due to small values of ∆, the dispersion relation for the elec-
trons near the band-contact line is similar to the dispersion 
relation in layered metals [30]. It is known [41–44] that in 
such metals placed in the magnetic field H  a crossover from 
the three-dimensional electron spectrum to the quasi-two-
dimensional one occurs with increasing H . In the case of 
the quasi-two-dimensional spectrum a dependence of the 
chemical potential on the magnetic field is strong [32], and 
this dependence changes the phase shift of the oscillations. 
We show that in the crossover region of the magnetic fields 
and in the region of the quasi-two-dimensional spectrum the 
shift can differ from π and 0, simulating the case of the Ber-
ry phase deviating from these values. 

2. Formulas for magnetization 

To clarify the essence of the matter, we consider the sim-
plest band-contact line, assuming that it has the shape of a 
straight line in the quasi-momentum space p, and that the 
electron dispersion relation in the vicinity of the contact line 
of the two bands “c” and “v” has the form: 

 
, 3 ,
2 2 2
, 11 1 22 2

= ( ) ,

= ,

c v d c v

c v

p E

E b p b p

ε ε ±

+
 (1) 

where the 3p  axis coincides with the line; 3( )d pε  de-
scribes a dependence of the degeneracy energy along the 
line (the maxε  and minε  mentioned above are the maximum 
and minimum values of the function 3( )d pε ); 11b  and 22b  
are positive constants specifying the Dirac spectrum in the 
directions perpendicular to the line. Below we also use the 
simplest approximation for the periodic function 3( )d pε , 

 3 3
3

2
( ) = cos = cos ,d

p p d
p

L
π   ε ∆ ∆   

   

 (2) 

where = 2 /L dπ  is the length of the line in the Brillouin 
zone, and d  is the appropriate size of the unit cell of the crys-
tal. Besides, we neglect the electron spin (but take into ac-
count the two-fold degeneracy of the electron energy bands in 
spin in the formulas below), and consider the case of the zero 
temperature T  and of the magnetic field H  parallel to the line. 

The Fermi surface corresponding to the dispersion rela-
tion (2) is a corrugated cylinder when the chemical potential 
ζ  lies outside the interval from minε  to maxε . If ζ  is inside 
the interval, the Fermi surface has a self-intersecting shape, 
and at min=ζ ε  or maxε  the electron topological transitions 
of 3½ kind occur [18]. 

If the magnetic field H  is directed along the line, the 
electron spectrum corresponding to the Hamiltonian (1) 
has the form [27]: 

 
1/2

, 3 3( ) = ( ) ,l
c v d

e Hp p l
c
α ε ε ± 

 

   

 1/2
3 11 22= ( ) = 2( )p b bα α , (3) 

where l  is a non-negative integer ( = 0l , 1,…), with the 
single Landau subband = 0l  being shared between the 
branches “c” and “v”. Interestingly, even for 1l  , the 
spectrum (3) exactly coincides with that obtained from the 
semiclassical quantization rule, 

 3
2( , ) = ( ),l

e HS p l
c

π
ε + γ

  (4) 

where 2
3 3( , ) = 2 [ ( )] /dS p pε π ε − ε α is the area of the 

cross section of the isoenergetic surface by the plane per-
pendicular to the magnetic field and passing through the 
point with the coordinate 3p , the constant γ  is expressed in 
term of the Berry phase BΦ  for the appropriate electron 
orbit [33]: 

 1= ,
2 2

BΦ
γ −

π
 (5) 

and =BΦ π  in our case of the orbit surrounding the band-
contact line. 

The magnetization of electrons in a line-node semimetal 
was calculated in Ref. 30 at an arbitrary shape of its band-
contact line. Using this result, we obtain the following ex-
pressions for the magnetization 3M  directed along the 
band-contact line being considered:  

 
3/2

1/2 1/2
3 32

0

1( , ) ( ),
2

LeM H H dp K u
c

 ζ = α 
 π ∫


 (6) 

where the integration is carried out over this line;  

 3 1 1( ) = ( ,[ ] 1) ([ ] ),
2 2 2

K u u u uζ − + + +  (7) 

( , )s aζ  is the Hurwitz zeta function,  

 
2

3 3[ ( )] ( , )
= = ,

2
d p c cS p

u
e H e H

ζ − ε ζ
α π 

 (8) 

and [ ]u  is the integer part of u . 
In the topological semimetals, charge carriers (electron 

and holes) are located near the band-contact line, and their 
chemical potential ζ  generally depends on the magnetic 
field, = ( )Hζ ζ . This dependence can be derived from the 
condition that the charge-carrier density ( , )n Hζ  does not 
vary with increasing H , 

 0 0( , ) = ( ),n H nζ ζ  (9) 

where 0n  and 0ζ  are the density and the chemical potential 
at = 0H . At = 0T  the densities 0 0( )n ζ  and ( , )n Hζ  are 
described by the following expressions [30]: 
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  (11) 

where ( ) = 1xσ  if > 0x , and 1−  if < 0x . On calculating 
( )Hζ  with Eqs. (9)–(11), one can find the magnetization as 

a function of 0n  or 0ζ , inserting ( )Hζ  into Eqs. (6)–(8). 
In analyzing the effect of ( )Hζ  on the phase of the de 

Haas–van Alphen oscillations, we shall plot the so-called 
Landau-level fan diagrams [32] commonly used in treat-
ments of the experimental data. At = 0T  the periodic in 
1/ H  magnetization of electrons in metals exhibits singu-
larities (sharp maxima or minima [45]) when the lower or 
upper edge of the lth Landau subband crosses the Fermi 
level ζ . In the semiclassical limit ( 1l  ) and under the 
assumption that ζ  is independent of H , such crossings 
occur at the magnetic fields lH  determined by Eq. (4): 

 
ex

1 2= ( ),
( )l

e l
H cS

π
+ γ

ζ
   

where ex ( )S ζ  is the minimum or maximum value of 
3( , )S pζ  with respect to 3p . Thus, if the positions lH  of 

the singularities are known, the constant γ  can be found 
with the Landau-level fan diagram: Plotting the Landau-
level index l  versus 1/ lH  and continuing the obtained 
straight line up to the intersection of this line with the l  
axis in which (1/ ) = 0lH , the coordinate −γ of the inter-
section enables one to obtain γ : =γ γ. It is important to 
emphasize that if ζ  lies in the energy region where the 
Dirac spectrum occurs, one can use lH  with 1l   in the 
construction of the fan diagrams since, as was mentioned 
above, the semiclassical spectrum resulting from formu-
la (4) coincides with the exact one given by Eq. (3) even at 
small l. Note also that this procedure of determining γ , 
which characterizes the phase of the de Haas–van Alphen 
oscillations, is applicable to the case when ζ  depends on 
H , but as shall be demonstrated below, γ  thus extracted 
does not generally coincide with the constant γ  specifying 
the semiclassical quantization rule. 

3. Discussion 

The quantity u  defined by Eq. (8) changes along the 
nodal line between its minimal minu  and maximal maxu  
values which correspond to the minimal minS  and maximal 

maxS  values of 3( , )S pζ  with respect to 3p . In the case of 
sufficiently weak magnetic fields when minu , maxu , 

max min 1u u−  , i.e., when 

 max min max min
2 , , ,e H S S S S

c
π

−


  (12) 

the Landau subbands , 3( )l
c v pε  with different l  overlap as 

in three-dimensional metals. According to Ref. 30, in this 
case formula (6) reduces to the well-known 
expression [32,42,44] describing the de Haas–van Alphen 
oscillations in a three-dimensional metal but with = 0γ . 
For 3( )d pε  given by Eq. (2), this expression is a superposi-
tion of two periodic functions determined by the two 
extremal cross-section areas min 3= ( , = 0)S S pζ  and 

max =S  3( , = / 2)S p L= ζ . The dependence ( )Hζ  is suffi-
ciently weak in this three-dimensional case and practically 
has no effect on the oscillations [32]. 

Consider now stronger magnetic fields than in the case of 
inequalities (12). If | |ζ ∆ , the difference max minu u−  be-
comes less than unity when minu  and maxu  are still large. In 
this situation, the spectrum (2) transforms into the spectrum 
of a quasi-two-dimensional electron system since the differ-
ent Landau subbands , 3( )l

c v pε  do not overlap, and they look 
like broadened Landau levels for which the spacing between 
the nearest Landau subbands in the vicinity of the Fermi 
level is larger than their width 2∆. At max min 1u u−  , the 
quantity u  is practically independent of 3p  running the line, 

3( , ) ( )S p Sζ ≈ ζ , the corrugation of the Fermi surface be-
comes unimportant, and formula (6) is simplified as follows: 

 
3/2

1/2 1/2
3 1/2

1( , ) ( ),eM H H K u
cd

 ζ ≈ α 
 π 

 (13) 

where 

 
2 ( )= ,

2
c cSu

e H e H
ζ ζ

≈
α π 

 (14) 

and the function ( )K u  at large u  has the form [30]: 

 
=1

sin(2 )( ) ( [ ] 0.5) = .
2 2 l

u u luK u u u
l

∞ π
≈ − − −

π ∑  (15) 

Equations (13)–(15) describe saw-tooth oscillations of 
3M  with changing 1/ H , and they coincide with the appro-

priate expression [42–44] for a two-dimensional metal with 
the Dirac spectrum. A refined analysis of Eq. (6) at 
| |ζ ∆  and maxu , min 1u   gives  

 
2 2

3 02
=1

| | 1 ( )sin 2 4 ,
2 l

e c cM l J l
l e H e Hcd

∞  ζ ζ +∆ ζ∆ ≈− π π    α α π  
∑

 



  

  (16) 

where 0 ( )J x  is the Bessel function for which one has 
0 ( ) 1J x ≈  at 1x  and 1/2

0 ( ) (2 / ) cos( / 4)J x x x≈ π − π  at 
1x . Formula (16) agrees with the appropriate expression 

of Refs. 42, 44 and reproduces both Eqs. (13)–(15) at 
max min = 4 / 1u u c e H− ζ∆ α   and the formula for the de 

Haas–van Alphen oscillations in three-dimensional metals 
with = 0γ  at max min 1u u−  . 

The crossover from the three-dimensional electron spec-
trum to the quasi-two-dimensional one occurs at the magnet-
ic field crH  defined by the condition max min 1u u−  ,  
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 max min
cr

( ) 4 | |= .
2

c S S cH
e e
− ζ ∆
π α



 

 (17) 

For crH H , the spacing H∆ε  between the Landau 
subbands in the vicinity of the Fermi level becomes compa-
rable with their width 2∆. Thus, the quasi-two-dimensional 
regime of the oscillations takes place in the interval of the 
magnetic fields cr 1< <H H H  where 1H  is the field of the 
ultra-quantum limit, 

 
2

1
( ) = ,

2
cS cH

e e
ζ ζ

π α


 

 (18) 

at which H∆ε  reaches ζ , and the oscillations of the magnet-
ization disappears. When H  changes in this interval, the 
chemical potential ( )Hζ  moves together with one of the 
Landau subbands, and then, at a certain value of H , it jumps 
from this subband to the neighboring one [32], Fig. 1. This 
strong dependence ( )Hζ  noticeably changes the shape of 
the de Haas–van Alphen oscillations and can mask the cor-
rect values of γ  (and of the Berry phase) when γ  is found 
with the Landau-level fan diagram. Indeed, the jumps can 
occur at the fields lH  for which ( )n ζ  in Eq. (11) becomes 
independent of ζ . This situation is realized when [ ]u  in the 
right-hand side of Eq. (11) is one and the same integer along 
the whole line. Let us denote this integer as ( 1)l − . Then, 
Eq. (9) takes the form: 

 
2 2

0 0

1 1= .
22 ( )l

eL l
H cn

 − 
 π ζ

 (19) 

These lH  also mark the singularities in the magnetization 
since immediately above and below lH  the edges of the 
Landau subband touch the chemical potential, Fig. 1. It fol-
lows from equation (19) that the dependence of 1/ lH  on l  is 
a straight line that intersects the l  axis at = = 1/ 2l −γ , i.e., 
the Landau-level fan diagram plotted with the fields lH  
looks like in the case when = 1/ 2γ  and the Berry phase BΦ  
is equal to zero. (The value of γ  is defined up to an integer, 
and so = 1/ 2γ −  and = 1/ 2γ  are equivalent.) However, in 
reality one has =BΦ π , = 0γ , and the phase shift γ  extract-
ed from the oscillations in the quasi-two-dimensional regime 
does not permit one to find BΦ  since γ ≠ γ  now. The fore-
going considerations are illustrated in Fig. 1 for which 

0 / = 20ζ ∆  and max 0 cr 1 cr( ) / (2 ) / 5cS e H H Hζ π    . 
Consider now the case when ζ  is of the order of ∆. In this 

situation 1 crH H , and the crossover occurs near the ultra-
quantum limit. Since, as was explained above, we have = 0γ  
and 1/ 2−  in the three-dimensional and in the quasi-two-
dimensional regimes of the oscillations, respectively, one may 
expect that γ  takes intermediate values if this quantity is 
found in the crossover region. In Fig. 2 we show the de Haas–
van Alphen oscillations of 3M  calculated with Eq. (6) at 

0 / = 3ζ ∆  when max 0 cr 1 cr( ) / (2 ) / 1cS e H H Hζ π    . In 
this situation we find = 0.23 0.04γ − ±  if the H -dependence 
of ζ  is taken into account. Note that a relatively small con-

tribution of the minimal cross section min max= / 4S S  into 
the oscillations is also visible in the figure. This minimal 
cross section slightly affects the maxima in 3M  associated 
with maxS , and so we find = 0.02 0.01γ ±  even for the oscil-
lations calculated at fixed 0=ζ ζ . 

In Fig. 3 we present the dependence of γ  on 0ζ . In the 
construction of this figure, values of γ  have been obtained, 
using the first four sharp maxima in the calculated functions 

3(1/ )M H . The small jump in γ  at 0 / 15ζ ∆ ≈  is due to that 
at 0 / > 15ζ ∆  all the four maxima in 3M  are determined by 
the jumps in ζ , whereas at 0 / < 15ζ ∆  the chemical potential 
is continues for a part of these maxima, cf. Figs. 1 and 2. At 

0 / 1ζ ∆ ≈  the jumps in ζ  disappear completely. For 0 / < 3ζ ∆  
one has max min/ > 4S S , i.e., the ratio of the oscillation 

Fig. 1. (a) The magnetization 3M , Eq. (6), versus 1 / H  at fixed 
chemical potential 0= = 20ζ ζ ∆  (the dashed line) and at ( )Hζ  
shown in the lower panel (the solid line). Here max 0( ) =S ζ  

2
02 ( ) /= π ζ + ∆ α , and max 0 cr( ) / (2 ) 5cS e Hζ π   . The inset 

depicts the Landau-level indexes l  versus max 0( ) / (2 )lcS e Hζ π  ; 
1 / lH  are the positions of the maxima of the functions 3(1 / )M H  
shown by the solid and dashed curves in the main plot. (b) The 
dependence of ζ  on 1 / H  calculated with Eqs. (9)–(11) at 

0 = 20ζ ∆ . We also mark the Landau subbands by the dark back-
ground, and the short and long dashes indicate the lower and the 
upper edges of these subbands, respectively. 
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periods corresponding to the minimal and maximal cross 
sections is larger than 4, and the effect of the low-frequency 
oscillations on the first four peaks in 3M  decreases. For this 
reason the break appears in the dependence 0( )γ ζ  at 

0 / 3ζ ∆ ≈ . In other words, this break as well as the jump at 
0 / 15ζ ∆ ≈  are caused by the relatively small number of the 

peaks in 3M  used in our plotting the Landau-level fan dia-
grams. 

Consider now the situation when apart from the charge 
carriers located near the nodal line under study, there is an 
additional electron group in the semimetal. In particular, 
this situation occurs in ZrSiS. For simplicity, we shall ne-
glect the quantization of electron energy in the magnetic 
fields for the charge carriers of this additional group. Note 
that this simplifying assumption is easily realized even at 
low temperatures if the cyclotron mass of these carries is 
essentially larger than the cyclotron mass of electrons near 
the nodal line. Then, with the additional electron group, 
equation (9) is modified as follows: 

 0
0 0 0

0

( )
( , ) ( ) = ( ),

dN
n H n

d
ζ

ζ + ζ − ζ ζ
ζ

 (20) 

where 0 0( ) /dN dζ ζ  is the density of the electron states of 
the additional group at the Fermi level. We shall specify 
this density of the states by the formula 

 0 0 0

0 0

( ) ( )
= ,

dN n
d
ζ ζ

λ
ζ ζ

 (21) 

where λ is the dimensionless parameter. If 0,λ →  we return 
to the case of the single electron group located near the nod-
al line. As was shown above, in this case one always has 

= 1/ 2γ −  for the oscillations in the quasi-two-dimensional 
regime. If 1,λ  we arrive at the case of the constant chem-
ical potential which is stabilized by the large additional elec-
tron group. In this case = = 0γ γ  in the quasi-two-
dimensional regime. Hence, it is reasonable to expect that γ  
will take intermediate values if 1.λ   In Fig. 4, we show the 
oscillation of 3M  in the quasi-two-dimensional regime for 
three values of the parameter = 0,λ  1, ∞. It is seen that the 
phase of the oscillations at = 1λ  indeed has a value which 
lies between the values corresponding to the other two cases. 
Thus, the intermediate values of γ  can be found not only in 
the crossover region but also in the quasi-two-dimensional 
regime of the oscillations if there is an addition group of 
charge carriers in the semimetal. 

4. Conclusions 

We theoretically investigate the phase of the de Haas–
van Alphen oscillations in topological line-node semimetals, 
using the simple model for their nodal lines, Eqs. (1) and (2). 
There are two regimes of the oscillations. These regimes are 
determined by the relation between spacing H∆ε  separating 
the Landau subbands in the vicinity of the Fermi level and 
the width of these subbands, 2∆, resulting from the disper-
sion of the degeneracy energy along the nodal line. 

Fig. 2. (a) The magnetization 3M , Eq. (6), versus 1 / H  at fixed 
chemical potential 0= = 3ζ ζ ∆  (the dashed line) and at ( )Hζ  
shown in the lower panel (the solid line). Here max 0( ) /cS ζ  

cr/(2 ) 1e Hπ   . (b) The dependence of ζ  on 1 / H  calculated 
with Eqs. (9)–(11) at 0 = 3ζ ∆ . All the notations and the inset are 
similar to Fig. 1. The intercept of the solid straight line in the 
inset gives = 0.23 0.04−γ ± . 

Fig. 3. Dependence of γ  on 0ζ . The values of γ  have been found 
with the Landau-level fan diagrams plotted using the first four 
sharp peaks in the functions 3(1 / ).M H  
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For not-too-strong magnetic fields when 2H∆ε ∆ , the 
three-dimensional regime of the oscillations occurs, the de-
pendence of the chemical potential ζ  on the magnetic field H  
is weak, and the constant γ  defining the phase of the oscilla-
tions coincides with the constant γ  in the semiclassical quan-
tization rule, i.e., =γ γ . Since the Berry phase =BΦ π  and, 
according to Eq. (5), = 0γ  for the electron orbits surrounding 
the nodal lines, one can detect these lines, measuring the 
phase of the de Haas–van Alphen oscillations in this case. 

With increasing magnetic fields, the spacing between the 
Landau subband becomes larger than 2∆, and the quasi-two-
dimensional regime of the oscillations takes place. In this 
regime the dependence of ζ  on H  is strong. This depend-
ence changes the shape and the phase of the oscillations, and 
γ ≠ γ  in this regime. At low temperatures ( )HT ∆ε  we 
find that | |= 1/ 2γ  for the extremal cross sections for which 

= 0γ . Thus, the results of the phase measurements will imi-
tate the case = 1/ 2γ  and will not permit one to find the true 
values of γ  and of the Berry phase. 

Due to the experimental data of Refs. 34–40, the special 
attention in our paper is given to the situations in which val-
ues of | |γ  can be intermediate between 0 and 1/2. We show 
that these situations can occur in the region of the magnetic 
fields where the crossover from the three-dimensional re-
gime to the quasi-two-dimensional one takes place, and in 
the quasi-two-dimensional regime if there is an additional 
group of charge carriers in the semimetal. In these cases, 
measurements of γ  (the phase of the oscillations) provide 
information on the electron energy spectrum of the semi-
metal, see Fig. 3, rather than on the Berry phase of the elec-
tron orbits. 
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