О КРИТЕРИИ ПОЛОЖИТЕЛЬНОЙ ОПРЕДЕЛЕННОСТИ ДЛЯ ОДНОГО КЛАССА БЕСКОНЕЧНЫХ КВАДРАТИЧНЫХ ФОРМ

В. М. Бондаренко, А. М. Полищук

Ин-т математики НАН Украины Украина, 01601, Киев 4, ул. Терещенковская, 3 e-mail: vit-bond@imath.kiev.ua

We describe infinite partially ordered sets with a positive Tits form.

Описуються нескінченні частково впорядковані множини з додатно означеною формою Тітса.

Квадратичные формы играют важную роль в различных областях математики. Это относится как к алгебре, так и к теории обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, интегральных и функциональных уравнений, теории операторов и др. (см., например, [1-9]). В настоящей статье рассматриваются квадратичные формы для одного класса бесконечных объектов как "предельный случай" известных конечных форм.

1. Формулировка основного результата. Пусть S — бесконечное частично упорядоченное множество и \mathbb{Z} — множество целых чисел. Рассмотрим в декартовом произведении $\mathbb{Z}^{S\cup 0}$ подмножество $\mathbb{Z}_0^{S\cup 0}$, состоящее из всех векторов $z=(z_i)$ с конечным числом ненулевых координат. Квадратичной формой Титса для S назовем (по аналогии с конечным случаем [1]) форму $q_S: \mathbb{Z}_0^{S\cup 0} \to \mathbb{Z}$, задаваемую равенством

$$q_S(z) = z_0^2 + \sum_{i \in S} z_i^2 + \sum_{i < j, i, j \in S} z_i z_j - z_0 \sum_{i \in S} z_i.$$

Форму Титса $q_S(z)$ назовем положительно определенной, если $q_S(z)>0$ для всех векторов $z\in\mathbb{Z}_0^{S\cup 0}$, за исключением нулевого.

При изучении свойств многих конечных объектов явные закономерности проявляются лишь для "достаточно больших" объектов, и поэтому рассмотрение бесконечных объектов как "предельных" случаев представляет особый интерес. В этой статье такая ситуация рассматривается для частично упорядоченных множеств с положительно определенной формой Титса. Более точно, мы изучаем такие множества в случае, когда они бесконечны, не накладывая на них никаких дополнительных условий (наиболее "чистый" случай, когда не существует минимальных и максимальных элементов, рассматривался в [10]).

Пусть $S = \{S_0, \leqslant\}$ — (конечное или бесконечное) частично упорядоченное множество, тогда частично упорядоченным является и каждое подмножество $X \subset S_0$ (с индуцированным частичным порядком). В дальнейшем (из соображений удобства) мы в каком-то смысле отождествляем S и S_0 . В частности, под словами "подмножество (в) S" мы понимаем подмножество (в) S_0 вместе с индуцированным частичным порядком (который обозначается тем же символом \leqslant), вместо $x \in S_0$ пишем $x \in S$ и т. п. Если S —

объединение своих попарно непересекающихся подмножеств A, B, ..., C, то говорят, что S является суммой A, B, ..., C и пишут S = A + B + ... + C; понятно, что элементы различных слагаемых могут быть сравнимыми между собой. Если же элементы, принадлежащие различным слагаемым, всегда несравнимы, то будем говорить, что S является прямой суммой заданных подмножеств. Множество S назовем неразложимым, если оно не является прямой суммой своих (собственных) подмножеств.

Понятие прямой суммы частично упорядоченных множеств можно ввести и внешним образом: прямая сумма множеств A,B,\ldots,C — это их объединение без попарных пересечений (с естественным частичным порядком, т. е. таким, который индуцируется заданными порядками). Что касается суммы, то внешним образом она определяется неоднозначно — для задания суммы множеств A,B,\ldots,C нужно дополнительно зафиксировать подмножество P_0 в множестве всех пар (x,y), где x и y — элементы из различных множеств; тогда суммой заданных множеств будет их объединение без пересечений с частичным порядком, являющимся наименьшим среди всех, которые продолжают заданные порядки и таких, что x < y, если $(x,y) \in P_0$. Понятно, что с формальной точки зрения более удобно пользоваться внутренним определением суммы, когда рассматриваются подмножества частично упорядоченных множеств. В дальнейшем мы будем пользоваться именно этим определением.

Введем теперь одно понятие, которое мы называем минимаксной суммой частично упорядоченных множеств.

Для непересекающихся подмножеств X и Y некоторого частично упорядоченного множества запись $X \triangleleft Y$ будет означать, что существуют элементы $x \in X$ и $y \in Y$ такие, что x < y. Пусть частично упорядоченное множество S является суммой подмножеств A, B, \ldots, C . Будем называть эту сумму минимаксной, если выполняется следующее условие:

а) x является минимальным, а y — максимальным элементом множества S, если x и y принадлежат разным слагаемым и при этом x < y.

Очевидно, что частным случаем минимаксной суммы является прямая сумма. Однако в дальнейшем, говоря о минимаксной сумме, будем считать (из формальных соображений), что кроме условия а) выполняется также следующее условие:

b) S не является прямой суммой подмножеств A, B, ..., C.

Понятно, что в общем случае условие b) не гарантирует неразложимости множества S; однако это так, если число слагаемых равно двум и при этом каждое из них неразложимо.

Минимаксную сумму подмножеств A, B, ..., C назовем односторонней, если отношение \square , порожденное рассматриваемым на множестве всех слагаемых отношением \triangleleft (т. е. $X \sqsubseteq Y$ для $X \neq Y$ означает, что $X = X_0 \triangleleft X_1 \ldots \triangleleft X_s = Y$ для некоторых $X_0, X_1, \ldots, X_s, s \geqslant 0$), является отношением частичного порядка. Другими словами, сумма является односторонней, если слагаемые можно занумеровать натуральными числами таким образом, что для каждой пары слагаемых X и Y, удовлетворяющих условию $X \triangleleft Y$, выполняется неравенство i(X) < i(Y), где i(X) и i(Y) — номера (соответственно) X и Y.

Понятие минимаксной суммы (в том числе односторонней) можно задавать и внешним образом, если дополнительно зафиксировать некоторое подмножество P_0 (см. выше), удовлетворяющее соответствующим условиям. Однако наша договоренность относительно использования внутренного определения суммы множеств сохраняется и в рассматриваемом частном случае.

Любое линейно упорядоченное множество мы называем цепным, а частично упорядоченное множество с единственной парой несравнимых элементов — почти цепным. Заметим, что в дальнейшем мы допускаем и пустые цепные множества. Отметим еще, что мы отождествляем одноэлементные множества с элементами.

Основной целью настоящей статьи является доказательство следующей теоремы, которая полностью описывает строение бесконечных частично упорядоченных множеств с положительно определенной формой Титса.

Основная теорема. Пусть S — бесконечное частично упорядоченное множество. Тогда форма Титса $q_S(x)$ положительно определена в том и только в том случае, когда выполняется одно из следующих условий:

- 1) S прямая сумма двух цепных подмножесть;
- 2) S прямая сумма цепного и почти цепного подмножеств;
- 3) S односторонняя минимаксная сумма двух цепных подмножеств.
- **2. Вспомогательные леммы.** При доказательстве основной теоремы нам понадобятся некоторые вспомогательные леммы. Определяемые при этом конечные частично упорядоченные множества обозначаются через T; для удобства их элементами являются целые числа и соответствующие (частичные) порядки обозначаются знаком \prec (чтобы отличать их от естественной линейной упорядоченности целых чисел); при этом порядок всегда определяется с точностью до транзитивности. Координаты z_i (конечного) вектора $z \in \mathbb{Z}^{0 \cup T}$ располагаются в естественном порядке (в порядке возрастания $i \in 0 \cup T$ как целого числа). Доказательство сформулированных ниже лемм очевидно оно сводится к вычислению значений конкретных квадратичных форм.
- **Лемма 1.** Пусть $T=\{1,2,3,4\}$ (без сравнимых $i\neq j$). Тогда $q_T(2,1,1,1,1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 2.** Пусть $T=\{1,2,3,4\,|\,1\prec 4,2\prec 4,3\prec 4\}$. Тогда $q_T(1,1,1,1,-1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 3.** Пусть $T = \{1, 2, 3, 4, 5, 6, 7, 8 | 2 \prec 3, 4 \prec 5 \prec 6 \prec 7 \prec 8\}$. Тогда $q_T(6, 3, 2, 2, 1, 1, 1, 1, 1) = 0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 4.** Пусть $T=\{1,2,3,4,5,6,7,8\,|\,1\prec7,2\prec3\prec4\prec5\prec6\prec7\}$. Тогда $q_T(4,3,1,1,1,1,-2,2)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 5.** Пусть $T=\{1,2,3,4,5,6,7,8\,|\,1\prec 5\prec 6\prec 7\prec 8,2\prec 4,2\prec 5,3\prec 4\}$. Тогда $q_T(0,2,3,1,-2,-1,-1,-1,-1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 6.** Пусть $T=\{1,2,3,4\,|\,1\prec 3,1\prec 4,2\prec 3,2\prec 4\}$. Тогда $q_T(0,1,1,-1,-1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 7.** Пусть $T=\{1,2,3,4,5,6,7\,|\,1\prec 2,3\prec 4\prec 5\prec 6\prec 7,1\prec 5\}$. Тогда $q_T(0,-2,1,-1,-1,1,1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.

- **Лемма 8.** Пусть $T=\{1,2,3,4,5,6,7\,|\,1\prec 5,2\prec 3\prec 4\prec 5\prec 6\prec 7\}$. Тогда $q_T(1,2,1,1,1,-1,-1,-1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 9.** Пусть $T=\{1,2,3,4,5,6,7\,|\,1\prec 3\prec 4\prec 5\prec 6\prec 7,1\prec 2\prec 6\}$. Тогда $q_T(1,-1,2,1,1,1,-1,-1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 10.** Пусть $T=\{1,2,3,4,5,6,7,8\,|\,1\prec 2\prec 8,3\prec 4\prec 5\prec 6\prec 7\prec 8\}$. Тогда $q_T(3,2,2,1,1,1,1,1,-3)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 11.** Пусть $T=\{1,2,3,4,5,6,7,8\,|\,1\prec 2,3\prec 4\prec 5\prec 6\prec 7\prec 8,1\prec 4\}$. Тогда $q_T(1,-3,2,-2,1,1,1,1,1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 12.** Пусть $T=\{1,2,3,4,5,6,7,8\,|\,1\prec7,2\prec3\prec4\prec5\prec6\prec7\prec8\}$. Тогда $q_T(2,3,1,1,1,1,1,-2,-2)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 13.** Пусть $T=\{1,2,3,4,5,6,7,8\,|\,1\prec 4,2\prec 3\prec 4\prec 5\prec 6\prec 7\prec 8\}$. Тогда $q_T(1,3,2,2,-1,-1,-1,-1,-1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 14.** Пусть $T=\{1,2,3,4,5,6,7,8\,|\,1\prec2\prec8,3\prec4\prec5\prec6\prec7\prec8,1\prec7\}$. Тогда $q_T(2,2,1,1,1,1,1,-1,-2)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 15.** Пусть $T=\{1,2,3,4,5,6,7,8\,|\,1\prec2\prec8,3\prec4\prec5\prec6\prec7\prec8,1\prec4\}.$ Тогда $q_T(1,-2,2,-1,1,1,1,1,-1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 16.** Пусть $T=\{1,2,3,4,5,6,7,8\,|\,1\prec 2\prec 5,3\prec 4\prec 5\prec 6\prec 7\prec 8,1\prec 4\}$. Тогда $q_T(1,1,2,2,1,-1,-1,-1)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.
- **Лемма 17.** Пусть $T=\{1,2,3,4,5,6,7,8\,|\,1\prec 3\prec 4\prec 5\prec 6\prec 8,1\prec 2\prec 8\}$. Тогда $q_T(2,-2,3,1,1,1,1,1,-2)=0$ и, следовательно, форма $q_T(z)$ не является положительно определенной.

Напомним, что двойственным к T частично упорядоченным множеством называется множество T^* , которое совпадает с T как обычное множество и имеет следующий частичный порядок: x < y (в T^*) тогда и только тогда, когда x > y в T. Очевидно, что имеют место леммы 1^*-17^* , двойственные к леммам 1-17, т. е. такие, в условиях которых вместо множеств T рассматриваются двойственные множества T^* (а указанные векторы те же); это следует из того, что при переходе к двойственному множеству форма Титса не меняется.

3. Доказательство основной теоремы: *необходимость*. Введем сначала некоторые определения и обозначения.

Пусть A и B — подмножества частично упорядоченного множества S. Если не существуют сравнимые элементы $x \in A$ и $y \in B$, то A и B будем называть несравнимыми (в этом случае их сумма является прямой); из формальных соображений нам удобно считать, что подмножества $A \neq \emptyset$ и $B = \emptyset$ всегда несравнимы; и если мы говорим, что A и B не являются несравнимыми (в частности, x < y для $x \in A$ и $y \in B$), то при этом всегда подразумевается, что $A \neq \emptyset$ и $B \neq \emptyset$. Заметим, что подмножества, не являющиеся несравнимыми, неестественно называть, по аналогии с элементами, сравнимыми — при определении таких (непересекающихся) множеств естественно требовать, чтобы каждый элемент одного из них был меньше каждого элемента другого; и в зависимости от случая мы пишем A < B или B < A. Подмножество A множества A назовем верхним (соответственно нижним), если $A \in A$ каждый раз, когда $A \in A$ подмножество в $A \in A$ подмножество $A \in A$ подмножество $A \in A$ подмножество в $A \in A$ соответственно $A \in A$ подмножество в $A \in A$ подмножество в $A \in A$ подмножество в $A \in A$ соответственно $A \in A$ подмножество в $A \in A$ подмножество в A

Через $N_S(x)$, где x — элемент частично упорядоченного множества S, мы обозначаем множество всех элементов из S, несравнимых с x, и для подмножества X (множества S) полагаем $N_S(X) = \bigcap_{x \in X} N_S(x)$. Элемент $x \in S$ назовем изолированным, если $x \in N_S(S \setminus \{x\})$ или, другими словами, подмножества x и $S \setminus \{x\}$ несравнимы (в этом и только в этом случае x является и минимальным, и максимальным); аналогично, подмножество A назовем изолированным, если A несравнимо с $S \setminus A$. Напомним еще, что ширина множества S — это наибольшее число его попарно несравнимых элементов; обозначим ее через w(S).

Ниже нам понадобится следующее утверждение.

Предложение. Произвольное бесконечное частично упорядоченное множество S конечной ширины m представимо в виде суммы цепных подмножеств S_1, \ldots, S_m таким образом, что S_1 является бесконечным и каждое S_i является максимальным цепным подмножеством в $S_i + \ldots + S_m$.

Доказательство. Согласно теореме Дилуорса [11, с. 133] (теорема 15) множество S является объединением некоторых цепных подмножеств Y_1, \ldots, Y_m . Тогда S — сумма цепных подмножеств X_1, \ldots, X_m , где $X_1 = Y_1$ и $X_i = Y_i \setminus \bigcup_{j=1}^{i-1} Y_i$ при $i = 2, \ldots, m$. Одно из этих подмножеств бесконечно; мы можем считать, что таким подмножеством является X_1 . Пусть m > 1 (при m = 1 наше утверждение очевидно). Положим $X_1^{(1)} = X_1, X_1^{(2)} = X_1^{(1)} \cup \{x \in X_2 \mid X_1^{(1)} \cup \{x\} - \text{цепное}\}, X_1^{(3)} = X_1^{(2)} \cup \{x \in X_3 \mid X_1^{(2)} \cup \{x\} - \text{цепное}\}, \ldots$ $X_1^{(m)} = X_1^{(m-1)} \cup \{x \in X_m \mid X_1^{(m-1)} \cup \{x\} - \text{цепное}\}$. Легко видеть, что $X_1^{(1)} \subseteq X_1^{(2)} \subseteq \ldots \subseteq X_1^{(m)},$

причем все эти подмножества цепные. Покажем, что $X_1^{(m)}$ — максимальное цепное подмножество (в S). Действительно, предположим противное, т. е. что существует элемент $a \notin X_1^{(m)}$ такой, что подмножество $X_1^{(m)} \cup \{a\}$ является цепным, и пусть $a \in X_j$. Но тогда a принадлежит подмножеству $X_1^{(j)}$ (согласно его определению), а следовательно, и $X_1^{(m)}$. Пришли к противоречию.

Таким образом, в качестве S_1 можно взять подмножество $X_1^{(m)}$. Заметим, что в последних рассуждениях мы по существу не пользовались бесконечностью. Поэтому, рассматривая множество $X_2 + \ldots + X_m$ ширины m-1 и применяя индукцию, завершаем доказательство данного утверждения.

Будем теперь считать (до конца пункта), что S — бесконечное частично упорядоченное множество с положительно определенной формой Титса. Нам нужно доказать, что в этом случае выполняется одно из условий 1-3 теоремы.

В силу леммы 1 w(S) < 4, причем случай w(S) = 1 очевиден — в этом случае выполняется условие 1 теоремы (с одним пустым слагаемым).

Рассмотрим теперь случай, когда w(S)=2. Отметим, прежде всего, что в этом случае $S_0=S_0^-\cup S_0^+$, где S_0^- — нижнее, а S_0^+ — верхнее подмножество S. Действительно, если бы это было не так, то существовал бы элемент $x\in S_0$ такой, что $\{x\}^>$ и $\{x\}^<$ — подмножества ширины 2. Тогда S содержало бы подмножество, изоморфное множеству T из леммы 6.

Нам понадобится следующая лемма.

Лемма 18. Частично упорядоченное (конечное или бесконечное) множество с положительно определенной формой Титса является цепным или почти цепным тогда и только тогда, когда оно не содержит подмножеств, изоморфных следующим множествам:

```
a) \{1,2,3\} (без сравнимых i \neq j);
```

Доказательство. Легко видеть, что некоторое частично упорядоченное множество P является цепным или почти цепным тогда и только тогда, когда оно не содержит подмножества, изоморфного множеству a), b) или следующему множеству:

c)
$$\{1, 2, 3, 4 \mid 1 \prec 3, 1 \prec 4, 2 \prec 3, 2 \prec 4\}$$
.

А если P имеет положительно определенную форму $q_P(z)$, то в силу леммы 6 это множество не может содержать подмножеств вида c). Отсюда следует утверждение леммы. Используя эту лемму, докажем следующее утверждение.

Лемма 19. Eсли w(S) = 2 и S_0 бесконечно, то S является почти цепным.

Доказательство. Поскольку w(S)=2, то S не может содержать подмножеств вида a). Нам осталось показать, что S не содержит подмножеств вида b). Предположим противное и зафиксируем элементы a,b,c такие, что a несравним с $\{b,c\}$ и b<c. В силу бесконечности S_0 хотя бы одно из подмножеств S_0^-, S_0^+ является бесконечным. Будем считать, без ограничения общности, что бесконечным является S_0^+ , иначе вместо множества S рассмотрим двойственное к нему множество S^* . Тогда подмножество в S, состоящее из элементов a,b,c и произвольных элементов $d_1< d_2< d_3< d_4< d_5$ из S_0^+ , изоморфно множеству T из леммы 13. Пришли к противоречию (в силу этой же леммы). Лемма доказана.

Итак, если S имеет ширину 2, а подмножество S_0 бесконечно, то выполняется условие 2 теоремы (с пустым цепным слагаемым).

Рассмотрим теперь случай, когда подмножество S_0 пусто. Тогда, очевидно, $N_S(x) \neq \varnothing$ для любого $x \in S$.

Лемма 20. Если w(S) = 2 и $S_0 = \emptyset$, то S является прямой или односторонней минимаксной суммой двух цепных подмножеств.

Доказательство. Представим S в виде суммы двух цепных подмножеств P и Q, где P бесконечно (см. предложение); при этом Q может быть как конечным, так и бесконечным. Пусть эта сумма не является прямой и $a \in P, b \in Q$ — некоторые сравнимые

b) $\{1, 2, 3 \mid 1 \prec 2\}$.

элементы. Без ограничения общности можно считать, что a < b (если a > b, то заменим S на S^*).

Положим $P_1 = \{x \in S \mid x > b\} \cap P = \{a\}^> \cap \{x \in P \mid x > b\}, P_2 = \{x \in S \mid x < b\}$ $\{a\} \cap P = (\{a\}^{>} \cap \{x \in P \mid x \in b\}) \cup (\{a\}^{<} \cap P) \cup \{a\}, P_3 = \{a\}^{>} \cap N_S(b)$. Поскольку $P = P_1 \cup P_2 \cup P_3$, из бесконечности P следует, что хотя бы одно из подмножеств P_1, P_2, P_3 является бесконечным. Но подмножество P_1 конечно. Действительно, в противном случае рассмотрим подмножество Q_1 , состоящее из элемента b, произвольных элементов $c \in N_S(a), d \in N_S(b)$ и произвольных элементов $e_1 < e_2 < e_3 < e_4 < e_5$ из P_1 ; и если c сравнимо с d, а тогда c < d, то подмножество в Q_1 , состоящее из элементов a, b, c, d, изоморфно множеству T из леммы 6; а если c и d несравнимы, то Q_1 изоморфно подмножеству T из леммы 13. В обоих случаях приходим к противоречию. Покажем далее, что и подмножество P_2 является конечным. Предположим противное и зафиксируем в P_2 элементы $a_1 < a_2 < a_3 < a_4 < a_5$ (заметим, что не обязательно $a_5 \leqslant a$). Зафиксируем еще элементы $c \in N_S(a_5)$ и $d \in N_S(b)$ и рассмотрим подмножество R_1 , состоящее из элементов $b, c, d, a_1, a_2, a_3, a_4, a_5$; при этом можно считать, что элементы c и d несравнимы (иначе a_5, b, c и d образуют подмножество, изоморфное множеству T из леммы 6). Если элемент c несравним с подмножеством $\{a_1, a_2, a_3, a_4\}$, то R_1 изоморфно подмножеству T^* из леммы 11^* и мы приходим к противоречию. В противном случае обозначим через s наибольшее среди чисел $i \in \{1, 2, 3, 4\}$ таких, что $a_i < b$. Тогда при s = 1 подмножество R_1 изоморфно множеству T^* из леммы 15^* , а при s=4 — множеству T^* из леммы 16^* ; при s=2 подмножество $R_1\setminus\{d\}$ изоморфно множеству T^* из леммы 9^* , а при s=3 подмножество $R_1 \setminus \{b\}$ изоморфно множеству T^* из леммы 8^* . И снова приходим к противоречию. Таким образом, подмножества P_1 и P_2 конечны и, значит, бесконечным является подмножество P_3 .

Покажем теперь, что из бесконечности P_3 следует, что элемент b является максимальным элементом подмножества Q (тогда в силу $S_0 = \emptyset$ b — максимальный элемент в S).

Предположим, что это не так. Тогда подмножество $\{b\}^> \cap Q$ не пусто. Зафиксируем элемент $c \in \{b\}^> \cap Q$ и рассмотрим подмножество R_2 , состоящее из элементов a,b,c и произвольных элементов $a_1 < a_2 < a_3 < a_4 < a_5$ подмножества $N_S(b)$. Если элемент c несравним с подмножеством $\{a_1,a_2,a_3,a_4,a_5\}$, то R_2 изоморфно подмножеству T^* из леммы 10^* , и мы приходим к противоречию. В противном случае обозначим через s наибольшее среди чисел $i \in \{1,2,3,4,5\}$ таких, что a_i сравнимо с c; тогда, очевидно, $a_s < c$. При s=1 подмножество R_2 изоморфно множеству T^* из леммы 14^* , при s=4 — множеству T^* из леммы 15^* , при s=5 — множеству T^* из леммы 17^* ; при s=2 подмножество $R_2 \setminus \{b\}$ изоморфно множеству T^* из леммы 8^* , а при s=3 подмножество s=10 изоморфно множеству s=11 подмножество s=12 из леммы s=13 подмножество s=13 подмножество s=14 из леммы s=15 из леммы s=15 подмножество s=16 изоморфно множеству s=16 из леммы s=16 из лемы s=16 из

Далее, из бесконечности P_3 следует, что элемент a является минимальным элементом подмножества P (тогда в силу $S_0 = \varnothing$ b — минимальный элемент в S). Действительно, в противном случае $\{a\}^< \cap P \neq \varnothing$ и подмножество, состоящее из элементов a,b, произвольного элемента $c \in \{a\}^< \cap P$ и произвольных элементов $a_1 < a_2 < a_3 < a_4 < a_5$ из $N_S(b)$, изоморфно множеству T^* из леммы 12^* . Пришли к противоречию.

Таким образом, мы доказали, что b является максимальным элементом в Q, а a- минимальным элементом в P; и (в силу $S_0=\varnothing$) элемент b является максимальным в Q, а элемент a- минимальным в P. А поскольку элементы a и b такие, что a < b, и выбраны в подмножествах P и Q произвольным образом, тем самым доказано, что b несравним

с $P\setminus\{a\}$ и a-с $Q\setminus\{b\}$. Если учесть к тому же, что в силу леммы 6 не существует элементов $x\in P$ и $y\in Q$, удовлетворяющих неравенству x>y, то получаем, что S является односторонней минимаксной суммой (цепных) подмножеств P и Q. Лемма 20 доказана.

Из леммы 20 следует, что если S имеет ширину 2, а подмножество S_0 пусто, то выполняется условие 1 или условие 3 теоремы.

Наконец, в случае, когда S имеет ширину 2, а S_0 конечно, но не пусто, выполняется условие 3 теоремы, что вытекает из следующей леммы.

Лемма 21. Если w(S) = 2 и S_0 конечно, но не пусто, то частично упорядоченное множество S является односторонней минимаксной суммой бесконечного цепного и одноэлементного подмножеств.

Доказательство. Напомним, что $S_0 = S_0^- \cup S_0^+$, где S_0^- — нижнее, а S_0^+ — верхнее подмножество S. Поскольку $S_1 = S \setminus S_0$ — бесконечное подмножество ширины 2, то в силу леммы 20 S_1 является прямой или односторонней минимаксной суммой бесконечного цепного подмножества P и (бесконечного или конечного, но не пустого) цепного подмножества Q.

Без ограничения общности можно считать, что $S_0^+ \neq \varnothing$ (иначе вместо S будем рассматривать S^*). При этом S_0^+ состоит из одного элемента, иначе подмножество, состоящее из элементов $d_1 < d_2 < d_3 < d_4 < d_5$ множества P, каждый из которых не является в нем ни минимальным, ни максимальным (если таковы имеются), и произвольных элементов $a \in Q$, $b, c \in S_0^+$ ($b \neq c$), изоморфно множеству T из леммы 12.

Покажем сначала, что S_1 не может быть односторонней минимаксной суммой подмножеств P и Q. Предположим противное. И если $P \lhd Q$, то подмножество, состоящее из минимального элемента $a \in P$, максимального элемента $b \in Q$, элемента $c \in S_0^+$ и произвольных элементов $d_1 < d_2 < d_3 < d_4 < d_5$ из $P \setminus \{a\}$, изоморфно множеству T из леммы 17. А если $Q \lhd P$, то подмножество, состоящее из минимального элемента $a \in Q$, максимального элемента $b \in P$, элемента $c \in S_0^+$ и произвольных элементов $d_1 < d_2 < d_3 < d_4 < d_5$ из $P \setminus \{b\}$, изоморфно множеству T из леммы 12. В обоих случаях приходим к противоречию.

Итак, S_1 является прямой суммой цепных множеств P и Q. Тогда Q одноэлементно, иначе подмножество, состоящее из элементов $a \in S_0^+, b_1, b_2 \in Q(a \neq b)$ и $c_1, c_2, c_3, c_4, c_5 \in P$ ($c_i \neq c_j$ при $i \neq j$), изоморфно множеству T из леммы 10 и мы приходим к противоречию. Далее, подмножество S_0^- является пустым, иначе подмножество, состоящее из элементов $a \in S_0^+, b \in Q, c \in S_0^-$ и $d_1, d_2, d_3, d_4, d_5 \in P$ ($c_i \neq c_j$ при $i \neq j$), изоморфно множеству T из леммы 17. Из изложенного следует, что S является односторонней минимаксной суммой бесконечного цепного и одноэлементного подмножеств. Лемма доказана.

Таким образом, доказательство теоремы (необходимость) в случае, когда ширина множества S равна двум, завершено. Более точно, мы доказали, что для бесконечного частично упорядоченного множества S ширины 2 с положительно определенной формой Титса выполняется одно из следующих условий:

- 1') = 1) S прямая сумма двух цепных подмножеств;
- 2') S почти цепное подмножество;
- 3') = 3) S односторонняя минимаксная сумма двух цепных подмножеств.

Осталось рассмотреть случай, когда ширина частично упорядоченного множества S равна трем. Заметим, что в этом случае $S_0 = \emptyset$ (в силу леммы 2).

Докажем сначала три леммы, которые понадобятся нам ниже.

Лемма 22. Если w(S) = 3 и R — изолированное цепное подмножество в S, содержащее более одного элемента, то $S \setminus R$ — почти цепное множество.

Доказательство. Если подмножество R бесконечно, то подмножество $S\setminus R$ ширины 2 не содержит подмножеств вида b) (см. лемму 18), иначе S содержит подмножество, изоморфное множеству T из леммы 3. Следовательно, в силу леммы 18 подмножество $S\setminus R$ является почти цепным. Если R конечно, а S_0 бесконечно, то $S\setminus R$ является почти цепным в силу леммы 19. А случай, когда R и S_0 конечны, невозможен, ибо в силу лемм 20 и 21 множество $S\setminus R$ содержит подмножество, изоморфное множеству $\{1,2,3,4,5,6\,|\,2<3<4<5<6\}$, а значит, S содержит подмножество, изоморфное множеству T из леммы 3. Лемма доказана.

Лемма 23. Eсли w(S) = 3, то S не может быть односторонней минимаксной суммой цепного и почти цепного подмножеств.

Доказательство. Предположим противное и обозначим соответствующее цепное подмножество через P, а почти цепное через Q. Без ограничения общности можно считать, что $P \lhd Q$ (иначе мы заменим S на S^*); обозначим минимальный элемент множества P через a. Тогда Q имеет два максимальных элемента, так как в противном случае подмножество, состоящее из элемента a, (единственного) максимального элемента подмножества Q и двух несравнимых между собой элементов этого же подмножества, изоморфно множеству T из леммы 2, и мы приходим к противоречию. Обозначим эти максимальные элементы через b и c. Поскольку $P \lhd Q$, то a < b или a < c; для определенности считаем, что a < b. Тогда элементы a и c несравнимы, иначе S содержит подмножество, изоморфное множеству T^* из леммы 2^* , если P бесконечно, и подмножество, изоморфное множеству T из леммы 6, если Q бесконечно. Легко видеть, что если бесконечным является P, то в S существует подмножество, изоморфное множеству T^* из леммы 4^* , а если бесконечным является Q, то в S существует подмножество, изоморфное множеству T^* из леммы 11^* . В обоих случаях приходим к противоречию.

Лемма 24. Пусть R — бесконечное максимальное цепное подмножество в S. Тогда любое непересекающееся с R подмножество T такое, что R+T является почти цепным, состоит из одного элемента.

Действительно, если бы T состояло более чем из одного элемента, то в силу определения почти цепного множества все из них, кроме одного, были бы сравнимы со всеми элементами из S_1 , а это противоречит тому условию, что R является максимальным цепным подмножеством в S.

Представим S как сумму цепных подмножеств S_1, S_2 и S_3 таких, что S_1 является бесконечным и максимальным цепным (см. предложение). Обозначим через S_{ij} подмножество $S_i + S_j$, где i < j, i, j = 1, 2, 3. В силу доказанного выше для каждого из бесконечных подмножеств (ширины 2) S_{12} и S_{13} выполняется одно из условий 1' - 3'.

Покажем сначала, что для каждого из подмножеств S_{12} , S_{13} выполняется на самом деле условие 1' или условие 2'. Предположим противное. Тогда для S_{12} или S_{13} выполняется условие 3'. Для определенности считаем, что условие 3' выполняется для S_{12} . Тогда

 S_{12} — односторонняя минимаксная сумма S_1 и S_2 ; при этом будем считать, что $S_1 \triangleleft S_2$ (если $S_2 \triangleleft S_1$, то заменим S на S^*); минимальный элемент подмножества S_1 обозначаем через a. Если для S_{13} выполняется либо условие 1', либо условие 3' с $S_1 \triangleleft S_3$, то $S_1 \setminus \{a\}$ является изолированным подмножеством в $S \setminus \{a\}$, а значит, в силу леммы 22 подмножество $S_{23} = S_{23} \cap (S \setminus \{a\})$ является почти цепным. Но тогда S — односторонняя минимаксная сумма цепного S_1 и почти цепного S_{23} подмножеств, а это в силу леммы 23 невозможно, и мы приходим к противоречию. А если для S_{13} выполняется условие 3' и при этом $S_3 \triangleleft S_1$, то S_1 имеет также и максимальный элемент, который обозначим через b. Тогда $S_1 \setminus \{a, b\}$ является изолированным подмножеством в $S \setminus \{a, b\}$, а значит, в силу леммы 22 подмножество $S_{23} = S_{23} \cap (S \setminus \{a,b\})$ является почти цепным. Обозначая через c минимальный элемент S_3 и через d максимальный элемент S_2 , убеждаемся, что Sсодержит подмножество, изоморфное множеству T из леммы 6, если c < d, и подмножество, изоморфное множеству T из леммы 4, если c и d несравнимы. Снова приходим к противоречию. Наконец, рассмотрим случай, когда для S_{13} выполняется условие 2'. Тогда в силу леммы 24 множество S_3 состоит из одного элемента, который обозначим через c; единственный несравнимый с c элемент из S_1 обозначим через d. В силу леммы 23 элемент c сравним с некоторым элементом из S_2 , т. е. хотя бы одно из подмножеств $S_2' = \{x \in S_2 \mid c < x\}, S_2'' = \{x \in S_2 \mid c > x\}$ не является пустым. Пусть сначала непустым является $S_2' = \{x \in S_2 \mid c < x\}$; зафиксируем в нем некоторый элемент b. Очевидно, что c является минимальным либо в S_{13} , либо в $S_{13} \setminus \{a\}$ (иначе S_{12} не является минимаксной суммой S_1 и S_2). В первом случае подмножество в S, состоящее из элементов a=d,c,максимального элемента подмножества S_2 и произвольного элемента из $S_1 \setminus \{a\}$, изоморфно множеству T из леммы 6. Пришли к противоречию. А во втором случае из того, что S_{12} — односторонняя минимаксная сумма S_1 и S_2 , следует, что элемент b является максимальным в S_2 и элемент c несравним с подмножеством $S_2 \setminus \{b\}$; но тогда (бесконечное) множество $S\setminus\{a\}$ является односторонней минимаксной суммой почти цепного подмножества $S_{13} \setminus \{a\}$ и цепного подмножества S_2 , что противоречит лемме 23. Предположим теперь, что подмножество S_2' пусто, а подмножество S_2'' пустым не является; тогда S_2'' не содержит максимального элемента e множества S_2 (иначе w(S)=2). И подмножество, состоящее из элементов a, c, e и произвольного элемента из S_2'' , изоморфно множеству T из леммы 6. Пришли к противоречию.

Итак, как для S_{12} , так и для S_{13} выполняется одно из условий 1', 2'.

Если для S_{12} и S_{13} выполняется условие 1', то S_1 несравнимо с S_{23} и в силу леммы 22 подмножество S_{23} является почти цепным, а значит, S удовлетворяет условию 2 теоремы.

Покажем, далее, что случай, когда как для S_{12} , так и для S_{13} выполняется условие 2', невозможен. Предположим противное. Тогда согласно лемме $24\ S_2$ состоит из одного элемента, который обозначим через a, а S_3 — из одного элемента, который обозначим через c; единственный несравнимый с a (соответственно с c) элемент из S_1 обозначим через b (соответственно d). При этом элемент c несравним с элементами a и b (и тогда d=b), иначе w(S)=2. И легко видеть, что S содержит подмножество, изоморфное множеству T из леммы 2 или двойственному к нему. Пришли к противоречию.

Таким образом, нам осталось рассмотреть случай, когда для одного из подмножеств S_{12}, S_{13} , например для S_{12} , выполняется условие 1', а для другого — условие 2'. Тогда, как и в предыдущем случае, S_3 состоит из одного элемента c; единственный несравнимый с c элемент из S_1 обозначаем снова через d.

Покажем, что c несравним с S_2 . Предположим противное. Без ограничения общности можно считать, что c < a для некоторого элемента $a \in S_2$ (иначе вместо S рассмотрим S^*). Тогда подмножество $\{c,d\}^>$ является бесконечным, так как в противном случае бесконечным является подмножество $\{c,d\}^<$ (в силу бесконечности S_1), а тогда подмножество в S, состоящее из элементов a,c,d и произвольных пяти элементов из $\{c,d\}^<$, изоморфно множеству T^* из леммы 13^* . Далее, поскольку w(S)=3, то подмножество $N_S(c)\cap S_2$ непусто; зафиксируем в нем некоторый элемент b. Тогда подмножество в S, состоящее из элементов a,b,c,d и произвольных четырех элементов из $\{c,d\}^>$, изоморфно множеству T из леммы S. Пришли к противоречию и, следовательно, S0 несравним с S1, а тогда S2 удовлетворяет условию S3 теоремы.

Доказательство теоремы (необходимость) завершено.

4. Доказательство основной теоремы: достаточность. Предположим сначала, что бесконечное частично упорядоченное множество S является прямой суммой двух цепных или цепного и почти цепного множеств, и покажем, что форма Титса $q_S(z)$ положительно определена. В силу определения формы Титса в бесконечном случае это достаточно показать для (конечных) частично упорядоченных множеств $P=P_{m,n-m}=\{-m,-m+1,\dots,-1,-0,+0,1,2,\dots,m,m+1,\dots,n\mid -m\prec -m+1\prec \dots \prec -1\prec -0\prec 1\prec -1\prec -1,\dots \prec -1,\dots \prec$

Покажем теперь, что форма Титса $q_S(z)$ является положительно определенной, если S — односторонняя минимаксная сумма двух цепных подмножеств. При этом это достаточно, очевидно, показать для (конечных) частично упорядоченных множеств $R=R_n=\{1,2\dots,2n\,|\,1\prec 2\dots\prec n,n+1\prec\ldots\prec 2n,1\prec 2n\}$, где n>1. Обозначим через R'=R'0 частично упорядоченное множество ($R\setminus\{2n\}$ 0) $\{-1\}$ 1, где $\{-1\}$ 2 связан (отношением порядка) с элементами из $\{-1\}$ 3 следующим образом: $\{-1\}$ 4 при $\{-1\}$ 5 то множество является прямой суммой цепного и почти цепного подмножеств. И положительная определенность формы Титса $\{-1\}$ 4 вытекает из следующего (легко проверяемого) равенства: $\{-1\}$ 5 где $\{-1\}$ 6 где $\{-1\}$ 7 где $\{-1\}$ 7 где $\{-1\}$ 8 где $\{-1\}$ 8 где $\{-1\}$ 8 где $\{-1\}$ 9 гд

Доказательство теоремы (достаточность) завершено.

- 1. Дрозд Ю.А. Преобразования Кокстера и представления частично упорядоченных множеств // Функцион. анализ и его прил. 1974. Вып. 8. С. 34 42.
- 2. Bongartz K. Algebras and quadratic forms // J. London Math. Soc. − 1983. − 28, № 3. − P. 461 469.
- 3. *Ringel C. M.* Tame algebras and integral quadratic forms // Lect. Notes Math. Berlin etc.: Springer, 1984. **1099**. 376 p.
- 4. *Митропольский Ю. А., Самойленко А. М., Кулик В. Л.* Применение квадратичных форм к исследованию систем линейных дифференциальных уравнений // Дифференц. уравнения. 1985. **21**, № 5. C. 776 788.
- 5. *Кочубей А. Н.* Фундаментальные решения псевдодифференциальных уравнений, связанных с p-адическими квадратичными формами // Изв. РАН. 1998. **62**, № 6. С. 103-124.

- 6. *Gregory J.* Generalized Fredholm quadratic forms and integral differential equations of the second kind // J. Math. Anal. and Appl. − 1970. − **70**, № 1. − P. 120−130.
- 7. Crandall M. G. Semidifferentials, quadratic forms and fully nonlinear elliptic equations of second order // Ann. Inst. H. Poincaré Anal Non Linéare. 1989. 6, № 6. P. 419 435.
- 8. *Corovei I.* Some functional equations connected with quadratic forms // Anal. Numér. Théor. Approxim. 1990. **19**, № 2. P. 123 127.
- 9. *Al-Naggar I.*, *Pearson D. B.* Quadratic forms and solutions of the Schrödinger equation // J. Phys. A. 1996. N 20. P. 6581 6584.
- 10. Бондаренко В. М., Полищук А. М. О квадратичной форме Титса для бесконечных частично упорядоченных множеств // Наук. вісн. Ужгород. ун-ту. -2002. Вып. 7. С. 3–8.
- 11. Биркгоф Г. Теория решеток. М.: Наука, 1984. 564 с.

Получено 15.11.2002