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Stability of the vortex matter — magnetic flux lines penetrating into the material — in type-II superconductor 
films is crucially important for their application. If some vortices get detached from pinning centres, the energy 
dissipated by their motion will facilitate further depinning, and may trigger an electromagnetic breakdown. In 
this paper, we review recent theoretical and experimental results on development of the above mentioned ther-
momagnetic instability. Starting from linear stability analysis for the initial critical-state flux distribution we then 
discuss a numerical procedure allowing to analyze developed flux avalanches. As an example of this approach 
we consider ultra-fast dendritic flux avalanches in thin superconducting disks. At the initial stage the flux front 
corresponding to the dendrite’s trunk moves with velocity up to 100 km/s. At later stage the almost constant ve-
locity leads to a specific propagation regime similar to ray optics. We discuss this regime observed in supercon-
ducting films coated by normal strips. Finally, we discuss dramatic enhancement of the anisotropy of the flux 
patterns due to specific dynamics. In this way we demonstrate that the combination of the linear stability analysis 
with the numerical approach provides an efficient framework for understanding the ultra-fast coupled nonlocal 
dynamics of electromagnetic fields and dissipation in superconductor films. 

PACS: 74.25.Qt Vortex lattices, flux pinning, flux crep; 
74.25.Ha Magnetic properties including vortex structures and related phenomena; 
68.60.Dv Thermal stability; thermal effects. 

Keywords: vortex matter, thin-film superconductors, thermomagnetic instability. 
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1. Introduction 

A very important feature of superconductors is the Meiss-
ner and Ochsenfeld effect — expulsion of weak external 
magnetic fields, H, from their interior. Therefore, a super-
conductor in weak external magnetic fields behaves as 
a perfect diamagnet. In type-II superconductors, the perfect 
diamagnetism exists for applied fields below a lower criti-
cal field, 1cH , and there is a broad domain of magnetic 
fields, 1 2c cH H H≤ ≤ , where the field penetrates the sample 
in the form of quantized flux lines — Abrikosov vortices [1]. 
An isolated vortex consists of a core where the supercon-
ducting order parameter is suppressed, while the magnetic 
field reaches a local maximum. The radius of the core is 
of the order of the coherence length, ξ . Outside the core 
the magnetic field decays exponentially over a distance of 
the magnetic penetration depth, Lλ , where also electrical 
current circulates. Each vortex carries one flux quantum 

15
0 = / 2 2.07·10h e −Φ ≈  Wb. 
Parallel flux lines repel each other, an interaction that 

can be understood by applying Ampère’s law to the circu-
lar currents. The repulsion leads to formation of a flux line 
lattice. In a perfect sample this so-called Abrikosov lattice 
is regular. A number of phases and dynamic effects in the 
flux line lattice was reviewed in Refs. 2, 3. Above the upper 
critical field, 2cH , the bulk superconductivity seizes to exist. 

The vortices interact with an electrical current via the Lo-
rentz force per unit length 

 0= [ ],Φ ×f j n  (1) 

where j is the current density and n is the unit vector along 
the flux line. Since vortex motion implies displacement of 
the vortex cores containing quasiparticles, the motion is ac-
companied with dissipation. At small velocities the dissipa-
tion is proportional to the velocity, therefore the dissipation 
can be described by an effective viscosity. The velocity 
is determined by the balance between the Lorentz force 
and the viscous force. Therefore, a free vortex lattice would 
move as a whole with a constant velocity, and result in 
a finite resistance of the sample. Such a vortex lattice is 
said to be in the flux flow state. 

However, in real superconductors the flux lines interact 
with material defects that will act as pinning centers and 
thus hamper the flux line motion. Pinning barriers often 
arise from rather inevitable structural irregularities such as 

vacancies, dislocations, grain boundaries, etc. In addition, 
there exists a rich zoo of artificially introduced pinning 
centers. Among them are magnetic inclusions, phases of 
weaker or no superconductivity, lithographically patterned 
“antidots”, magnetic dots, etc. According to the particular 
nature and dimensionality of the defects the pinning poten-
tial has different spatial extent and different dependence on 
magnetic field and temperature, see Ref. 4 for a review. 

When a superconductor is exposed to an increasing ex-
ternal magnetic field, or self field of a transport current, 
vortices form at the edges and then propagate inwards. The 
presence of pinning leads to formation of an inhomoge-
neous distribution of the magnetic flux. According to the 
critical state model [5] the stationary distribution can be 
found from Ampère’s law with the condition that the cur-
rent density at each point is equal to its local critical value, 

( , )cj TB , i.e., 

 0= , | | = ( , ),cj T× µB j j B∇  (2) 

where B  is the magnetic induction. 
The case where cj  is independent of B  is called the Bean 

model [5]. The energy loss for < cj j  is typically very low. 
Therefore, cj  is a key measure of the performance of super-
conductors. Microscopic evaluation of the critical current 
density is an extremely difficult task since it requires direct 
summation of vortex-vortex interactions and all elementary 
pinning forces. Thus, the critical state model with phenom-
enological ( , )cj TB  has become a major paradigm in the 
studies of electromagnetic properties of type-II supercon-
ductors. 

The critical state model is valid also in thin films, but 
when doing calculations one must include the film self-
field. As a result, exact calculations are possible only for a 
few geometries, such as long strips [6], rectangles [7] and 
circular disks [8,9]. A consequence of the self-field is the 
flow of shielding currents with < cj j  in the parts of the 
sample where = 0zB . Moreover, in films the profiles of 

zB  are much different from in bulks, as zB  in films has a 
non-trivial shape showing large field amplification along 
the edge. Such field enhancement is seen in Fig. 1 (upper 
panel), presenting a magneto-optical image of a square 
film of YBa2Cu3Ox  where flux has penetrated equally 
from each edge. The penetration forms a tongue-like pat-
tern from each edge, consistent with the critical-state mo-
del [7]. The black central area shows the flux-free region. 
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An important feature of the critical state is that it is 
metastable, i.e., an increase in the external magnetic field 
may lead to collapse by a sudden large-scale redistribution 
of the flux. Experimentally, such dramatic events can be 
observed as abrupt drops in the magnetization, so-called 
flux jumps. They are commonly ascribed to a thermomag-
netic instability where the local heat release associated 
with vortex motion reduces the pinning, which in turn fa-
cilitates further vortex motion. With this positive feedback, 
a small perturbation can quickly evolve into a macroscopic 
avalanche. 

In thin films such avalanches form fingering and branch-
ing structures, see, e.g., Refs. 10–23. An example is pre-
sented in Fig. 1 (lower panel), where the image shows 
a 400 nm thick film of MgB2 initially zero-field-cooled to 
9.9 K. Then, while slowly ramping the perpendicular ap-
plied magnetic field, the seen dendritic flux structure ab-
ruptly appeared at 0 = 17Hµ  mT. Redoing the experiment, 
the qualitative behavior repeated, but the dendritic pattern 
was always different. 

Another key experiment was reported by Baziljevich 
et al. [24], who investigated avalanche activity in films of 
YBa2Cu3Ox  deposited on a strontium titanate substrate. 
When a 150 nm thick film was exposed to a perpendicular 
field ramped at the rate of 3000 T/s, a highly dramatic ava-
lanche event occurred. Examining the film afterwards using 
AFM, it was found that the advancing dendrites had caused 
the local temperature to rise so high that the material de-

composed, thus providing a clear manifestation of the 
thermomagnetic nature of the phenomenon. In the follow-
ing, we present more experimental results supplemented by 
explanations based on analytical theory, as well as numeri-
cal simulations. 

The paper is organized as follows. In Sec. 2 we briefly 
describe the experimental method of magneto-optical im-
aging (MOI), while Sec. 3 presents the characteristic fea-
tures of the observed avalanche behavior. Then, Sec. 4 
gives a linear stability analysis of superconducting films, 
which for generality are coated with a layer of normal met-
al. In Sec. 5 the methods for numerical modeling are pre-
sented and with Secs. 6–8 presenting and discussing differ-
ent examples of flux propagation. In Sec. 6 we report on 
ultra-fast propagation of dendrites in superconducting 
disks while Sec. 7 is aimed at specific propagation of the 
flux avalanches resembling ray optics. In Sec. 8 we discuss 
observed dramatic anisotropy of the flux avalanches and 
provide relevant theoretical explanation. We conclude the 
reported results in Sec. 9. 

2. Experimental 

Experimental methods employed to investigate the ava-
lanches in the vortex matter can be subdivided in two 
groups: integral and spatially resolved. 

Integral methods include many types of magnetometry: 
inductive coils, vibrating sample magnetometry and SQUID 
magnetometry [25]. These measurements are sensitive to 
global redistributions of the flux and current flow, and in 
particular, they detect the change in the total magnetic mo-
ment caused by an avalanche taking place anywhere in the 
sample. 

A disadvantage of the integral methods is a lack of de-
tailed information about the avalanche events, e.g., their 
location in the sample, their morphology, etc. Moreover, 
the relatively low sampling rate makes it difficult to sepa-
rate events occurring within short time intervals, and im-

Fig. 1. (Color online) Upper panel: Magneto-optical image of 
the magnetic flux distribution in a square film of YBa2Cu3Ox  
exposed to a perpendicular magnetic field of 20 mT. Lower pa-
nel: Flux distribution in a MgB2 film after a dendritic avalanche 
occurred from the lower edge. The image brightness represents 
perpendicular component of the magnetic induction, zB . 

Fig. 2. (Color online) Height profile plot obtained by AFM scan 
of a YBa2Cu3Ox  film after being exposed to a rapidly increasing 
perpendicular applied magnetic field. From Ref. 24. 
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possible in the case of simultaneous avalanches. It can also 
be difficult to discriminate between small jumps and instru-
ment noise. These problems are partly solved in spatially 
resolved magnetometry; an overview of available methods 
can be found in Ref. 26. Recently, an ultrafast spatially re-
solved SQUID magnetometer was developed [27] and ap-
plied to investigation of flux avalanches in their initial 
stage when the vortex motion is very fast [28]. 

Among the space-resolved methods, one of the most 
powerful is magneto-optical imaging (MOI), which com-
bines high magneto-spatial resolution and short acquisition 
time. Figure 3 illustrates the principal experimental scheme 
used for most MOI studies of flux dynamics in supercon-
ductors, and is based on polarized light microscopy [25,29]. 

As sensor one uses a layer of Faraday-rotating material 
placed in close proximity to the sample under investiga-
tion [30]. The MOI results reported in this paper were ob-
tained using the large Faraday rotation in ferrite garnet 
films (FGFs) of composition (Lu,Bi)3(Fe,Ga)5O12. These 
films were grown as a few micron thick epitaxial layer on 
optically transparent gadolinium gallium garnet substrates, 
where the FGFs become spontaneously in-plane magnet-
ized [31,32]. 

The presence of perpendicular flux in the sample under 
investigaton will in the adjacent FGF locally tilt the mag-
netization vector out-of-plane creating a distribution of Fa-
raday rotation angles in the polarized light passing through 
the indicator chip. After reflection by a mirror deposited on 
the FGF, or from the sample itself if its surface is well re-
flecting, the Faraday rotation is doubled. When then pass-
ing a crossed analyzer an image is formed where the bright-
ness is a direct measure of the magnetic flux distribution in 
the plane of the sample surface. The image is recorded by 
a CCD camera. 

The sensitivity of the FGFs is characterized by the Ver-
det constant, which for the films used in the works review-
ed here are 2(2 8)·10−−  deg/mT per micron thickness. 
Their dynamic range is limited upwards to approximately 
100 mT, when the FGF reaches saturation by becoming 
magnetized fully out-of-plane. 

3. Avalanche characteristics 

With the use of MOI it has been discovered that in thin 
films avalanches have the shape of complex branching flux 
structures rooted at the sample edge. Such dendritic ava-
lanches have been observed in a wide range of materials, 
e.g., Pb [33], Nb [15], Sn [34], Nb [17], YBa2Cu3O7 x−  [21], 
MgB2 [10], Nb3Sn [19], YNi2B2C [23], NbN [20], and 
a-MoGe [35]. 

From the experimental data collected on the subject (al-
so reviewed in Ref. 29) one can identify some common 
features for avalanche behavior: 

(i) It occurs below a certain temperature th < cT T . 
(ii) It occurs in a limited range of applied fields: 

th th
1 2H H H≤ ≤ , where th

1H  and th
2H  are the so-called lower 

and upper threshold fields, respectively. 
(iii) The formation of the thermomagnetic instability is 

a stochastic process. Usually indentations on the sample 
edges serve as the most probable origins of the avalanches. 
Nevertheless, the exact nucleation place of the next den-
drite, field interval between two consecutive events, and 
the final shape of the dendritic structure are essentially un-
predictable. 

(iv) The degree of branching of the dendritic structures, 
sometimes represented by their fractal dimensionality, and 
size vary with temperature and the applied magnetic field. 

(v) Avalanches are suppressed by a metal stripe depos-
ited along the film edge [36,37], and deflected when meet-
ing such strips inside the sample area [13,38–40]. Suppres-
sion of avalanches is possible also when the metal and 
sample is not in thermal contact, due to the inductive brak-
ing effect [41]. 

Figure 4 illustrates typical behaviors of the dendrites in 
a NbN film at different temperatures. At = 4T  K the num-
ber of the dendritic avalanches per interval of the field was 
higher compared to = 6 KT . The size of the dendrites shows 
opposite trend — it increases when the temperature ap-
proached thT . 

Fig. 3. (Color online) Schematic of a typical MOI setup. A sam-
ple is mounted on a cold finger of a liquid He flow cryostat. Re-
sistive coils are used as a source of an external magnetic field. 
The light from a mercury lamp shines through a polarizer and is 
guided onto an indicator film, where it experiences Faraday rota-
tion. The light is reflected by a mirror and passes an analyzer 
before hitting a CCD matrix of a computer-operated camera. 
From Ref. 29. 
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Criteria for onset of the thermomagnetic instability were 
first considered for bulks under adiabatic conditions [42–44]. 
The theory was later extended to include also the flow of 
heat [45–48], and it was found that the instability onset can 
be accompanied by oscillations in temperature and electric 
field [49–51]. The early theory for flux jumps was re-
viewed in Ref. 52, see also Ref. 53. A theory for nucleation 
and evolution of avalanches was also developed for thick 
films and foils [15]. 

More recent works have focused on developing theory 
for films placed in perpendicular magnetic field. The criteria 
for the instability onset were obtained from the linear stabili-
ty analysis of small coordinate-dependent perturbations, fo-
cusing on edge indentations [54,55], adiabatic condition [56], 
fingering instability [57,58] and oscillatory instability [59,60]. 
The theory for magnetic braking as a mechanism for sup-
pression of avalanches was also considered in Ref. 59. 

When it comes to the evolution of avalanches one must 
rely on numerical solutions of the governing equations. 
Such numerical simulations have demonstrated dendrtitic 
avalanche behaviors with striking similarity to experimental 
observations [55,61,62] also revealing the utra-fast dyna-
mics [63]. Suppression of avalanche propagation by an adja-
cent metal layer was also demonstrated in simulations [64]. 

4. Theory: stability of metal coated thin 
superconductors 

4.1. Model 

Let us consider a superconducting strip of width w  
coated with a metal layer, as depicted in Fig. 5. We assume 
that there is no thermal coupling between the superconduc-
tor and the normal metal, while at the same time the super-
conductor is thermally coupled to the substrate, which is at 

constant temperature 0T . Then the sheet current J consists 
of two contributions [65], 

 = ,s m+J J J  (3) 

where sJ  and mJ  are the sheet currents in the superconduc-
tor and metal layer, respectively. As a further approxima-
tion we assume that the electric field, E, is the same in the 
two layers, giving 

 = , = .s s s m m md dσ σJ E J E  (4) 

The thickness of the metal, md , and superconductor, sd , are 
both much smaller than the strip width, 2w. The conductivity 
of the normal metal, mσ , is assumed to be E-independent, 
whereas the current-voltage relation in the superconducting 
film is assumed to be non-Ohmic with E-dependent con-
ductance expressed as [66,67] 

 ( )1/ 11 / , < and < ,=
1, otherwise.

n
s n c c c

s
n

Ed J J J T T− ρσ 
ρ 

 (5) 

Here T  is the local temperature, =c cJ dj  is the sheet criti-
cal current of the superconductor, nρ  is the resistivity of 
the superconductor in the normal state, and n is the creep 
exponent of the superconductor. 

The critical current is a decreasing function of tempera-
ture, and to quantify the temperature dependence it is con-
venient to introduce the parameter *T , defined by 

 *1/ | ln / | .cT J T≡ ∂ ∂  (6) 

The electrodynamics is governed by the Maxwell equa-
tions in the eddy current approximation, ignoring the dis-
placement field. The equations are 

 = ,  = 0, = ( ),z× − ⋅ × δE B B H J∇ ∇ ∇  (7) 

Fig. 4. (Color online) Magneto-optical images of dendritic flux 
avalanches in a NbN film taken at (a) = 4T  K and (b) = 6T  K. 
The zigzag patterns are domain boundaries in the FGF. From Ref. 29. 

Fig. 5. (Color online) Sketch of the system: a thin superconduct-
ing strip of thickness sd  with a deposited metal layer of thickness 

md . The superconductor is in thermal contact with the substrate, 
kept at constant temperature 0T , but not with the metal. Current 
flows in the y  direction and flux has penetrated a distance x  
from both sides due to the applied magnetic field aH . 
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with 0= µB H  and = 0⋅J∇ . Due to the current conserva-
tion, it is convenient to work with the current stream func-
tion g  defined by Brandt [68] 

 ˆ= .zg×J ∇  (8) 

Outside the sample, 0g ≡ . The integral of g gives the mag-
netic moment, 2= ( )m d r g∫ r . Therefore g plays the role 
of local magnetization. 

The 3D version of Ampère’s law (or the Biot–Savart law) 
can be transformed to an integral relation in 2D [68]. In the 
short wavelength limit the relation has a particular simple 
and usefull formulation in Fourier space, 

 ( ) = ( ),
2z
kH gk k  (9) 

where = ( , )x yk kk  are Fourier space wave-vectors. 
The flow of heat in the superconductor is described by 

the energy balance equation describing the interplay be-
tween Joule heating, thermal conduction along the film, 
and heat transfer to the substrate. It reads as 

 ( )2
0

1= ,s
s s

hcT T T T
d d

κ − − + ⋅J E ∇  (10) 

with superconductor specific heat c, heat conductivity κ , 
coefficient of heat transfer to substrate h. Since there is no 
thermal contact between the metal and the superconductor 
there is no need to calculate the flow of heat in the normal 
metal. 

For further analysis it is convenient to express the equa-
tions in a dimensionless form. We let = / cT T T , 0= / cJ J J , 

0= /c c cJ J J , 0= / cH H J , = /x x w , = /y y w , 0= /n st t d wρ µ , 
0= / n cE E jρ , =s s nσ σ ρ , = /m m n m sd dσ σ ρ . Here 

0 = ( = 0)c cJ J T . Henceforth we omit the tildes for brevity. 
In these units the material relations become 

 

1/( / ) , < and < 1,=
, otherwise,

= .

n
c c c

s

m m

J E J J J TJ
E

J E




σ

 (11) 

and the Maxwell equations 

 = ,  = 0,  = ( )z× − ⋅ × δE H H H J∇ ∇ ∇ , (12) 

with = 0⋅J∇ . 
The heat propagation equation becomes 

 2
0= ( ) ,sT T T T J Eα∇ −β − + γ  (13) 

where α is dimensionless heat conductivity, β is dimen-
sionless constant for heat transfer to the substrate, and γ  is 
the Joule heating parameter. The dimensionless parameters 
are related to the physical parameters by 

 
2

0 0 0 0= , = , = .c

n n c

d wh wdj
cw c T c

µ κ µ µ
α β γ

ρ ρ
 (14) 

4.2. Stability analysis of bare superconductor film 

Let us assume that we start from uniform background 
distributions of the electric field ˆE≡E y  and temperature 
T, as depicted in Fig. 5. The left edge of the sample is at 

= 0x , the right is at = 2x . Due to the applied magnetic 
field or current, the magnetic flux front, and thus also the 
fronts of E  and T  have reached a distance xl  from both 
edges. The perturbed values are specified as + δE E , 
T T+ δ , etc. To meet the boundary conditions we assume 
that in the Fourier space the perturbations are of the form 

 

e cos ( ) cos ( ),

, e sin ( ) sin ( ),

, e cos ( ) cos ( ),

e sin ( ) cos ( ),

t
x y

t
x x x y

t
y y x y

t
z x y

T k x k y

J E k x k y

J E k x k y

H k x k y

λ

λ

λ

λ

δ ∝

δ δ ∝

δ δ ∝

δ ∝

 (15) 

where λ is the instability increment and xk  and yk  are the 
in-plane wave-vectors. The flux penetration depth sets the 
lower limit for allowed wave-vectors in x direction and we 
will thus identify = / 2x xl kπ  and let the corresponding 

= / 2y yl kπ  be determined by the analysis. We will now 
linearize the equations in the perturbations and find the 
eigenvalue equation for the instability increment, λ. 

The onset of instability typically happens at low electric 
fields, when all current flows in the superconductor and 
nothing in the metal. We thus let 

 = 0.mJ  (16) 

We further assume that 1n , = cJ J , and 0=T T . 
The eigenvalue equation for the instability increment λ 

was derived in Ref. 59. It can be cast in the form 

 2 = 0,A B Cλ + λ +  (17) 
where 

 

( ) ( )

2 2
2

*

2
2 2 2 2

*

= ,
2

= ,
2 2

= .

c

y c
x c

y c
x x y

JkA
nE

k Jk k kB k J
n nE T

k J
C k k k k E

n T

γα +β
+ + −

  γ α +β + + −
 
 

 (18) 

In order to find the instability threshold conditions we must 
solve for Re = 0λ . 

Let us first consider the case when λ is real. The insta-
bility onset condition = 0λ  then implies that 

 = 0.C  (19) 

From Eq. (18) we see that = 0C  corresponds to the case 
when x yl l  and this case is therefore often called a fin-
gering instability [48,57]. The most unstable mode is de-
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termined by / = 0yk∂λ ∂ , giving / = 0yC k∂ ∂ . Eliminating 
yk  and solving for E  gives the threshold electric field for 

the fingering instability 

 
2*

Fingering
th = .x

c

TE k
J n

 β
α +  γ  

 (20) 

This expression was also considered in Refs. 57, 58, 69, 
and 70. 

Let us next consider the case when > 0C . In this case λ 
is complex and the instability threshold is determined by 
the condition Re = 0λ , which yields 

 = 0.B  (21) 

This corresponds to a solution with temporal oscillations 
with frequency 

 = / .C Aω  (22) 

Also in this case, the most unstable mode is found by the 
condition Re / = 0yk∂ λ ∂ , which gives / = 0yB k∂ ∂ . 

Again we refer to Ref. 59 for the calculations. They 
lead to the following expression for the threshold electric 
field, 

 
*

Oscillatory 3
th = ( ) ,

c

TE u u
J n

−
+ −

β
+

γ
 (23) 

where 

 

1/3
2* 2

2
1 1= .
2 4

x

c

T k
u

J
±

  α ± +    β γ   

  

Series expansion in xk  gives 

 
2/31/3 * 2*

Oscillatory
th 2= 1 3 .x

c c

T kTE
J n J

   β α +      γ β γ     

 (24) 

The peculiar 4/3
xk  dependence is due to the / 2k  Fourier 

kernel. 
Equations (23) and (24) are rather complicated, there-

fore it is practical to approximate them. A relatively simple 
approximation can be obtained in the limit of =yl ∞, 
which implies that the instability is uniform. From = 0C  in 
Eq. (18) one gets 

 
2

Uniform
th 2 *= .

/ 2
c x

c x

J k
E

n J T k
α +β

γ −
 (25) 

The physical interpretation of Eq. (25) is straightforward: 
increasing heat removal through α and β leads to increase 
of the threshold, while increasing Joule heating through γ  
and non-linearity through n leads to its decrease. In the ex-
treme Bean model limit, n →∞ , the threshold is independ-
ent of E , α and β and the threshold condition is purely 
adiabatic, 2 *= / 2x ck J Tγ . This case was considered also in 
Ref. 56. 

Let us now compare the three expressions Eqs. (20), (23) 
and (25) for the threshold electric field. Figure 6 shows 
temperature dependences of the critical electric fields cor-
responding to the fingering, fingering oscillatory and uni-
form oscillatory types of the instability, Eqs. (20), (23) and 
(25), respectively. For the plots we assumed constant α 
and β, and the temperature dependences = 1cJ T− , 

1= /n n T  and 3
0= T −γ γ , where 0γ  is constant. The figure 

shows that threshold fields for the oscillatory cases are 
significantly lower at most temperatures. Therefore, the os-
cillatory modes will most likely initiate the instability. The 
plot also shows that the Eq. (25) is good approximation for 
Eq. (23) for low T . 

4.3. Reentrant stability due to magnetic braking effect 

Let us now consider the case when electric field is high, 
i.e., an avalanche is already progressing. When the super-
conductor is covered by normal metal the electromagnetic 
braking effect may open the possibility of reentrant stabil-
ity at high electric field. A practical consequences of this 
reentrant stability is that an avalanche may stop at an early 
stage before much damage has been done. 

For the analysis, it is convenient to introduce the non-
linearity exponent of the composite system as 

 tot
1 /ln( , ) = .

ln 1 /
m s

m s

J JEn T E n
J nJ J

+∂
≡
∂ +

 (26) 

The magnetic braking is strong when tot 1n  . 
The linear stability analysis of the composite system 

was carried out in Ref. 59. Also in this case the eigenvalue 
equation of λ was quadratic, but the factors were more 

Fig. 6. (Color online) The threshold for onset of instability in 
the –T E  plane, for the fingering, fingering + oscillatory, and 
uniform + oscillatory conditions. In a uniform sample, the lowest 
of these curves determines the onset of instability. The parame-
ters are 5= 10−α , = 0.1β , 0 = 10γ , = 0.1xl , 1 = 50n . 

Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 6 609 



J.I. Vestgården, T.H. Johansen, and Y.M. Galperin 

complicated than for the uncoated sample. The eigenvalue 
equation is 

 2 = 0A B Cλ + λ +  (27) 

with 

 

tot
2 2

2
*

tot tot tot
2

2 2 2 2
*

tot tot

= ,
2

1= ,
2 2

1= ( ) .

y s s c
x

c

y s s c
x x y

c

k JA
n E

k J J Jk k kB k J J
n n E J n J T

k J J J
C k k k k E

n J n J T

  γα +β
+ + − − 

 
     γ α +β + + − −        

  

  (28) 

The form-factor of the avalanche at high electric field is in 
general difficult to predict as it is a consequence of the 
nonlinear and nonlocal evolution of the instability. Conse-
quently it is difficult to constraint xk  and yk . However, 
assuming that the avalanche is at an early stage of devel-
opment, the form-factor should be pretty much the same as 
for the onset of instability, and then the most unstable 
mode typically have >x yk k  and this implies that also in 
this case that the oscillatory modes are most relevant, and 
we should consider = 0B  as the condition for reentrant 
stability. 

In the limit when m snJ J  we have 

 tot 1 / ,s mn J J≈ +  (29) 

where =m mJ Eσ  and s cJ J≈ , when 1n . Using this in 
the condition = 0B  leads to the condition for reentrant 
stability by magnetic braking as 

 ( ) ( )2 2
*= = 0.

2 2
x x c

x x m c m
k k J

B k k J E
T
γ

+ α +β σ − −σ  (30) 

Solving for E  gives 

 
221= .x x

c
m

k k
E J

F F
α +β − − σ  

 (31) 

The reentrant stability thus appearing at high electric fields, 
of the order of /c mE J σ . 

Shown in Fig. 7 are the stability diagrams in the –T E  
plane for different conductivity of the coating metal. The 
curves have been calculated by numerical solution of 
Eq. (27). They demonstrate that metal coating increases 
stability of the flux distribution. In particular we see that 
stability reappears at high electric fields, typically of order 

~ /c mE J σ . From the figure we also see that it is possible 
draw a connected path between the stable configurations 
at high and low electric fields. This opens the possibility 
that avalanches in coated regions can stop and reenter 
the low-E  state. 

5. Simulation: evolution of avalanches 
in metal coated sample 

5.1. Procedure 

Considering a type-II superconducting thin film in trans-
verse applied field, we will now describe our scheme for 
numerical simulations of the flux dynamics. The inputs for 
the simulations are the nonlinear E –J  relations character-
izing the material properties of the films and the ramping 
of the external magnetic field, aH . In order to carry out 
such simulations one must overcome the problem of im-
posing the boundary conditions. This is challenging due to 
the inherent self-induction of the system. One way to han-
dle the overcome the self-induction problem is to include 
the sample boundary directly in the discretization of the 
sample. E.H. Brandt has invented a series of such discreti-
zation schemes for, e.g., squares and rectangles [68], disks 
and rings [71], and arbitrary connected geometry [72]. An al-
ternative, approximate and much more numerically effi-
cient approach is to discretize without taking into account 
the sample boundaries and instead impose the boundary 
conditions indirectly through a real-space Fourier-space hyb-
rid method. This approach has been used for a series of 
geometries [61,62,73]. 

We will now consider the case of a superconducting 
film partly covered by metal and simulate the evolution of 
a dendritic flux avalanche to find the effect of magnetic 
braking on the evolution of the avalanche. The description 
uses the same dimensionless units as used in the linear 
stability analysis. We adopt the model of Eq. (4) were the 
superconductor–metal composite system is considered as 
two conductors connected in parallel, 

Fig. 7. (Color online) The lines show the boundary of the insta-
bility region when changing the normal metal conductivity 

= 0mσ , 10, 100, and 1000. Increasing metal layer conductivity 
improves stability at high E  and T . Parameters are 5= 10−α , 

= 0.1β , = 10γ , = 0.1xl , 1 = 20n . 
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 1= ( ) ,s m
−σ + σE J  (32) 

where mσ  is constant conductivity of the metal layer. The 
nonlinear superconductor conductivity is given in Eq. (5) 
as ( )Eσ  but for simulations we need ( )Jσ  and the inver-
sion cannot be expressed in a closed form. Instead we use 

 
11 ( / ) , < and < ,=

1, otherwise,

n
c c c

s

J J T T J J−


σ 
 (33) 

where cJ  is the critical sheet current and 1n  is the creep 
exponent. In Eq. (33) we have used the total sheet current 
rather than the part flowing in the superconductor. This is a 
good approximation when mE Jσ  , like during the regu-
lar flux penetration, and in the very initial stage of an ava-
lanche. During the propagation stage of an avalanche the 
E -field is large, and our simplification leads to underesti-
mation of the magnetic braking effect. 

The numerical simulations are most conveniently formu-
lated using the local magnetization, g, defined in Eq. (8). For 
quasi-static situation zH  is the superposition of the applied 
field and film self-field. Using Eq. (9) we write 

 ˆ= ,z aH H Qg+  (34) 

with the operator Q̂  given by 

 [ ]1ˆ ( ) = ( ) ,
2
kQg g−  
  

r r   (35) 

where   is the 2D spatial Fourier transform, =| |k k , and 
k  is the wave-vector. The inverse relation is 

 [ ]1 1 2ˆ ( ) = ( ) ,Q
k

− −  ϕ ϕ  
r r   (36) 

where ϕ  is an auxiliary function. 
By taking the time derivative of Eq. (34) and inverting 

it, we get 

 1ˆ= .z ag Q H H−  − 
 

  (37) 

This equation is solved by discrete integration forward in 
time. 

Regarding the discretization of space, the key point is 
that both Q̂  and 1Q̂−  are direct products in Fourier space 
which means that the operators can be calculated effective-
ly using Fast Fourier Transforms (FFT). However, the der-
ivation leading to the simple form for Q̂  and 1Q̂−  has ne-
glected the sample boundary, which means that also the 
vacuum surrounding the sample must be explicitly includ-
ed in the calculations. The total area of calculations is thus 
a rectangle of dimensionless x yL L×  including both sample 
and vacuum. The solution will be periodic on this larger 
rectangular area. 

Thus, in order to integrate Eq. (37) forward in time, zH  
must be known everywhere in the embedding x yL L×  rec-
tangle at time t. Our strategy is to find zH  inside the sample 

from the material law, while in the vacuum zH  is found 
implicitly from the condition = 0g , as described below. 

Starting with the superconductor itself, it obeys the ma-
terial law, Eq. (32), which, when combined with the Fara-
day law from Eq. (12), gives 

 = .z
s m

gH
 ∇

∇ ⋅ σ + σ 
  (38) 

From ( , )g tr  the gradient is readily calculated, and since 
the result allows finding ( , )tJ r  from Eq. (8) also ( , )s tσ r  is 
determined from Eq. (33). 

The task then is to find zH  outside the sample bounda-
ries so that = 0g  outside the superconductor. This cannot 
be calculated efficiently using direct methods due to the non-
local –zH g

  relation and the non-symmetric sample shape. 
Instead we use an iterative procedure. 

For all iteration steps, = 1...i s , ( )i
zH  is fixed inside 

the superconductor by Eq. (38). At = 1i , an initial guess 
is made for ( )i

zH  outside the sample, and ( )ig  is calculated 
from Eq. (37). In general, this ( )ig  does not vanish outside 
the superconductor, but an improvement can be obtained by 

 ( 1) ( ) ( ) ( )ˆ ˆ= .i i i i
z zH H QOg C+ − + 

  (39) 

The projection operator Ô  is unity outside the supercon-
ductor and zero inside. To improve the numerical stability 
one should shift ( )ˆ iOg  to satisfy 2 ( )ˆ = 0id rOg∫  . The cons-
tant ( )iC  is determined by requiring flux conservation, 

 2 ( 1)[ ] = 0.i
z ad r H H+ −∫    (40) 

Thus, at each iteration i , ( 1)i
zH +
  is calculated for the out-

side area. The procedure is repeated until after =i s  itera-
tions ( )sg  becomes sufficiently uniform outside the sample. 
Then, ( )sg  is inserted in Eq. (37), which brings us to the next 
time step, where the whole iterative procedure starts anew. 

The state is numerically described by g  and T . The 
time evolution are obtained by simultaneous time integra-
tion of Eqs. (37) and (13). 

5.2. Simulation result 

Let us now consider the time evolution of partly metal 
coated sample. The metal layer is considered to be ther-
mally isolated from the superconductor, and the only effect 
of the metal layer is the magnetic braking at high electric 
fields. The theory of Sec. 4.3 predicts that the supercon-
ductor can enter a regime of stability at high electric fields 
and this may lead to a suppression of the avalanches in the 
metal coated parts. 

The sample is a superconducting square where the right 
half is covered by a metal of high conductivity, = 1000mσ . 
The parameters of the simulation are 1 = 20n , 5= 10−α , 

= 0.07β , 0 = 10γ  and 8= 10aH −
 . The simulation proce-

dure was carried out in two steps. First, the flux penetra-
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tion was simulated at constant temperature. Second, the 
state was rescaled to account for finite temperature [62], 
temperature was allowed to vary, and a avalanche was nu-
cleated by a heat pulse slightly off-center, in the non-
metal-covered part. We then follow the evolution of the 
avalanche. 

Figure 8 shows the distributions of zH , T, and J at times 
= 0.25t , 12.25 and 24.75 after nucleation of the avalanche. 

The blue, stippled line in the figure marks the edge of the 
metal cover. 

At = 0.25t  the avalanche is just a narrow finger barely 
extending the critical state region. It has already at this 
stage reached a temperature above = 1cT . Note that the 
thickness of the finger is determined by the propagation of 
the hot spot and is not related to the size of the thermo-
magnetic instability at nucleation stage [59]. At = 12.25t  

the avalanche has the characteristic branching shape typi-
cally observed by magneto-optical imaging at times after 
the avalanches has stopped propagating [10]. Yet, this ava-
lanche is still propagating and the branches are heated 
above = 1cT . Flux has accumulated at the boundary of the 
metal cover and we see that protection is almost complete 
as the avalanche does not propagate into the metal covered 
part. At = 24.75t  the avalanche is close to its final extent. 
The temperature now is 0.5 and decaying. There is a minor 
inclusion of the avalanche into the metal covered part, but 
the protection offered by the metal is good. The level of the 
shielding currents at the boundary is high — comparable 
with the critical state region. Yet, the maximum magnitude 
of the current is lower that = 12.25t , since the strong eddy 
currents in the metal layer decays on the time scale compa-
rable with the time scale of the avalanche. 

Fig. 8. (Color online) Simulated evolution of an avalanche in a sample where the region to the right of the dotted line is covered with 
metal with = 1000mσ . Distributions of the magnetic field zH , temperature T  and sheet current magnitude J , at times = 0.25t , 12.25 
and 24.75 after nucleation of the avalanche. 
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6. Ultra-fast propagation of avalanches 

The avalanche events occur unpredictably and develop 
too fast to be followed dynamically by any experimental 
method available today. With conventional magnetometry 
one observes only a step in the magnetic moment due to 
the abrupt redistribution of flux and induced currents [41,74]. 
More information is obtained from magneto-optical imag-
ing (MOI), where the spatial distribution of magnetic flux 
before and after the breakdown is visualized using a Fara-
day-active sensor mounted on the sample. However, results 
providing insight into how the breakdown evolves in time 
are extremely scarce. Only by using a femtosecond pulsed 
laser to actively trigger an event it was possible to syn-
chronize the image recording and to capture the flux distri-
bution at an intermediate stage [21,22,75,76]. From those 
experiments it was found that the flux front can advance at 
an astonishing speed exceeding 100 km/s. This ultra-fast 
dynamics causes a lot of questions, which we have address-
ed by performing numerical simulations of the thermo-elec-
tromagnetic behavior of an uncoated superconducting thin 
circular disk [63], see Fig. 9, using material parameters cor-
responding to superconducting MgB2. A magnetic field aH  
is applied transverse to the sample plane, and as it gradual-
ly increases from zero it drives the penetration of magnetic 
flux into the disk. In the early stage of the field ramp, the 
flux enters evenly around the edge, and advances to in-
creasing depth without any sign of intermittent behavior. In 
the penetrated region a critical state is formed and character-
ized by a sheet current J  and flux density zB  in full agree-
ment with the Bean model for a thin circular disk [8,9,71]. 

In our calculations we focused on the temporal evolu-
tion of the flux pattern, which is beyond experimental ac-
cessibility. When the applied field reaches 0 th = 5.3Hµ  mT 
the first abrupt event is nucleated, and magnetic flux enters 
from the edge. A complex branching structure is created 
as the flux invades deep into the flux-free region, see 
Fig. 10(a). As aH  continues increasing, only the gradual 

flux the dendritic structure remains frozen. Then, at the 
field of 6.2 mT, another similar event takes place in a dif-
ferent part of the sample, and soon thereafter yet another 
one strikes. 

In this way the superconductor experiences a sequence 
of dramatic events at unpredictable intervals and locations, 
and where each breakdown follows an intriguing path in a 
macroscopically uniform medium. Since this phenomenon 
is of electrodynamic nature, it is interesting to recognize 
the many aspects that are similar to atmospheric lightening. 
Figure 10(b) shows MOI picture of the flux distribution in 
a superconducting MgB2 film at =T  5 K where the mag-
netic field had been increased from zero to 0 = 3.8aHµ  mT. 
The experimental image reveals that the flux avalanches 
have a morphology quite similar to the numerical results, 
and also that the events have a clear tendency to avoid spa-
tial overlap, as in the simulations. 

To analyze time evolution of magnetic flux distribution 
we focus on the detailed dynamics of one breakdown, and 
we choose to zoom in on the event taking place at 

0 = 5.3aHµ  mT. Shown in Fig. 11 rows (a)–(d) are five in-
stantaneous distributions of the magnetic flux density zB , 
the stream line pattern of the flow of sheet current J , the 

Fig. 10. (Color online) Flux density after a few breakdown 
events. (a) Simulated distribution of zB  in a superconducting disk 
after five flux avalanches occurred in the sequence indicated by 
the numbers as the applied field was ramped up from zero to 

0 = 8.5aHµ  mT. (b) Magneto-optical image of the flux density in 
a superconducting MgB2 film cooled to 6 K and then exposed to 
an applied field of 3.8 mT. From Ref. 63. 

Fig. 9. (Color online) Sample configuration. A thin superconduct-
ing disk on a substrate exposed to a gradually increasing perpen-
dicular magnetic field, aH . The flux density, zB , is advancing 
from the edge along with a distribution of induced shielding cur-
rent, J , and electrical field, E . From Ref. 63. 
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temperature T , and the electric field E , respectively. The 
snapshots show the states at =t  1, 5, 22, 52 and 86 ns after 
nucleation of the instability. The final flux distribution looks 
quite similar to those reported from many MOI experi-
ments [10,11,13,16,17,19–21,23,37,75,77–81]. The reported 
high velocities of the flux propagation are also confirmed. 

Our simulations have revealed several important time 
scales characterizing the nucleation and subsequent evolu-
tion of the thermo-electromagnetic breakdown in super-
conducting films. Firstly, we find that the rise time of such 
events, described by how fast the electric field rises to its 
maximum, is extremely short: of the order of 1 ns. The total 
duration of an event is 75–80 ns, while the nucleation of 
a new branch takes less than 5 ns (Fig. 11). 

The shortest time scale, aτ , describes time to increase 
the temperature from 0T  to cT . This characteristic time is 
estimated by considering Ohmic Joule heating, and solving 
the equation 2

0 0( ) = ( )cc T T j Tρ  where 3( ) = ( )( / )c cc T c T T T  
is the specific heat. Integrating this equation gives 

 2
0 0= ( ) / 4 ( ),a c c cc T T j Tτ ρ  (41) 

where a small term 4
0( / )cT T  is ignored. Using the mate-

rial parameters given in Ref. 63, the numerical value be-

comes = 0.5aτ  ns, which indeed is very close to the rise 
time of the simulated events. 

The electromagnetic time scale, emτ , describes the life-
time of normal currents. For a thin disk, E.H. Brandt has 
found that the longest surviving mode has a decay time 
given by [82] 
 em 0 0= 0.18 / .Rdτ µ ρ  (42) 

With the present parameters, this gives em = 1.8τ  ns. It worth 
noting that in the bulk case such a time constant cannot be 
defined since the flux motion is then described by a diffu-
sion equation. In films, on the other hand, the flux penetra-
tion is accelerated by the presence of a free surface. The 
decay time is related to the propagation velocity of the 
peak in the current density, which is em 0 0= 0.77 / =dρ µv

em= 0.14 / = 140R τ  km/s [82]. This value provides the up-
per bound for the propagation velocity of the dendrite. In-
deed, the initial dendrite tip velocity s90 km/  of is not far 
from emv . 

Note that emv  is proportional to the normal resistivity 
0ρ . In the next section we will demonstrate that this prop-

erty can be used for tuning the velocity by coating the su-
perconductor by a normal metal. 

Heat removal to the substrate leads to an exponential 
decay of the temperature with a time constant 

 = / = 52 ns,h cd hτ  (43) 

where h is the coefficient of heat transfer to the substrate. 
We find that indeed em,h aτ τ τ . It is fully consistent 
with the fact that the events actually do take place, rather 
than being prevented by an efficient heat sink provided by 
the substrate. The value of hτ  is comparable to the total 
duration of the event, suggesting that the heat removal to 
the substrate largely determines the avalanche life-time, 
and thereby also decides the size of the full-grown flux 
dendrite. 

Finally, the lateral heat transport is an ordinary diffu-
sion process with diffusion time 

 2= / 4 ,l cκτ κ  (44) 

where l  is the diffusion length and κ  is the thermal con-
ductivity. The diffusion length characteristic for the den-
drite tips can be obtained from the T -maps of Fig. 11. The 
very sharp tips of the growing branches have a typical 
width = 10 l µm, which gives = 3.7 κτ ns. This is close to 
the 5 ns time when the first branching of the structure was 
detected, indicating that the heat diffusion should contribute 
to the branching process. Considering the other extreme, and 
letting κτ  be the total duration of an event, 75 ns, we obtain 
the largest relevant diffusion length, = 125 ml µ . This is 
much smaller than the length of the long branches in the 
dendritic structure, but interestingly it is approximately half 
the width of the dendrite trunk at the final stage. This indi-
cates that the trunk is gradually widened by heat diffusion 
during the event. 

Fig. 11. (Color online) Evolution of a breakdown event. (a) Dis-
tributions of the magnetic flux density zB , (b) the induced sheet 
current J , (c) the temperature T , and (d) the electrical field E , at 
times =t  1, 5, 22, 52 and 86 ns after nucleation of the thermo-
electromagnetic instability. 
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Note that the time scale of the background flux penetra-
tion is on the order of milliseconds, i.e., it is much longer 
than the characteristic time scales estimated above. There-
fore, our results on the evolution of the instability are essen-
tially independent of the ramp rate of the applied magnetic 
field. This robustness is consistent with numerous MOI 
experiments performed by some of the present authors. 

7. Ray optics behavior of avalanche propagation 

As it was mentioned in the previous section, the propa-
gation of the dendrite trunk is very similar to an electro-
magnetic wave in a normal layer, its velocity, emv , being 
proportional to the metal resistivity 0ρ  [82,83]. Therefore, 
one can expect that the trunks should refract at the bounda-
ries between the regions with different effective resistivity. 
Indeed, previous work by Albrecht et al. [13,84] showed 
that the propagation of flux dendrites crossing borders be-
tween regions of different material properties depends on 
the incidence angle of the avalanche. 

A natural way to prepare such a system is to coat 
the superconducting film by a normal metal with relatively 
high conductivity exceeding that of the superconductor ma-
terial in the normal state. This idea was realized in Ref. 39 
using NbN film patterned with Cu strips. Films of NbN were 
grown on MgO(001) single crystal substrate to a thickness 
of 170 nm using pulsed laser deposition. By electron beam 
lithography and reactive ion etching with 4 2CF + O , one film 
was shaped into a 3.0×1.5 mm rectangle. Then, a 900 nm 
thick Cu layer was deposited on the film and patterned as 
shown in Fig. 12. Here, the two long horisontal strips of 
metal define areas where flux avalanches starting from 
the lower film edge will experience magnetic braking. The 
metal coating along the upper edge has the purpose of pre-
venting avalanches to start from that sample side. 

In addition to MOI observations contact pads were placed 
at the lower corners of the sample, where the left pad con-
tacts the two long metal strips. These contact pads were 
used to pick up the voltage pulses generated by flux ava-
lanche propagating in a metal-coated part of a supercon-
ductor film [38]. With this geometry, if two subsequent 

pulses are detected they provide information about the 
speed of the avalanche front. Moreover, the fine structure 
of each pulse tells about the number of flux branches pass-
ing the electrodes and the points in time they enter and 
exit. 

Shown in the upper panel of Fig. 13 is a magneto-op-
tical image of the flux distribution after a typical avalanche 
occurred in the NbN film at 3.7 K in descending applied 
magnetic field. Prior to the field descent, the film was fill-
ed with flux by applying a perpendicular field of 17 mT, 
which removed essentially all the flux trapped from previ-
ous experiments, and created an overall flux distribution 
corresponding to a critical state. Then, during the subse-
quent field descent, when the field reached 14 mT, a large-
scale avalanche started from a location near the center of 
the lower sample edge. The dark dendritic structure shows 
the paths followed by antiflux as it abruptly invaded the 
sample. 

Note that as long as the ray propagation takes place in 
the same medium, i.e., either the bare superconductor or 
the metal-coated area, the rays are often quite straight. 
Moreover, when the rays traverse an interface between 
the two media, their propagation direction is changed dis-
playing a clear refraction effect. 

Fig. 13. (Color online) Magneto-optical image of a flux avalanche 
occurring at 3.7 K in the metal coated NbN film. The image covers 
the lower central part of the film, and was recorded in the rema-
nent state after the field was first raised to 17 mT. The horizontal 
bright strip permeated by dark line segments is the metal coated 
strip located nearest to the sample center. The strip near the edge 
is invisible, as the avalanche crossed this region through a single 
channel perpendicular to the edge. From Ref. 39. 

Fig. 12. (Color online) Schematics of the rectangular NbN super-
conducting film covered by a Cu-layer patterned as seen in the 
figure. Shown is also the voltage pulse measurement circuit, 
which allows time-resolved observation of the avalanches starting 
from the lower film edge. From Ref. 39. 
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A magnified view of the flux distribution inside the rec-
tangular area marked in Fig. 13 (upper) is shown in the lower 
panel. In the metal strip area the rays, indicated by dashed 
yellow lines, traverse the strip at various angles denoted iθ , 
see the insert for definitions. As the rays cross the interface 
they continue into the bare superconductor at a different 
angle rθ . This refraction angle is consistently larger than 
the incident angle, iθ , and it is interesting to compare the 
two angles quantitatively in relation to Snell’s law, 

 sin / sin = .r i nθ θ   

Here n is the relative index of refraction of the metal-
coated and bare areas of the superconductor. From the ex-
amples of refraction indicated by the dashed lines in 
Fig. 13 (lower) one finds = 1.37, 1.37, 1.44n  and 1.34, 
which are remarkably similar values. Note that the metal 
strip nearest the edge is essentially invisible since it does 
not lead to refraction. This is fully consistent with Snell’s 
law since the avalanche here enters the strip at normal in-
cidence. 

These observations give strong indications that the ava-
lanche dynamics is governed by oscillatory electromagnet-
ic modes, and that these modes have different propagation 
velocities in the bare superconductor and metal-coated 
film. Denoting these two velocities sv  and cv , respectively, 
the suggested physical picture then demands that their ratio 
is equal to the index of refraction, / =s c nv v . This relation 
was tested by analyzing additional experimental data from 
voltage pulses between the contact pads. 

The surprising observation that branches of a flux ava-
lanche propagating across boundaries between two super-
conducting media show quantitative agreement with Snell’s 
refraction law. This leads us to conclude that the branches 
propagate as electromagnetic modes with well-defined speed. 
Such modes propagating in a film of resistivity ρ were 
considered in Refs. 82 and 83 where it was found that their 
speed can be written as 

 em 0= / .dαρ µv  (45) 

Here 1α  is a numerical factor depending on the sample 
geometry and type of mode, and 0µ  is the vacuum magnetic 
permeability. 

As discussed in the previous section, Eq. (45) properly 
describes the propagation velocity of the dendrite’s trunk, 
which is heated to a temperature close to cT . Coating by 
a normal film decreases the local resistivity, and therefore, 
decreases the trunk velocity. This is the physical reason for 
the refraction of avalanche branches. 

The quantitative estimates are as follows [39]. For a su-
perconducting film of thickness sd  and resistivity sρ , coat-
ed by a metal layer of thickness md  and resistivity mρ , one 
can define an effective resistivity cρ . If there is no ex-
change of electrical charge between the two layers, the re-
sistivity of the coated film is given by 

 
1

= ( ) .s m
c s m

s m

d d
d d

−
 

ρ + + ρ ρ 
 (46) 

From Eq. (45) it then follows that the propagation velocity 
in the bare superconducting film, sv , and the velocity in 
the coated film, cv , are related by 

 = 1 .s s m

c m s

d
d

ρ
+
ρ

v
v

 (47) 

Thus, from Snell’s law, the relative refractive index for 
rays propagation between coated and bare areas of a super-
conducting film is given by the rhs of Eq. (47). The ratio 
( ) / ( )s m m sd d Sρ ρ ≡  was introduced recently [64] as a 
parameter to quantify how efficiently a metal coating will 
suppress flux avalanches in an adjacent superconductor. 
Using again = 1.38n , we find for the present system that 

= 0.38S . Compared with the case considered in Ref. 64, 
where 1S   and the metal coating caused rapid decay of 
the avalanches, the present S -value represents weak damp-
ing, which evidently is a prerequisite for refraction of the 
branches to be observed. 

With the values for sd  and md  in the present sample, 
one finds 0.07s mρ ≈ ρ . From this it follows that the instan-
taneous temperature at the front of a propagating avalanche 
is not far from the superconductor’s critical temperature. 
Also this is consistent with the assumption that the front 
propagation can be considered analogous to that of the 
modes introduced in Refs. 82 and 83. 

To visualize the refraction taking place at the lower 
edge of the strip, we show in Fig. 13, lower panel, a set of 
straight dotted lines drawn parallel to the refracted rays in 
the bare superconductor region above the strip. The con-
struction presumes that Snell’s law with same index of re-
fraction applies also at the lower edge, and it turns out that 
all lines meet in one point. This strongly suggests that the 
rays originate from one single event at an intermediate stage 
of the avalanche. In the same panel one can make another 
interesting observation, namely a clearly visible example 
of dendrite reflection. The event takes place at the lower 
edge of the strip, and the reflected ray is drawn as a dashed 
line at an angle equal to that of the incident ray. 

8. Anisotropic avalanche activity 

8.1. Fixed anisotropy 

In 2007 a remarkable observation was reported by Al-
brecht et al. [69], who presented MO images of a 5 m5  m×  
film of MgB2 deposited on a vicinal Al2O2 substrate. Due 
to the slight tilt relative to a main crystallographic axis the 
substrate surface had an array of linear steps of one unit 
cell in height and separated by 27 nm. The steps were 
aligned approximately along one pair of the film edges. 
Above 10 K the sample was thermomagnetically stable, 
and only regular gradual penetration of flux was observed 

616 Low Temperature Physics/Fizika Nizkikh Temperatur, 2018, v. 44, No. 6 



Nucleation and propagation of thermomagnetic avalanches in thin-film superconductors 

as the applied perpendicular magnetic field increased. The 
images revealed also that the pinning of vortices moving 
perpendicular to the surface steps was larger than for 
the vortices moving parallel to the steps. In terms of cri-
tical current density, it was found quantitatively that 

/ = 1.06L T
c cJ J , where L

cJ  and T
cJ  are the critical densities 

of currents flowing along and transversely to the steps, 
respectively. 

Although small, this 6% anisotropy had a dramatic im-
pact on the flux penetration below 10 K, the threshold 
temperature below which this MgB2 film became thermo-
magnetically unstable. Well below 10 K the avalanches 

nucleated evenly from all 4 edges of the sample, see 
Fig. 14 (upper). However, close to 10 K, the lower image 
reveals that they occurred only from the pair of edges 
where the larger critical current was flowing. 

This striking behavior was explained based on theoreti-
cal results obtained earlier in works by Denisov et al. 
[57,58]. Within their model, a film of thickness, d , be-
comes unstable when the flux penetration front reaches a 
depth, x , given by 

 

1
**

02
= 1 .

2x
c c

h TT d
J E nJ E

−
 π κ  −
 
 

  (48) 

The threshold value for the applied perpendicular field, 
thH , can then be found by combining Eq. (48) with the 

Bean model expression for the flux penetration depth in a 
thin strip of width 2w [85,86], which gives 

 th
1= acosh .

1 /
c

x

J
H

w
 
 π − 

 (49) 

Shown in Fig. 15 as a full curve is the relation between 
the threshold field and the critical sheet current. The graph 
is based on the two equations above using material para-
meters representing a film of MgB2, i.e., * / = 140 AkT E  
and *

0 / = 9230h T nE  A/m, which can mean, e.g., *=10 KT , 
= 0.01  V/mE ,  W/= 0 (1 ). 4 K·mκ , = 30n , and 

2
0 W/(K= 280 ·m)h  [69]. 

Included in the plot are also 3 pairs of vertical lines rep-
resenting two critical sheet currents differing only slightly 
in magnitude. The lines are drawn vertical, consistent with 
the Bean model approximation. At low temperatures, the 
full curve is nearly horizontal, i.e., the threshold field thH  
is essentially independent of cJ . This corresponds to what 

Fig. 14. Magneto-optical images of flux penetration in a 200 nm 
thick MgB2  film grown on a vicinal substrate. The steps in the 
substrate are aligned approximately vertical in the figure. The 
upper and lower images were recorded at 8 and 10 K, respective-
ly. The non-uniformity in the penetration at 10 K from the two 
horizontal edges is due to edge roughness and other minor sample 
imperfections. Adapted from Ref. 69. 

Fig. 15. Graph of the threshold perpendicular magnetic field ver-
sus critical current density, for onset of avalanche activity in 
films of MgB2 (full curve). The pairs of dashed/dotted lines show 
the critical current density at 3 temperatures, and the two lines in 
each pair indicate the anisotropy in cj . 
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was observed at 8 K in the MgB2 film. At increasing tem-
peratures, both cJ ’s are reduced, and when approaching 
10 K the graph shows that the pair of threshold fields sepa-
rate by increasing amounts. It follows from the graph that 
near 10 K the avalanche activity will start first from the edges 
where the largest critical current flows, which is exactly 
what the MOI observations revealed. Then, at even higher 
temperatures the two cJ ’s are reduced further, and in the 
graph they both eventually enter the range where the theo-
ry predicts stable flux penetration behavior, again in full 
accord with the experiments in Ref. 69. 

Evidently, when anisotropic flux dynamics in a super-
conducting film is a consequence of the substrate’s surface 
structure, the anisotropy can hardly be changed or manipu-
lated after the film has been synthesized. However, quite 
recently, a different approach was found which allows to 
reversibly change and control the anisotropy in the flux 
dynamics of superconducting films. 

8.2. Tunable anisotropy 

In 2016 Vlasko-Vlasov et al. [87] reported MOI studies 
of Nb films deposited by magnetron sputtering on Si(100) 
substrates. Films of two thicknesses, 100 and 200 nm, and 

cT  near 9 K were shaped as squares with sides 2.0 and 
2.5 mm, respectively. When cooled in the presence of an 
in-plane magnetic field the thicker film, when it subse-
quently was exposed to an increasing perpendicular field, 
displayed large anisotropy in the flux pentration pattern. 
When the same procedure was applied to the thinner film, 
it showed essentially isotropic flux penetration. This quali-
tative difference in behavior was attributed to the presence 
of frozen-in in-plane vortices in the thicker film, while the 
thinner film was too thin to accomodate in-plane vortices. 

Shown in Fig. 16, left panel, is an example of aniso-
tropic flux penetration in a 200 nm thick Nb film, where 
the indicated in-plane field H



 = 1 kOe was applied during 
the cooling to 7 K. The image was recorded after adding a 
perpendicular field of H⊥  = 20 Oe. Quantitative measure-

ments [89] of the anisotropy in the critical sheet currents, 
T
cJ  and L

cJ , see Fig. 16, right panel, found that their ratio is 
well described by the qubic dependence [88], 

 3/ = 1  ,L T
c cJ J c H+



  

with 10= 8 10c −⋅  Oe 3− . 
Separate measurements were required to decide wheth-

er the anisotropy is due to reduced pinning of the perpen-
dicular vortices when moving parallel the frozen-in in-
plane vortices, or enhanced pinning of perpendicular vorti-
ces traversing the array of the in-plane ones, or both. To 
resolve this question a local flux injector [89], was used, 
where the square Nb sample was extended by two strips 
forming an inverted V-shape allowing for a transport cur-
rent to be passed through a small region of the square near 
its lower edge, see Fig. 17. 

Shown in the left panel is an image of the flux penetra-
tion caused by passing a current pulse of 0.6 A after the 
film had been initially zero-field cooled to 7 K. The current 
pulse lead to penetration of flux in an area with shape close 
to a semi-circle. When applying the same pulse after the 
film was cooled in the presence of = 1H



 kOe aligned as 
indicated in the figure, the area of injected flux was dis-
torted by a significant elongation in the direction aligned 
with the frozen-in flux. Moreover, one sees that the hori-
zontal width of the area is essentially the same as that in 
panel (a). This shows that freezing in the field H



 leaves 
L
cJ  essentially unchanged, whereas T

cJ  becomes smaller. 
Striking consequences of this effect was found in the flux 

dynamics at lower temperatures, where the penetration of 
perpendicular flux is dominated by avalanche activity. Pre-
sented in Fig. 18 are images of the flux penetration in a plain 
square Nb film, similar to that displayed in Fig. 16. In Fig. 18 
panels (a)–(d) the film was initially cooled to 2.5 K in the 
presence of in-plane fields of magnitudes, 0, 0.7, 1.0 and 
1.5 kOe, respectively. Then, a perpendicular field of H⊥  = 
= 38 Oe was applied, triggering dendritic avalanches, which 

Fig. 16. Left: Magneto-optical image showing field-induced ani-
sotropic flux penetration in a 2.5×2.5 mm Nb film of thickness 
200 nm. The in-plane field = 1H



 kOe was frozen in during the 
initial cooling to 7 K. From Ref. 88. Right: Illustration of aniso-
tropic penetration of perpendicular vortices (black dots) in the pre-
sence of frozen-in in-plane vortices (white lines). From Ref. 88. 

H⊥ 

L
cJ  

T
cJ  

Fig. 17. Magneto-optical images of the Nb film at 7 K after a 
current pulse (white arrows) was passed through a pair of strips 
extending the sample by an inverted V-shape at the lower edge. 
In (a) the film was initially zero-field cooled, and in (b) it was 
cooled in the presence of an in-plane field of H



 = 1 kOe. 
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are seen to dominate the flux penetration in all four panels. 
Each dendritic structure is the result of one avalanche event, 
and is not seen to change thereafter. All the avalanches start 
from separate nucleation points along the edge. 

In panel (a) of Fig. 18 one sees that the avalanches nu-
cleated from locations quite evenly distributed between all 
4 edges. However, in panel (b) the isotropic symmetry is 
broken as the majority of avalanches here nucleate from 
the pair of edges that are aligned with the frozen-in field, 
H


. Then in panel (c), the anisotropy is complete, as no 
avalanche nucleated from the edges perpendicular to H



. 
When increasing the H



 further, the full anisotropy re-
mains, and the avalanches become fewer but larger in size, 
see panel (d). 

Also much of this behavior can be explained from the 
Eqs. (48) and (49), and the generic graph of the threshold 
magnetic field versus critical sheet current, see Fig. 19. In 
this plot the full vertical line represents L

cJ , the critical 
sheet current flowing parallel to the frozen-in vortices, see 
Fig. 16 (right). As found experimentally, this line remains 
fixed in the graph, being essentially independent of H



. 
The dashed line, representing T

cJ , should for the iso-
tropic case, = 0H



, obviously overlap with L
cJ . Then, as 

H


 increases, the T
cJ  is gradually reduced, and the dashed 

line shifts to the left in the graph. The threshold field in-
creases for avalanche nucleation along the edges where T

cJ  
flows. At the same time, the threshold field at the other 
pair of edges remain unchanged. Thus, more avalanche 
events are expected to start there, in full accord with the 
anisotropy seen in Fig. 16(b). 

As H


 increases even further, the dashed line in Fig. 19 
at some point will enter the region where avalanches can 
no longer occur. Thus, avalanches will then only nucleate 
from the two edges along which the L

cJ  flows, again in full 
agreement with the MOI observations. The entire scenario 
of different avalanche activities is therefore qualitatively 
explained. 

Note here also the similarity in the flux avalanche pat-
terns in Fig. 14 (upper) and (lower), and in Fig. 18(a) and (d), 
respectively. The two quite different systems display the 
same change in the avalanche behavior in spite that the 
origin of anisotropy is quite different in these two cases. 

8.3. Active triggering of avalanches 

When the inverted V-shaped flux injector is activated 
by passing a current puls at a sufficiently low temperature, 
the result can be to trigger an avalanche event. Shown in 
Fig. 20(a) is an example of an avalanche triggered by a pulse 
of magnitude 1.0 A and duration 200 ms. The 200 nm thick 
Nb film was here initially zero-field cooled to = 2.5T  K. 
As expected, the avalanche was rooted at the flux injection 
point, and displayed a dendritic morphology, which when 
repeating the experiment never reproduced itself. 

Interestingly, when the flux injection experiment was 
carried out when the same sample was initially cooled in 
the presence of an in-plane field of H



 = 1.5 kOe oriented 
as shown in panel (b) of Fig. 20, the behavior changed 
dramatically. This image shows that in this field-cooled 
condition the avalanche was not allowed to develop be-
yond its incipient stage. 

Again, this can be explained by the fact that a frozen-in 
field H



 shifts cJ  flowing in the transverse direction to 
smaller values. With the H



 frozen-in as indicated in 
Fig. 20, the T

cJ  — the current density flowing along the 
edge where the injector is located, becomes too small for 

Fig. 18. Magneto-optical images of the penetration of perpen-
dicular flux in a square Nb film, where in-plane fields, indicated 
by the arrows, were applied during the initial cooling to 2.5 K. In 
panels (a)–(d) the H



 were 0, 0.7, 1.0 and 1.5 kOe, respectively. 
From Ref. 88. 

Fig. 19. Generic curve for threshold applied perpendicular field 
for the onset of thermomagnetic avalanche activity in supercon-
ducting films versus their critical sheet current. From Ref. 88. 
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a finite threshold field to exist. Thus, the H


-induced re-
duction in T

cJ  stabilizes the superconducting film with re-
spect to onset of avalanche activity. 

9. Conclusions 

In this paper, we have reviewed recent theoretical and 
experimental work on thermomagnetic instability leading 
to magnetic avalanches in thin-film superconductors. Our 
theory is macroscopic — it is based on analysis of the 
Maxwell equations and local thermal balance between the 
Joule heat release and its spreading along the film and into 
the substrate. The properties of the material are taken into 
account through realistic nonlinear current-voltage curve, 
as well as through the thermal characteristics of the system. 

Starting from the magnetic flux distribution in the criti-
cal state we first performed the linear stability analysis. 
That was done analytically, and as a result explicit onset 
conditions, i.e., thresholds in temperature, electric field and 
applied magnetic field were obtained as functions of mate-
rial parameters. We considered both bare films and the 
films coated by a layer of a normal metal allowing to con-
trol the stability regime. 

The resulting stability diagram demonstrates a rich phy-
sical picture showing several regimes of the thermomag-
netic instability including both monotonous and oscillatory 
growing modes. The oscillatory modes are more unstable 
than the monotonous ones. As a result, large-scale ava-
lanches can nucleate directly from the Bean critical state, 
rather than being mediated by non-thermal micro-ava-
lanches, which up to now was the most plausible explana-
tion for the occurrence of dendritic avalanches in films 
during slow field variations. 

The analytical work is supplemented by numerical sim-
ulations allowing to analyze the propagation of dendritic 

avalanches at different stages. As a result of the analysis 
characteristic time scales for the thermomagnetic instabil-
ity were revealed. In particular, the striking phenomenon 
of ultra-fast propagation of the avalanches is now under-
stood. We present main concepts of the numerical proce-
dure we have used. 

In the rest of the paper we analyzed several manifesta-
tions of the thermomagnetic instability observed experimen-
tally using magneto-optical imaging. This method turned 
out to be extremely fruitful since it possesses both suf-
ficiently high spatial and temporal resolution. As an example 
of specific features of the instability we discuss the exper-
imentally observed ray-optics behavior of the dendrites’ 
trunks. To observe such a behavior samples coated by 
strips of normal metal were used. Another example is ob-
served dramatic anisotropy of the flux patterns observed in 
weakly anisotropic samples. We present main experimental 
results regarding the aforementioned phenomena and pro-
vide the explanations based on the theory described in the 
first part of the paper. 

To summarize, we conclude that main observed fea-
tures of the thermomagnetic instability in thin supercon-
ducting films are now understood. 

THJ acknowledges the hospitality of Prof. Barbara 
Neuhauser during his sabbatical stay at San Francisco State 
University. 
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