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Localized hole states in La,CuO,_ s

P. Rubin and A. Sherman

Institute of Physics, Estonian Academy of Sciences, Riia 142, EE-2400 Tartu, Estonia

Bound hole states induced by excess oxygen in LapCuQy4,; are studied in the framework of the extended

Hubbard model with the use of the spin-wave approximation. It is shown that the bound states are subdivided into two
groups connected with different perturbations introduced by the excess oxygen in an antiferromagnetically ordered
crystal. We interpret the two-band structure of the impurity reflectivity spectrum as a manifestation of these two groups
of bound states. Calculated binding energies are in agreement with experiment.

It is well known that in La,CuO 4 free carriers ap-

pear as a result of rare-earth substitutions or due to
excess interstitial oxygen. Along with the creation of
free carriers these structure defects induce bound sta-
tes in the carrier energy spectrum. These states were
detected in different experiments [1 ]. Of special inte-
rest are measurements of the reflectivity spectrum of
La,Cu0,, 5 , carried out in Ref. 2, where two bands

were observed in the forbidden gap. To clarify the
nature of these two bands we have carried out a theo-
retical investigation of the bound hole state with the
use of the extended Hubbard model. This model gives
a realistic description of the CuO, planes where car-

riers are located.

Lightly doped samples used for measurements of
reflectivity spectra {2] were ordered antiferromag-
netically. This ordering has a pronounced effect on
bound states that can be most easily seen by the ex-
ample of a substitutional isoelectronic impurity in the
copper position of the CuQ, plane [3]. For a given Néel

state carriers, which are characterized by a certain
value of the z projection of the spin S_, are mainly

located on one magnetic sublattice. We shall call it the
«own» sublattice for these carriers, in contrast to the
«alien» sublattice with a smaller wave-function am-
plitude. A perturbation produced by the impurity in
the copper position resides mainly on one sublattice
and thereby influences differently states on the same,
and on the other sublattices. As a consequerice, two
systems of bound states related to perturbations on
the «own» and on the «alien» sublattices arise [3]. For
the other Néel state, analogous bound states, appear
differing only in the sign of S, . A substitutional iso-

electronic impurity in the oxygen position of the
CuO, plane produces equal perturbations on both
sublattices. However, in this case, too, the arising
bound states can be attributed approximately to per-
turbations on the «own» and «alien» sublattices [4].
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As will be seen below, the considered problem can
also be described by a Hamiltonian with equal pertur-
bations on both sublattices of the CuO, plane. Thus,

the mathematical descriptions of bound states indu-
ced by an interstitial oxygen and by the in-plane iso-
electronic oxygen impurity are close. We have found
that the observed two-band structure of the impurity
reflectivity spectrum is connected with the mentioned
two groups of bound states. )

The Hamiltonian of the extended Hubbard model
can be presented in the form [5] '

Hy= 2 H, + 2tla2 (d:wwmﬂ,a + H.c.) ,
m

mao

+
Hm = Unm,+l nm,—l +A z ‘Pma‘Pmo + (1)
a

‘ o+
+2thy ), (dma Prmo T+ H.c.) ,

4

where d:w is the creation operator of electrons in the
3dx2_yz orbitals of copper in the plane site m with spin

o=z1, (p;; o, is the Fourier transform of the operator

‘P:(, = (ﬂk/2 Vﬁ) %exp (—ikm) p;+3’g ,
m

constructed from the creation operators p;'w;,o of
electrons in the 2p_ orbitals of oxygen. Complemen-

tary linear combinations of these operators, which do
not hybridize with the 3dx2- 2 copper orbitals, were
omitted in Eq. (1). & = a/2 = (+4a/2,0), (0, £a/2),
where a is the in-plane copper distance,

By = {1 + [cos (ka) + cos (kya)] /2}_1/2;

N is the number of sites; U, A and ¢ are the Hubbard
repulsion on copper, the Cu-O promotion energy and

hybridization, respectively; n_ = d:wdma ,
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Ay = N1 z exp (&km) ﬁ;l , y= (0,.a). By a.nalogy W.ith the Wajmnier exciton tlx.e
M dielectric description with the high-frequency di-
electric constant e can be used for potentials V., and

V, , as the distances 7, and o between the intersti-

tial ion and the respective plane sites are larger than
#/ mEG)” 2<1A, where m ~ 10m, is the carrier

effective mass [7] and Eé = 2 eV is the forbidden

Ay = 0.96, A, = 0.14 [other components of 1 are
small and the respective terms are omitted in (1) ]

An interstitial oxygen ion 0% is positioned above a
plane oxygen halfway between two neighboring
CuO, planes [6]. Supposing that the ion is located

. Thus,

above the plane oxygen site | — y/2, we add the fol- gap. Thus
lowing terms to the Hamiltonian: v _ 20% 3

= CU,O = er
H, =V, (nl + "l—y) + VO"lfy/Z , ) E Cu,0
where [we use the electronic picture in Eq. (2), therefore
potentials V- and V, are positive). In the notation of
_ +
= 2 Mg > Meyn2 = 2 Pi_y/2,0P1-y/2,0 0 Eq. (1), the terms (2) can be rewritten as
132 .
- 0/ + + + +

Hi - 2 VO 4 ((Pla Pro + (pl—y,a (Pl-y,a + Plo (pl-—y,a + ‘Pl—y,a (pla) + VCu (nl + nl—y) e )

where B, = 1.29 is the m = 0 component of the Fourier transform of 8, (again we have dropped small terms).
For the low-energy part of the spectrum and for parameters of La,CuO, [8 ] Hamiltonian (1) can be reduced

[5 ] to the effective -/ Hamiltonian. This reduction is based on the separation of the Hamiltonian into the one-
and two-site parts as indicated in Eq. (1). These two parts are characterized by energy parameters differing by
one order of magnitude, that provides an appropriate starting point for perturbation theory. The zero-order,
one-site, part of the Hamiltonian has two sets of states well-separated from other states. These states, which
correspond to unoccupied and occupied states of the t-J model, can be written in the form

_ R + + + + + L4 +
lm2) = l:czn VI (‘Pm,+1 A1~ Pm,—1 dm,+l> * ®Pm-1Pm+1 T C23%m -1 dm,+l] ) s
(&)
_ + 4+ + + g+ +
lm3a) - [%l‘pma (Pm,—a dma + C32(pma dm,—a dma] lvm) ?

where lv ) is the site vacuum state and the coefficients ¢;jare obtained in the course of the diagonalization of
H_, [recall that besides (5) there are two other occupied oxygen states which do not hybridize with copper; thus,

the unoccupied and occupied states of the -J model correspond to four- and five-electron site states of the
Hubbard model, respectively ]. Omitting unessential terms, Hamiltonians (1) and (4) can be rewritten in terms
of state vectors (5)

‘ J
Hy=1,. 2 Im + a, 3o¥m + a, 21 Im2Xm3ol + 3 2 S, S ©

m+a ’
mao ma

H, = 12 el2X121 o

where

8% = 8% +ioS? = |m3o)¥m3,—-0|,S* =1 o|m3o)m3o]| ,
m m m m 2

ag

are the components of the spin operator S, ;
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2
Vo Bo

_ 2 2 _ 42 _ 2
e=—7 (2022+c2, 2c3; 032) +

2 2 2 2.
+ Veu (Czl + 2093 — 3 — 2332) ;

I'=11-y, and loye and J are the effective hopping

and superexchange constants, respectively (in terms
of the coefficients <y and site energies these constants
are given in Ref. 5).

Further simplifications of Hamiltonians (6) and (7)
can be achieved with the use of the spin-wave ap-
proximation which has been shown to be remarkably
accurate in the description of undoped and lightly
doped samples. The approximation amounts to a neg-
lect of terms of third and higher orders in the spin-
wave operators b , introduced in Eq. (6) by the for-

mulas

st=o 5 P+t o P

m"m-m m m-"m °?
1 +1,+ ¥
stl=siht, o =Vi-pts

S% = exp (if1-m) (—'ﬂ-b*‘b )

2 m “m
where
1= (n/a,n/a), P, = [1 + oexp (iH-m)] /2

Let us introduce the hole creation operator

= 2 P4 im2)m3ol

for the Néel state

INy =TI, > P im30)

(the second Néel state and the respective hole ope-
rator can be obtained by substituting PJ with

a,a’

1K) = V2/N Z exp (KkL) I:Ok h; * o 2 exp (lk(a ta )> ( a+a’

where lcg, | >> l¢;, | and the summation over L pro-

ceeds over sites of one («own») sublattice.

After the unitary transformation Eq. (9) splits into
two equations for bound states belonging to the A’
and A"’ representations of the C_ group, respectively.

We denote corresponding states as A 1’ y Az' y A3’ , and
A’'. Tt can be shown that the A2’ , A3' ,and A"’ are

connected mainly with the perturbation on the «alien»
sublattice and the A | level is due to the perturbation

on the «own» sublattice.
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1 - P‘[’,n in these formulas). After the unitary trans-

formation [9] which diagonalizes the spin part of the
Hamiltonian, it reads

H =H)+ H;=

= effz [:m+a m m m'’ (um’+a +Um:> + H.c.]+

mm’a
+— Z Wy b m Bt m +£<nl+n|_y) , 8

where u, , v, and w,, are the Fourier transforms of

1 - yi , res-
pectively, a, = WBIn[(1 +y )/ (1 —v)l, ¥ =
= [cos (k,a) + cos (k,a)1/2, i = A h, . Due to the
fast decrease of u + v, and w,. with the growth

cosh a,, — sinh a, and w, = 4

m’'+a
of im'l, only the components with m' = (*gq, 0),
(0, xa) for the sum in the first, kinetic energy term
and components with m' = (0,0), (*a, *a),
{(%x2a, 0) ,(0, £2a) for o in the second, magnetic
energy term will be retained in Eq. (8) in subsequent
calculations. If the site I in H belongs to the «own»
sublattice, the site 1 — y is of the «alien» sublattice.
Thus, as mentioned above, the impurity Hamiltonian
contains two equal terms corresponding to perturba-
tions on both sublattices. '
The equation for the bound states reads

det (1 (E-Hy) 'H}) =0, )

where / is the unit matrix and E is the energy of the
bound state.

We solved Eq. (9) in the subspace of states forming
the lowest band of H; . For J/t . = 0.2 these states

correspond to S, = *1/2 and can be written approxi-
mately in the form [9]

+ 5+
)bL hL+a]:N>, (10)

For parameters of La,CuO, [8 ] the ratio J/¢, can

be estimated to lie in the range 0.2-0.5. Calculated
energies of the states A", A/, and 4, , counted from

the bottom of the band Eq. (10), are listed in Table
for some values in this range. The high-frequency
dielectric constant e, = 5 [2] was used in these cal-

culations. The A, level is split off the band bottom

only at large perturbations and therefore is not con-
sidered here.
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As follows from Table, the levels A’' and 4,, which

appear due to the perturbation on the «alien» sublat-
tice, are close in energy. The A/ level, connected with

the perturbation on the «own» sublattice, is much
deeper. Thus, one can speak about two groups of
bound states connected with different perturbations
and well separated in energy.

Table
Bound level energies as a function of the ratio J/teff
AE, eV
T s
A" 4 A

0.214 0.063 0.066 0.467
0.275 0.059 0.063 0.472
0.421 0.053 0.056 0.492

We can identify these two groups of bound states
with two bands observed [2 ] in reflectivity spectra of
La,Cu0, s at0.13 and 0.5 eV. These values contain

a contribution of the polaronic effect that apparently
comprises the main part of the difference between the
observed positions of the reflectivity bands and the
binding energies in Table. These energies were ob-
tained in the rigid lattice, i.e., without considering the
polaronic effect. We note that the simple dielectric
description for this effect is inapplicable in the con-
sidered case. The binding energy of the levels,
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without a polaronic contribution, can be obtained
from measurements of the Hall effect. For the band at
0.13 eV this energy was found [2] to be 0.035 eV
which is close to the values given in Table for the A"’
and A, levels. Thus, the polaronic shift can be ap-

proximately estimated as 0.08 eV. The differences
between the position of the second band, 0.5 eV, and
the binding energies of the A| level in Table are also

close to this value.
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