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Within the framework of the Blonder-Tinkham-Klapwijk formalism we calculate and analyze the conducta-
nce of the normal graphene — s-wave and independently d-wave pairing superconductive graphene junction.
The eigenfunctions, the Andreev and the normal reflection rates are obtained by solving the Dirac-Bogoliubov-
de Gennes equations. The Fermi velocity is believed to be different in the normal and in the superconductive re-
gions. We consider the options of gapless and gapped graphene for both cases: s-wave and independently d-wave
pairing. It is demonstrated that the characteristics of the junction considered are sensitive to the ratio vp\/vgg
where vgy, Ugg are the Fermi velocities in the normal and the superconductive graphene respectively. This con-
clusion refers to the Andreev reflection as well as to the normal one. The first of them is shown to be the domi-
nant process for the formation of the conductivity. These results are true for an arbitrary value of the
orientational angle of the d-waves. Each of four cases considered: s-, d-wave pairing and gapless and gapped
graphene displays its own specific features of the conductance. The dependence of the conductance on the exter-
nal electrostatic potential as well as on the Fermi energy is also analyzed in every case. The obtained results may
be useful for controlling the transport properties of the normal graphene-superconductive graphene junction.

Keywords: graphene—superconductive graphene junction, Andreev and normal reflections, conductance, Fermi velocity.

1. Introduction

Recently, the researchers close attention was focused on
the so-called Dirac materials ([1] and references therein).
These include some various and diverse substances such as
graphene, topological insulators, d-wave high-temperature
superconductors, superfluid phase “He etc. (see the corre-
sponding table in [1]). The unifying factor for them is that
their low-energy fermion excitations are subjected to the
Dirac equation, and the dispersion relation of quasi-
particles is linear in nature. As a result, Dirac materials
have many common features [1]. It should also be empha-
sized that the Dirac materials will be of great practical im-
portance, since some of their properties are robust against
external perturbations due to, in particular, symmetry with
respect to the inversion of time [1]. The key value that
characterizes the dispersion relation of the Dirac quasi-
particles is the Fermi velocity. Therefore, it is clear that
significant efforts have been made to be able to control this
value and also to use this control in practice [2-12]. For
this purpose, a number of different methods were proposed
and experimentally tested. The Fermi velocity of charge
carriers in various structures is made to vary in space by
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some special techniques, e.g., by the appropriate doping
[3], placing a grounded metal plane close to graphene sheet
(which makes electron-electron interactions weaker and
thereby modifies the Fermi velocity) [2], stretching a small
region of a graphene sheet [4] and others.

As graphene is one of the Dirac materials much atten-
tion has been paid to the study of graphene and various
graphene-based structures in recent years. This is due to
nontrivial properties of graphene such as a linear disper-
sion relation for the quasiparticles, whose behavior at low
energies is described by an equation similar to the Dirac—
Weyl one, unusual quantum Hall effect, the property of
chirality, the Klein tunneling, high mobility, ballistic
transport etc. [4]. And it should also be borne in mind that
graphene is a promising material for modern electronics.
One of the priority directions is to study the various possi-
bilities of controlling the energy spectrum of the graphene-
based structures. The electron-wave propagation in the
graphene-based structures with the tunable Fermi velocity
was investigated in [2-12] including the effect of the mag-
netic and the electric field. At the same time the pristine
graphene can also be induced by the external forces to be-
come the superconducting material, for example, super-
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conductivity can be induced in a graphene layer in the
presence of a superconducting electrode near it due to the
proximity effect. That’s why a lot of works were devoted
to exploring of the properties of such structures as the super-
conductive graphene, graphene-superconductive graphene,
graphene—insulator-superconductive  graphene, graphene-
based Josephson junctions [13-25]. However, the effect of
tuning of the Fermi velocity on the characteristics of these
contacts has not been investigated so far. The Fermi veloci-
ty values were assumed to be equal in every region of the
structure considered in all of the cited references. From the
above, it follows the importance of the problem of analyz-
ing the transport features of charge carriers in the junction:
normal graphene—superconducting graphene due to differ-
ent values of the Fermi velocity in the normal and super-
conducting parts of the contact. The present work is devot-
ed to this analysis. Both the gapless and the gapped
graphene are taken into consideration.

Also we would like to note that one can find in litera-
ture a large variety of pairing models used in different
junctions which include the superconductive regions (the
junctions may not contain graphene as their part, obvious-
ly): s-, d-, p-, f-, g-, and other models of wave pairing (see,
e.g., [13-34]). The Fermi velocity is believed to be equal
in every region of the considered junctions in all cited ref-
erences. But, firstly, it may not be so in fact and, secondly,
one can change the Fermi velocity value in one or another
junction region specially (see, e.g., [2-12]). The main goal
of the present work is to show, in the relatively simple
models, that it is possible to control effectively the
transport properties of the related junctions by tuning the
Fermi velocity values in one or another junction region.
For this purpose we use the relatively simple models of s-
wave (as for example in [14,16,20,21,33]) and indepen-
dently d-wave (as, e.g., in [15,16,23]) pairing.

The paper is organized as follows. Section 2 presents
the considered model and needed formulae and we discuss
the results of calculations for the cases of the s- and d-
pairing in Sects. 3, 4, respectively.

2. Model and formulae

Let the normal and the superconductive parts of the
junction studied be placed along the Ox axis so that their
interface locates at a point x = 0. Let the superconducting
order parameter has the form (s-wave pairing, as for exam-
ple, in [14,16,20,21,33]):

Ag =€"A9(x) 1)

where ¢ is the superconductive phase, 3(x) is the Heavi-
side unit step function. The eigenfunctions which describe
the quasiparticle in this system are subjected to the Dirac—
Bogolyubov—de Jennes equation
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H-U(x)
A (x)

where H = —ihvg (640y + o0y ) is the Dirac Hamiltonian,
U the external electrostatic potential applied to the super-
conducting region (it is believed that an additional elec-
trode covers the superconductor region), vg is the Fermi
velocity, oy, oy are Pauli matrices for the pseudospin.
The solution of the equation (2) is the four-component
electron and hole spinors which are of the following form:
in NG region
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Units 7=vy =1 are adopted, vy being the Fermi ve-
locity in the pristine graphene; we use the dimensionless
units for the Fermi velocity vg — v /g, and present the
energy quantities in meV for convenience.

Angles of incidence of the quasiparticle wave on the
normal and the superconductive regions of the junction
considered are associated by the following equality

kn Sin®p =kg sin@g. )

(The analogous to (1)-(5) formulae have been widely used
in literature, e.g., in the papers [13-23]).

The coefficients in (3), (4) can be found by applying the
following appropriate boundary conditions on the eigen-
functions

Jorn ¥y (x=0)=fors ¥s (x=0), (&)

(see, e.9., [2,3,5-10]).

As a result we obtain for the coefficients of the Andreev
and normal reflections the expressions which are given in
the Appendix.

The conductivity G of the junction investigated can be
calculated due to known Blonder-Tinkham-Klapvijk for-
malism [35] which expresses G in terms of r, and r,:

G(E,Er.U)=Go [ [L+]ry (E. O E¢ U) -

O3

- |1 (E,©y E¢ U)[ Tcos(0y )doy )

where G is the ballistic conductivity of the normal gra-
phene. The equation (7) yields the conductivity of the struc-
ture under consideration for arbitrary parameter values.

3. Results and discussion for the case of s-wave pairing

Figurel shows the dependence of the normalized (di-
mensionless) conductivity G =G/Gy on the dimension-
less energy of quasiparticles E'=E/A, in the case in
which a normal part of the considered contact is the gap-
less graphene (A =0). The upper and the lowest curves
in ra (E) and G”™(E') dependences correspond to the values
of the Fermi velocity in the superconductor equal to 1 and
2 respectively, the third curve refers to vgg =1.5; for the
rn (E") dependence the upper and the lowest curves refer to
vgs =2 and 1 respectively. (We put an angle of incidence
of the quasiparticle wave on the normal region to be equal
to n/6 throughout the text, the superconductive parameter
Ag =12 meV [4]).

As follows from references [2,3,5-10] the magnitude of
the Fermi velocity may vary approximately up to 4 in relation
to this value in the pristine graphene. Curve 1 shows that the
calculations of our work are in agreement with the results of
the previous studies [13-23] according to which conductivity
G is not dependent on energy E in the range where it does
not exceed the size of the superconducting gap. However, we
see that in the case of different values of the Fermi velocity
vey and veg the dependence of conductivity on the excita-
tion energy of quasiparticles in the above energy range
0 < E < Ag takes place. This result is qualitatively different
from that obtained in papers [13-23] and it shows that the
value of the conductivity of the system under investigation
depends on energy E throughout its whole range.

The larger is the difference between the Fermi velocities in
the normal and the superconductor areas, the more substantial
effect on the conductivity we observe. For all the cases con-
sidered in which vgg # vpy, the magnitude of conductivity
has a peak-like maximum at a point E = Ag; the maximum
value of G” grows with vgg decreasing (if vgg > vpy ).
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Fig. 1. Functions of ry(E"), R (E"), G*(E') for the gapless normal region of the junction considered (A =0). The upper and the low-
est curves in ra (E) and G*(E’) correspond to the values of the Fermi velocity in the superconductor equal to 1 and 2 respectively, the
third curve refers to vpg =1.5; for the ry (E') dependence the upper and the lowest curves refer to vgg =2 and 1, respectively.

578

Low Temperature Physics/Fizika Nizkikh Temperatur, 2019, v. 45, No. 5



Tunneling conductance of the s-wave and d-wave pairing superconductive graphen—normal graphene junction

Consider further the results obtained for contacts: the
gapped normal graphene—superconducting graphene. First
of all, note that the conductivity of this system G’ reveals
a complicated dependence on its parameters and the results
of calculation of G essentially depends on the interplay
between the parameters such as the Fermi velocity in the
normal and the superconducting regions (ratio vgg/vgy ),
the magnitude of a gap in the normal area Ay, an external
electrostatic potential U, the Fermi energy Ep. As for the
case of Ay =0 the larger is the difference between the Fer-
mi velocities in the normal and the superconductor areas, the
more substantial effect on the conductivity we observe.

Note also that the examined characteristics of the NG-
NS contact containing the gapped graphene in the N region
have some quality differences from the case of a contact
with the gapless graphene. So in the former case, there is a
significant functional dependence of conductivity on the
potential U, as well as on the Fermi level Eg, while the
conductivity of the system which includes the gapless
graphene is independent of variables U and Eg. Because
of this, in particular, in subsequent figures, we present the
results of our calculations for two different values of U,
namely U; =0 and U, = 5.6 eV.

Figure 2 shows the dependence of the normal, of the
Andreev reflection, and of the dimensionless conductivity
G" on the excitation energy for NG-NS contact for the
following parameters: Fermi velocity in N region vgy =1;
the gap width in N region 56 meV, the upper and the lower
curves in this figure correspond to values of potential U:
U; =0 and U, = 5.6 eV vpg= 1.5. It is evident that the
functions r, (E) and r,(E), i.e., the rates of the Andreev
and the normal reflection respectively have the peak-like
extremes at a point E = Ag, which is equal to the width of
the superconducting gap. It is true for arbitrary values of

the potential U. However, the behavior of the Andreev and
the normal reflection rates has the opposite character,
namely the function r, (E) increases with energy ~ from zero
and reaches a maximum at a point E = Ag; instead the func-
tion r,, (E) decreases with E increasing, reaches a minimum
value at a point E = Ag, and then grows. The value of con-
ductivity G”™(E) is mainly determined by the Andreev reflec-
tion process and the shape of the corresponding curve is simi-
lar to that of the function r, (E). We would like to emphasize
here two important facts: 1) conductivity depends on the po-
tential U (unlike for the case where Ay =0, vgy =1; 2) in-
creasing in potential U leads to higher values of the conduc-
tivity unlike for the case of identical Fermi velocity values
inN and S contact regions (vgg =vgy =1, Ay #0). This
behavior is due to the process of the Andreev reflection. Note
also that the conductance increases with decreasing of the
Fermi velocity in the superconducting region vgs.

Figure 3 presents the same functions as in Fig. 2, but for
the case of bigger gap in the normal region AN = 112 meV.
For larger values of Ay, there is an interesting result: the
conductivity reveals the non-monotonic dependence on the
Fermi velocity values in the superconductors region vgg.
In this case, contrary for the case of smaller values Ay the
conductivity increases with increasing vgg, then reaches
its maximum at the value wvgg which is approximately
equal to 1.6, then G is reduced. This behavior of the con-
ductivity as a function of the Fermi velocity is again due
the process of Andreev reflection.

Regarding the dependence of the Andreev, of the nor-
mal reflections and of the conductivity on the Fermi energy
Er we would like to note the main features of these rela-
tionships which are as follows:

1) unlike for the case of Ay =0, vgy =1 these func-
tions depend essentially on the Fermi level Eg;
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Fig. 2. Plots of ry(E'), r(E", G*(E') dependencies for the gapped normal region with the values of AN = 56 meV, vgg =1.5. The
upper and the lower curves in this figure correspond to values of potential U: U; =0 and U1 = 5.6 eV, respectively.
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Fig. 3. Plots of the Andreev, of the normal reflections and of the conductivity dependencies on energy for the values of Ay = 112 meV,
vgg =1.5. The upper and the lower curves in this figure correspond to values of potential U: Uy =0 and U, = 5.6 eV, respectively.

2) decreasing in Eg leads to the increased conductivity
and not to its decreasing as for the case vgy =1, Ay #0.

3) functions ry(E"), r,(E"), G*(E’) become practically
independent on U for sufficiently large values of Eg.

4. Results and discussion for the case of d-wave pairing

Now we consider the case of the d-wave pairing and

modeled it with the help of the so called d(xziyz) model so

that the superconducting order parameter is of the form (as
e.g., in [15,16,23]):

Ag =€'"Aq c0s (205 — 20))9 (X) (8)

where 39(x) is the Heaviside unit step function, o is the
superconductive phase, ®g angle of incidence of the
quasiparticles, o the rotational angle. We put an angle
of incidence of the quasiparticle wave on the normal
region to be equal to =/6, the superconductive parame-
ter Ag = 12 meV [4].

Note that as in the case of s-wave pairing conductivity
of this system G" displays a complicated dependence on its
parameters and the results of calculation of G essentially
depends on the interplay between the following parame-
ters: the rotational angle, the Fermi velocity in the normal
and the superconducting regions, the magnitude of a gap in
the normal area Ay, an external electrostatic potential U,
the Fermi energy Eg.

Figure 4 shows the dependence of the normalized (di-
mensionless) conductivity G =G/Gy on the dimension-
less energy of quasiparticles E'=E/A, in the case in
which a normal part of the considered contact is the
gapped graphene, Ay =56mV the value of the rotational
angle a is equal torn/6.

As in the case of s-pairing there is a significant func-
tional dependence of conductivity on the potential U, as

580

well as on the Fermi level Eg, so, in subsequent figures,
we present the results of our calculations for two different
values of U, namely U; =0 and U, =5.6 eV. (Note that
the conductivity of the system which includes the gapless
graphene is independent of variables U and Eg). It is seen
from Fig. 4 that the conductivity of the structure explored
has the peak-like extremes not at the energy point equal to
the width of the superconducting gap E = A, as it is for
the case of the s-wave symmetry, but there is a substantial
shift of this peak to lesser excitation energies due to the
nonzero value of a. It is true for arbitrary values of the
potential U . The value of conductivity G*(E) is mainly
determined by the Andreev reflection process and the
shape of the corresponding curve is similar to that of the
function r, (E) — as for the case of the s-wave pairing.
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Fig. 4. The dependence of the normalized (dimensionless) con-
ductivity G*=G/GO on the dimensionless energy of quasi-
particles E' = E/Ag, values of Ay = 56 meV, vpg=1.5, oo =n/6.
The upper and the lower curves in this figure correspond to
values of potential U: U; =0 and U, = 5.6 eV, respectively,
Erp = 0.56 eV.
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1

2 5 4 6
E--10
Fig. 5. The dependence of the conductivity on energy for o = n/4,
AN =56 meV, vpg = 1.5. The upper and the lower curves refer to
values of U = 0; 5.6 eV respectively, EF = 0.56 eV.

0.5

The upper and the lower curves in this figure correspond
to values of potential U: namely U; =0 and U, =5.6 eV,
respectively, Eg = 0.56 eV.

Figure 5 presents the conductivity as a function of energy
for the value of o which is equal to /4. Here the shift of the
maximum peak is essentially larger than for the case of
o.=t/6: hence the shift of the observed curves is very sensi-
tive to values of the rotational angle in the d-wave pairing.

Figure 6 presents the G vs E function for the following
values of the difference between the Fermi velocities in the
normal and the superconductor areas: vgg = 1.2, a=n/6
(Fig. 6(a)), and vgg = 2, a=n/4 (Fig. 6(b)), AN = 56 meV.
We see from Figs. 4-6 that the larger is the difference be-
tween the Fermi velocities in the normal and the supercon-
ductor areas, the more substantial effect on the conductivi-
ty we observe. For all the cases considered in which
Ugs # Upy. the magnitude of conductivity has a peak-like
maximum at a point that depends on the value of «; the
maximum value of G grows with vgg decreasing inde-
pendently on a (if vpg > vgy).

In Fig. 7 the function G*(E) is plotted for the case
of bigger gap in the normal region AN = 112 meV. As for
s-wave pairing, for larger values of Ay, an interesting
result is observed: the conductivity reveals the non-
monotonic dependence on the Fermi velocity values in
the superconductors region vgg. In this case, contrary for
the case of smaller values Ay the conductivity increases
with increasing vgg, then reaches its maximum at the
value vgg which is approximately the same for different
values of a, then lessens.

And we see that not only the location of the maximum es-
sentially depends on a but the magnitude of the conductivity
also is substantially dependent on the rotational angle value.

Next we would like to note that the function G*(E) de-
pends substantially on Eg and it is true for an arbitrary
value of a. Decreasing in Eg leads to the increased con-
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Fig. 6. The dependence of the conductivity on energy for the
following values of the difference between the Fermi velocities in
the normal and the superconductor areas: vgg = 1.2, a=7/6 (a),
vgps = 2, a=n/4 (b), Ay = 56 meV. The upper and the lower
curves in Figs. 6(a) and (b) correspond to values of potential U:
Uy =0 and U, = 5.6 eV, respectively, Eg = 0.56 eV.
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Fig. 7. The dependence of the conductivity on energy for the case
of bigger gap in the normal region Ay = 112 meV, o =n/6,
vgs = 1.5. The upper and the lower curves correspond to values of
potential U: Uy =0 and U, = 5.6 eV, respectively, Ex =0.56 eV.
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ductivity and not to its decreasing as for the case vgg =1,
Ay # 0. The conductivity becomes practically independent
onU for sufficiently large values of Eg .

Considering the case of the junction studied with the gap-
less normal graphene we must note the following. Inde-
pendently of values of o the conductivity does not depend on
energy in the region where E < Ag — as for the case of s-
pairing. The larger is the difference between the Fermi veloci-
ties in the normal and the superconductor areas, the more sub-
stantial effect on the conductivity we observe for each value
of o. As for the case of the gapped normal graphene, for all
the cases considered in which vgg # vgy , the magnitude of
conductivity has a peak-llke maximum at a point E = Ag ; the
maximum value of G~ grows with ovgg decreasing (if
UEs > vpy )- The function G"(E) is independent on the ex-
ternal potential U for the case Ay =0, vgg #1.

5. Conclusions

The following nanoscale structure is considered: the s-,
and independently d-wave pairing superconducting graphene
in contact with the normal graphene. It is believed that the
Fermi velocity value in the superconducting graphene may
differ from that in the pristine graphene. With the help the
Blonder-Tinkham-Klapwijk formalism, the conductivity
G is calculated taking into account the fact that the exter-
nal potential U is applied to the superconducting part of
the given structure. The coefficients of both the normal and
the Andreev reflection are evaluated within the framework
of the Dirac—Bogoliubov—de Gennes equations. It is shown
that the determining factor in the formation of the conduc-
tivity is the process of Andreev reflection. A characteristic
feature of the G(E) dependence is the presence of a peak at
the energy point E =Ag, Ag being the superconducting
energy gap in graphene which depends in particular on the
value of the rotational angle. The value of the maximum
(peak) value of G(E), as well as the G(E) curve steepness
essentially depends on the value of the Fermi velocity vg.
The dependence of the conductivity on the potential U as
well as on the Fermi level Eg is analyzed for different values
of the rotational angle. The obtained results of the present
work may be useful for controlling the conductivity of the
considered junction due to changing of the Fermi velocity in
each of the junction regions. And we would like to emphasize
that this statement can be related to a lot of other junctions
containing the normal and the superconductive regions, such
as considered in, for example, [27-34].

Appendix A

Expressions for the Andreev and the normal reflections
are as follows:
vue ®ab {cu2 +do? :l
rh=c———|-1,

[, =— =
a f v 'n -
J

J
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a=q+l,b=1+p,c=q-1,d=n-1, j=u%ef —v?gh,
h=l+n,e=q+n, f=1-p,g=q-p.
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and we account for the condition Eg, Ay > E.
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TyHenbHa NpoBIAHICTb KOHTAKTY: HAANPOBIAHWUIA
rpadeH i3 S-xBUIbOBMM Ta d-XBUNbOBUM
cnaproBaHHsIM—HOpMarnbHU rpadeH

A.M. Koponb

VYV pamkax ¢dopmanizmy bBrnonnepa-Tunkxema—Kiansiiika
pO3paxoBaHO Ta MPOAHAIII30BAHO MPOBIJHICTH KOHTAKTY: HOp-
MaJIbHUH TpadeH—HaAIPOBIAHUN TpadeH i3 S-XBUILOBHM 1 Hesa-
JIEKHO O-XBHJIBOBHMM CIaproBaHHSIM. BracHi GpyHKuii, koedimienTn
AHAPIiBCHKOTO Ta HOPMAJILHOTO BiTOMBAaHHS OJepiKaHi 3a JOIOMO-
roro po3B’si3ky piBHsiHb [ipaka—boromotosa—ne XKena. Posrsiny-
TO BHIIAJKH OE3MIUIHOBOTO Ta MIUILOBOTO TpadeHy aius 000x
CHTyawiii: S-XBHJIBOBOIO i He3ale)KHO U-XBHIBOBOTO CIIApIOBaH-
Hi1. [lokazaHo, IO XapaKTEPUCTHKH JAHOTO KOHTAKTy € UyTIIH-
BHMH JI0 BiIHOWICHHS Upp/UEg, A€ Vg, Upg — LIBHAKOCTI Depmi
B HOPM&JIBHOMY Ta HAANPOBiTHOMY rpadeHi Biamosimno. Llei
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pE3yNbTaT CTOCYEThCS SK aHAPIiiBCBKOTO, TaK i HOPMAaIbHOTO
BinOuBanHs. Ilepmmii 3 HUX € BU3HAYaJbHUM IponecoM y ¢op-
MyBaHHI MpOBigHOCTI. 3po0sieHI BHCHOBKM CIpaBEIJIMBI ist
JIOBUIBHOTO Opi€HTALiiHOro Kyra 0-XBWIIb. Y KOXKHOTO 3 PO3IJISi-
HYTHX YOTHPHOX BHINAJKiB: S-, O-ClaprOBaHHS, IIIBOBOTO Ta
0e3miboBoro rpadeHa, cBoi 0COOIMBOCTI MPOBIAHOCTI. Y KOX-
HOMY BHIIQIKy IPOaHaIi30BaHO 3aJEKHICTh MPOBIIHOCTI Bix
30BHIIIHBOTO €JIEKTPOCTATHYHOTO IIOTEHIlially Ta BiX eHeprii
@epmi. OpepxaHi pe3ynbTaTH MOXYTh OYTH KOPUCHHMH IS
pEeryJIIOBaHHS TPAHCIIOPTHHUX BJIACTHBOCTEH KOHTAKTY: HOpMallb-
HHUH rpadeH—HaAnpOBiIHUI rpadeH.

KirowoBi croBa: KOHTakT rpadeH-HaImpoBiIHHH TpadeH, aH-
IpiiBCbKe Ta HOpMajbHE BiOWBaHHSI, MPOBIAHICTb, MIBHIKICTH
Depmi.

TyHHenbHasi NPOBOAMMOCTb KOHTAKTa:
CBEPXNPOBOAALLNIA rpadeH C S-BOSNTHOBbLIM
1 d-BONHOBbLIM CriapMBaHMEM—HOPManbHbI rpadeH

A.H. Koponb

B pamkax ¢opmammma Bronpepa-Tunkxema—Knansniika
paccunTaHa M TIPOAHAIM3MPOBAHA MPOBOJUMOCTh KOHTAKTa:
HOpPMaJbHEIH TpadeH—CBEPXIPOBOISIIMKA TpadeH C S-BOJHO-
BBIM U HE3aBHCHMO (-BOMHOBBIM crapuBaHueM. COOCTBEHHbIC
¢ynky, kodQQUIMEHTH aHIPEEeBCKOr0 M HOPMAJIBHOTO OT-
pa)XXeHUs MOJIyYeHbl C IOMOILBIO pelleHusl ypaBHEHUH [lupaka—
Boromo6oBa—ne XKena. PaccmoTpeHs! ciydan OeclieneBoro u
1eneBoro rpad)eHa s 00euX CUTYalUi: S-BOJTHOBOTO U HE3aBH-
cuMo 0d-BoJIHOBOTO criapuBaHus. [TokazaHo, 4TO XapaKTePUCTHKU
JAHHOTO KOHTAKTA SIBJISIOTCS UyBCTBUTENILHBIMU K COOTHOILIEHHUIO
VeN/UEs, THE UpN, Upg — CKopoctH depMH B HOPMATbHOM H
CBEPXIPOBOAAIIEM TI'padeHe COOTBETCTBEHHO. DTOT pe3yJbTaT
OTHOCHTCS KaK K aHAPEEBCKOMY, TaK M HOPMAJILBHOMY OTpake-
Huto. IlepBoe M3 HUX SABIAETCS ONPEAENSAIOIIUM IIPOLIECCOM B
¢dopmupoBannu npoBoauMocTH. ClienaHHbIe BBIBOABI CHpaBel-
JMBBHI UL TIPOU3BOJBHOIO OPHEHTALHMOHHOrO yrima d-BoiH. Y
KaXIIOro M3 PacCMOTPEHHBIX YeThIpeX ciydyaes: S-, d-crapusa-
HHS, LIENEBOro u OecieneBooro rpadeHa, CBOM OCOOCHHOCTH
HNPOBOJVMOCTH. B KaxJIoM ciydae HmpoaHaIM3UpOBAaHA 3aBHCH-
MOCTh TIPOBOAMMOCTH OT BHEIIHETO 3JIEKTPOCTATUYECKOTO II0-
tenrmana u sHeprun @epmu. IlomydeHHBIE pe3yiIbTaThl MOTYT
OBbITh TOJIE3HBIMHU JJI PETYIHUPOBAHUS TPAHCIIOPTHBIX CBOUCTB
KOHTaKTa: HOPMaJIbHBII IpadeH—CBEepXIIPOBOISIINIA TpadeH.

KiroueBsie croBa: KOHTAaKT rpad)eH—CBEpXIIPOBOIAIINIA rpadeH,
AQHJPEEBCKOE M HOPMAJIBHOE OTPAKCHUE, MPOBOJIMMOCTH, CKO-
pocts Pepmu.
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