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The dynamical screening effects in the skin layer of a metal are investigated. The electric charge

density near the metal surface induced by a moving charged body outside the metal is screened at the

Thomas-Fermi length if the velocity parallel to the surface is smaller than the Fermi velocity. Crisis of

screening is found at the velocity approaching the Fermi velocity, which results in the electric field

penetration inside the metal at large distances, and in the distortion of the electric field distribution

outside the metal. The energy dissipation from a moving charged body as a function of the velocity has

a pronounced singularity near the Fermi velocity.
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I. Introduction

Macroscopic charge cannot exist inside a metal.
Upon introduction into a metallic sample, any ex-
ternal charge concentrates near its surface in a thin
layer, whose characteristic thickness is [1,2]

Ay = GTEN(E )0 (1)
TF 0 F 0 ’
the so-called Thomas-Fermi screening length, which
is typically of the order of a few angstroms. [N(gy)
is the density of electronic states at the Fermi
energy, & .|

If the external charge is fixed in space, the
emerging Coulomb potential will be screened inside
the metal at the same distance. Along the surface,
charge density can be localized within some area,
and can be translated parallel to the surface without
changing its shape. It is tempting to consider the
surface charge, which is generated due to the mo-
tion of a charged body in vacuum near the metal
surface, as a separate entity, and to investigate the
effects related to its dynamical behavior. At the
velocity smaller than the Fermi velocity, the non-
linearity in the response to an external perturbation
may occur if the former approaches the phonon
propagation velocity, which results in phonon emis-
sion followed by extra energy release from the
surface sheet. In the case of fast motion with a
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velocity greater than the Fermi velocity, the oscil-
latory potential emerges in the wake behind the
charged body (e.g., an ion moving in a metal),
which can trap conduction electrons in the wake-
bound state [3,4] . At a velocity approaching the
Fermi velocity, the charged body wake is at «reso-
nance» with the conduction electrons, which ac-
counts for the singularity of the dissipation in the
surface sheet and for the stopping power of body
motion. In the case of motion of a charged body
outside the metal, this results in the nonlinear
interaction between the external moving charge and
the induced charge near the surface. The depend-
ence of drag force and power dissipation on the
velocity is nonlinear and possibly nonmonotonic.

The information concerning the electron states in
metal, which can be obtained in the corresponding
experiments, is similar to that found from the con-
ventional conductivity measurements except that
(1) it is directly related to the relaxation processes
and mechanisms very near the metal surface; (2) the
nonlinear output is expected in the linear amplitude
regime (small charges and fields) since the non-
linearity may be concerned with the large velocity
of collective motion rather than with the drift
velocity of electrons.

In the present paper we investigate the depend-
ence of the charge distribution inside the metal and
the electrostatic potential outside the metal, on the



velocity of the surface sheet motion produced by a
charged body (known as the «tip») outside the
metal moving parallel to the metal surface. It is
shown that the surface charge follows the tip mo-
tion adiabatically only if the velocity of motion is
much smaller than the Fermi velocity V. . A
velocity greater than V. causes a crisis of the
Thomas-Fermi screening, which results in the non-
linear charge penetration deep into the metal and in
the distortion of the screening electric field inside
and outside the metal.

The questions considered can have relevance to
scanning tunneling microscopy [5], to the effects of
charge quantization in small metallic electrodes [6],
to ballistic electron transport in narrow metallic
constrictions and point contacts [7,8], and to ge-
neral aspects of «fermiologys, i.e., Fermi surface
reconstruction in metals, since the dynamical
screening effects in the surface sheet depend essen-
tially on the topology and shape of the Fermi
surface. The interaction of a moving surface charge
with phonons can be viewed as a kind of «surface
spectroscopys of conduction electrons in metals [9].

Another type of experiment involves charged ion
motion inside a metal [3] or a traverse of the
interface between metal and vacuum [4]. If the
velocity of ion motion approaches V. from above,
the wake-bound state of an electron and stopping
power for ion motion reveal a singularity in the
limit V' - V. . In the case of small velocity, the
surface charge follows the external perturbation
adiabatically, allowing for a semiclassical descrip-
tion of the interaction of external electric field and
the induced charge. Important difference between
the case V' >> V. and V < V; is that semiclassical
approximation may present a reasonable approxima-
tion of the problem.

After the discussion of the validity of different
approximations (semiclassical or random-phase),
which are applicable to the problem of dynamical
screening in Sec. 2, we investigate in Sec. 3 the
dynamical screening in a two-dimensional metal
with a cylindrical Fermi surface since it most
clearly illustrates the theoretical method adopted
by us and the origin of the velocity-dependent
anomaly predicted. In Sec. 4, similar effects are
considered for a three-dimensional metal with a
spherical Fermi surface. Energy dissipation and
drag force induced in a moving body are calculated
in Sec. 5, followed in Sec. 6 by the discussion of the
physical aspects of the surface charge dynamics and
possible realization of its fast motion in metals.

Fizika Nizkikh Temperatur, 1997, v. 23, No 8

2. Semiclassical approximation for a
dynamical screening

Linear response of a degenerate electron gas to a
time- and space-dependent electric potential

o)

Qor, t) = I B, €XP (tkr—ict)

(2Tf)3

is described by the quantum kinetic equation [10]
(assuming % = 1)

(@~ € n * &t Mk * @ Balpnte 2~ ot ) = 0
(2)

where £ is the unperturbed electron distribution
function (exp[(s -w,/T]+1)7", and fi'{w is the
first order correctlon to f(P)- (Assummg that the
velocity of motion is much less than the light
velocity ¢, we can ignore the magnetic field effects
and eliminate the vector potential A, leaving only a
scalar potential @.)

Equation (2) results in the Lindhard formula
(e.g., see Ref. 1) for the relation between the
electric displacement and the electric field

D, = E +4mP, = ek, WE, ,
- (4n™

where p =
density, and

ikPy , is the external charge

0 _ 40

e @) = 1 + 4Te? ¢ 2dp Tork2 ™ Fori 12 .
k? J-(2n)3 W= €y T Ep gy~ 1O

(3)

At w =0, the dielectric function within the random-
phase approximation (RPA) [Eq. (2)] is

2
_ . %7F 1o 1-2? O+ x0
€(k)—1+?L(x),L(x)—j+ i 1HD1_xD
(4)

where x = 2k k. . At small k, the kinetic equation (2)
reduces to a semiclassical (SA) Boltzmann kinetic equa-
tion for the distribution function f(p, r, ¢), and Eq. (3)
reduces to an expression for the dielectric function

ek) =1 + K2/ k? (5

which is equivalent to (1) with kK = 1/Af .

To clarify the difference between various ap-
proximations, let us consider the screening of the
electrostatic potential produced by a charged plane
immersed inside the metal. The scalar potential in a
metal emerging from an external electric charge
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uniformly distributed with the density o in a plane
z2=01s

_ exp (ik2)
%) =20 o

—00

(6)

It reduces to an exponential dependence @z) =
= @0) exp (~Kyp |2) within the SA. Within the
RPA, by introducing a parameter

2
Ky pU

q = %g (7

we obtain

29

cos (2kpzx)
oz) = J-ixz + )
0

For typical metals, a falls within the interval

dx. (8)

03<a<1 9

[a is related to the most commonly used quantity
[2] r¢=7y/a, , where a, is the Bohr radius, and 7,
is the average distance between electrons, since
a=ml(4/9m1 3 r =0.1659 r, ]

The normalized potential distribution (z)/@(0)
as a function of 2kpz is shown in Fig. 1,z for
various o. However, since it is nonexponential
(power-like and oscillating with a period T/kj [1]
at large 2), @(2) is very small in the region in which,
within the SA, it decays exponentially. If replotted
as a function of Kppz = 2/Ap , all the dependences
©(2)/@0) at different a fall nearly into a single line
(Fig. 1,b). The screening radius,

00

7= I @2)dz,/9(0) , (10)
0

within 10% accuracy equals the Thomas-Fermi
screening length in the interval of a from 0 to 1.
This has an implication that the semiclassical ap-
proximation, which is not exact, nevertheless gives
a reasonable estimate of screening. We will use the
approximation which can be used to trace the dy-
namical screening effects in metals. The solution
proves to be quite complex even within the SA, and
it would become intractable in the RPA scheme
[11] since k in Eq.(2) must be considered as an
operator id /dz In any case, the validity of SA is
indeed guaranteed as long as o is small (9).
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Fig. 1. Normalized potential distribution inside a metal at vari-
ous values of a as a function of 2k, z () and Kz (b). 1 —
a=022—a=1.1;3 — a=2.0.
3. Thomas-Fermi screening in a
two-dimensional metal

Consider the metallic semispace in the vicinity of
a charged tip T moving parallel to the metal surface
with a velocity V (Fig. 2). We shall investigate the
steady-state distribution of electrons in a momen-
tum space f{r, p, t) and the electrostatic potential
distribution @(r, ¢) inside and outside the metal
with the assumption that they make a self-similar
configuration which depends on the relative coordi-
nate x - V¢.

In a semiclassical approximation, charge density
p is expressed in terms of f as
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dp
=2 - ,
p ej'(znﬁ)g = 1y) (11)
where f, is the equilibrium Fermi distribution. The
scalar potential can be found from the Poisson
equation

e+ 4mp =0, (12)
and f satisfies the Boltzmann equation
of of of N
4 S D(pi =—-\V - , (13)
ot v or ¢ op =1y

in which V is an electron collision operator. The
self-similar distributions of f and @ are

f= 1o+ X = Vt, 5, D) 0o/ 0, , @=@lx - N
14
The charge density in a metal at T = 0 is

p=-eN(ep) Dxy O, (15)

where O... Odenotes averaging over the Fermi sur-
face.

We ignore scattering of electrons inside a metal,
which is expected to be a good approximation if the
electron mean free path is much larger than the
Thomas-Fermi screening length, but include the
scattering of electrons at the surface with the help
of the diffuse boundary condition that introduces a
diffusivity coefficient ¢ (0 < g < 1). Requiring that
the electron current be zero at the metal surface
[12], we can write the boundary condition in case of
a cylindrical Fermi surface directed along the y axis
in the form

Tt

x_¢=<1—q)x¢+§’Ix¢sin¢d¢, (16)
0

where ¢ is the diffusivity coefficient of the metal
surface, and ¢ is the angle between the direction of
electron momentum and surface.

In the Fourier representation with respect to the
surface coordinates x, y, the equations for @, and
Xpk are (below we drop for clarity the index k)

K@ - d*g/dz? = - 4TeN(g,) DXy O (17)
and
: Xy _
[v +ik (Vcos ¢ - V)]x¢ + Vpsind v il
d
= eV (ik, cos ¢ +sin ¢ &)@ (18)
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Fig. 2. Schematic diagram of a charged tip (7) moving parallel
to the metal surface with a velocity V. Surface charge (a dashed
line) accumulates near the metal surface and moves with the
same velocity. ¢ is the angle of incidence of the electron.

Although we are considering a clean metal (colli-
sion frequency v — 0), a <«trace» of the electron
scattering (v = +0) should remain in order to ensure
a proper analytical behavior of the electron distri-
bution inside a metal as z - oo.

In the case of zero velocity, V =0, Eq.(18) gives
Xp = €9, thus resulting in an exponential distribu-
tion of @ inside the metal

¢ = @0) exp (—Kyp 2) with K, = W\;QI;_+7€§ . (19)

We shall use below the dimensionless units such
that #=1,e=1 and N(p) =1, V=1, where
Vp is the Fermi velocity. Thus, representing Xp in
the form Xp = @+ uy , We obtain

%k2+—zgcp=(p+ Ouy O (20)
o * d?p ¢
and
d ika
+ ="
Mot gl g, @D
where
y=k(COS¢_V)_N,v=+O. (22)

¢ sin ¢
The solution of Eq. (21) is

z
ik,V

sin ¢

u¢ = A¢ exp (—1y¢) + J-qXZ') exp [—iyq)(Z—Z')]dZ, ,
0

(23)

from which it follows that @(z) can be obtained with
the Laplace transform
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29

9,=p I 92) exp (-pdz ,
0

giving for the space dependence of @ at z > 0

1
QKZ)—-E;Q X
a+ioo p@0) + @(0) +I(d¢/2r[) A¢/(p + iy¢)
J e 750 ’

(24)
where S(p) is a function

Tt

1

S(p)=1+kV

(25)

Integral (24) is taken in a complex plane p along a
vertical line which is situated to the right of all
singularities (poles and branching lines) of the
integrand (Fig. 3). The solution depends upon the
analytical properties of S(p) which will be discussed
below, and is different at V <1 (velocity smaller
than the Fermi velocity) and at V > 1.

The requirement that @2) derived from (24)
behaves regularly at z - o establishes the relation
between @0) and @(0) (prime denotes derivative
with respect to z) and thus allows the solution of
the Poisson equation outside the metal, which for
clarity we also represent in the form of a Poisson
integral:

de
J-2T[ k(cos¢ -V —i0) —ipsin¢

> AR B
a b

Fig. 3. Path of integration in Eq.(24) for V <1 (@) and V > 1
(). Integrals along broken lines cancel each other because S(p)
at V < 1 has the same value on both sides to the left and to the
right of the imaginary axis.

where for simplicity it is assumed that the tip is a
point charge Q located at a height A above the
metal surface. Requirement that @(z) in (24) should
properly behave at z — — o allows us to find the
potential provided that the value of the ratio
@(0)/@0) is specified by the solution of the Poisson
equation inside the metal [13].
Evaluation of the integral (24) at V < 1 gives

i
e P - e—iy¢z
®2) =@0) ePo” + | — 55— Ay, (27)
Pyt qu, ¢
-Tt

where @(0) is related to @(0) according to

Tt

_ Crdo Ay
¢ = - p,®0) Izn bt ity (28)

arie o This is a consequence of the vanishing exp (p2)
0= R dp eP? pe0) -~ ¢(0) - 4TQ e™” terms in @(z), where p,, is the pole of the denomina-
2TriI p’ -k ’ tor of the integrand of Eq. (24).
a=ioo (26) Substitution of Eq. (27) into (23) gives
2<0,
kv | " -
Vv @ do' A, exp (-iy,2) — exp (-iy,.2)
= A oxp i)+ e () e (gl ¢ [T SR R
He ™ o Po ™ Yy Yo ™ Yy H
O o O
(29)

where
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(30)

o 2

The positive values of ¢ (0 < ¢ < 1) correspond to
electrons reflected from the surface and the negative
values of ¢ (-t< ¢ < 0) correspond to electrons
arriving from the bulk of the metal. The quantity
A, in Eq. (29) satisfies at ¢ < 0 the same relation
(16) as Xo does. For positive ¢, the exponents
exp (- zy ) taken with the finite value of v increase
exponent1ally inside the metal and therefore should
cancel themselves out. This condition gives the
relation, which is valid at -t < ¢ < 0:

2+Vq2;.

H " H

g U _pde A :
® sin ¢ %/q, + ipo J- 2n (p() +V(%)(V¢ V¢)

O - D

(31)
This relation closes the set of equations necessary
for the determination of the field distribution inside
the metal. Combination of Eq. (24) with the bo-
undary condition for A, results in an integral equa-
tion for A¢ in the domain 0 < ¢ < TT

0 Ay Lay 0
+ 0=
% Sln¢I2"Po+V¢2> Jo Ve Yo Yo
R e (32)
sin ¢ Yo ~ P

where @, is taken from Eq. (30), and L is the
operator of diffusive reflection

Tt

£A¢ = (1 - g)d, +g‘[A¢ sind do . (33)

Once solved, Eq. (32) can be used to find the ratio
@ /@ at the metal surface, which is our goal in
solving self-consistently for the field distribution
inside and outside the metal.

Let us evaluate p, and S(p). Consider separately
the cases V<1 and V > 1.

Expression (25) can be reduced to an integral
along the unit circle z = exp (i¢) in the complex plane
2,
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215 = (kY +iv £ V(R V +iv) +p? - &2

dz kaV
Sy =1+ ; . ~
21w (R, —p)z° -2k, V+i0)z+k_+p

(34)

At V <1, the poles of the denominator in the

integrand,

)/ (k=)

lie either inside or outside the unit circle and
therefore the integral is equal to zero (except for
Re p = 0). We therefore have

i 3(p)
(1 - vHL2 §0)’

Sp) =1+
(35)
The poles of the denominator of the integrand in
Eq. (24) are Po, Where
py = VIR (36)

Typical values of |k| are of the order of the
inverse distance from the tip to the metal surface,
which is assumed to be much larger than the
Thomas-Fermi screening length A, and therefore
|k| is much smaller than the characteristic momen-
tum Ky p [Kypp = (4m1/2 in dimensionless units].

In the case V' > 1, the behavior of S(p) is quite
different. At the real axis S(p) is

|k, |V

S(p) =1- [P2 + ki(v2 _

iz V>1. (@37

This function has branching points at the imaginary
axis p =+ iq,, where g, =k, (V% - 1)1/2. At the
real axis, the denominator of the integrand of Eq.
(24) has two pairs of poles *p, and #p,. For
example, in the case k =0 the equation for the
poles

|k, [V

2 -2
pr=ki+1- 3 (38)
i [p* + KV - 11"

gives two values for p > 0:

—% RV, Ik|<<1.
(39)
The first pole signals that the electric field distri-
bution breaks the Thomas-Fermi barrier and pene-
trates into a metal to distances |k,|™ of the order of
the tip-to-surface distance, which is much larger
than A, . This, however, is not an equilibrium
charge distribution.

p=py=k,,andp=p,=
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With the two poles Pia > the potential @(2),
which is derived from Eq. (24) by integration along
the contour shown in Fig. 3,0 has two exponentially
increasing terms exp (p4z) and exp (p52), and also
the nonsingular terms exp (-p,2) , exp (-py2),
exp (xigy2), and exp (- 1y z), where g¢q,=
=k (V2 - 1)1/2. Elimination of singular contribu-
tions results in the number of equations which is
larger than the number of variables. This means
that the only admissible solution in this case is a
trivial one, A, =0, Uy =0, @ =0. We thus find
that @(0) = (8) =0, Wthh is inconsistent with the
equation for the potential value outside the metal
[Eq. (26)]. In fact, if @0) =@ (0) =0 (note that
these quantities are functions of k) in some domain
of k, then in this same domain the potential will
become infinite at large z. We conclude, therefore,
that there is no regular solution for @(z) if the
velocity of the tip V is greater than the Fermi
velocity.

This means that the solution @(z) does not exist
in the linear approximation in X,, and higher-order
terms in the electron distribution should be taken
into account on the right side of the Poisson equa-
tion (17).

4. Dynamical screening in a three-dimensional
metal

It can be assumed that the instability of the
steady-state motion of a surface sheet at high veloc-
ity found in the previous section is specific to the
two-dimensional Fermi surface. We shall see, how-
ever, that similar property is also seen in a three-di-
mensional metal.

In a metal with a spherical Fermi surface, an
equation for the angular-dependent part of the elec-
tron distribution analogous to (21) is

% d 0, ik V

DV dZD 0" sin O sin ¢ A (40)
where 0 is a polar angle of the electron momentum
at the Fermi surface, and Yp is a quantity

k_(sin © cos ¢ - + k cos B —iv
v¢=x( P, 4D

sin 0 sin ¢

The boundary condition of diffuse scattering at
z=0and 0 < <Tis

Il Il
U_g = (1 - q)u¢ + qJ-sin 0d6 d¢u¢ sin O sin ¢ .
I
0 0 (42)

The dynamical screening is represented by a three-
dimensional S-function analogous to (25)

RV
s=ie [0 T (43)
4T k (sin 6 cos ¢ — V) +ky cos B —ipsinBsin ¢ — v
where dQ =sin 8 d0 d¢, which gives the potential distribution
a+ico
| ©0) + py(0) + [(dcz/m) g/ + i1
®2) = | dpe”
2m P’ - k* - S(p) (44)
a—io
Evaluation of an integral (43) at ky =0and V <1 gives
g 14 | V(1 -p k) » <k
- n y x' !
O (-2 Vp/ky + (1= VA2 (1= p2/k) 2
5= o 1,/2 1 (45)
o v o wE-Y U=V YR - 1)1/2@ oy
—————— rjarcsin - arcsin , .
E (P2/k,2¢ _ 1)1/2 (p2/kj2€ -1+ V2)1/2 (P2/k;2¢ -1 + V2)1/2 x
At p = +0, the function (43) is
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Fig. 4. Poles of the denominator in Eq. (44) at ky =0 and V =0.9. () large value of &, (k, = 0.8) corresponding to one pole p, ;
(b) small & (k= 0.4, two poles — p,, p,). Curve { — the dependence - ki , curve 2 — the dependence S(p).

1

1%
S(p) V) n) =1 _?J-dx

-1

sgn (V - nx)
((V-na)” -1+

B ((V-nx)?-1+x?2), (46)
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Fig. 5. Dependence of S, on V. Curves /, 2, and 3 correspond
ton =0, 0.5, and 1.0, respectively.

where n =k, /k, . Recall that at p — e S equals 1,
whereas at p = 0 it is smaller than unity and be-
comes negative at large V.

Fig. 6. Schematic diagram of the charge penetration inside a
metal along the metal surface (2) and along the cross-sectional
plane (b). Solid lines correspond to V' <V, and dotted lines
correspond to V >V .

Looking for the poles of an integrand of Eq. (44)
with real axis,

p* =k +k+Sp, V,n), (47)

we note that when S;,=S(p - +0) is negative,
there always will be two roots p; > 0 and p, > 0 of
(47) in the certain domain of k. This is seen from
the graphical solution of Eq. (47), as shown in
Fig. 4. Therefore, in this domain of wave vectors
there will not exist any regular solution for the
electric field, and therefore there is a crisis of the
Thomas-Fermi screening. Let us specify the domain
of the latter.
Evaluation of Sy(V, n) gives

V>n
(48)

<n,

where

2 _ 12 k
141 V:ﬂ=l~ (49)
(1 +n?) ke
The function Sy(V, n) for different n is shown in
Fig. 5. The smallest value of V at which S is
negative is achieved at n =0, where

L B
aV1+n2,B

V. o+ vD
SV, 0 =1-5Ihg——n- (50)
2 -V
O g
This expression is negative at V >V  where
V,=0.8335 is the solution of an equation

V_ =tanh . (51)

872

D1 _ Vv O —a+ (1 ‘0()2—[32)1/2D
E 2(1 + n2)1/2 n 51 +a-((1+ C()2 _ 82)1/28:
50 =Q
D1 - v In [32 v
E 2(1 + l’]2)1/2 [1+a—-(1+ C()2 _ 82)1/2][1 —a+((1- C()2 _ 82)1/2] ,

Therefore, the instability of laminar flow occurs in
a three-dimensional metal at a velocity slightly
smaller than the Fermi velocity. Near the critical
value of V, the instability takes place at a small
k y—to—kx ratio. The smaller is |% |, the stronger is the
distortion from the unperturbeczf @(z) distribution. In
effect, the large-k Fourier components of the po-
tential are virtually unaffected, whereas small com-
ponents are depressed. This implies a change of the
potential and of the charge distribution inside a
metal, which is shown schematically in Fig. 6. The
shape of the image of (symmetrical) external charge
in the surface sheet is compressed in the direction
perpendicular to the direction of motion and is
elongated in the opposite direction. At the same
time, the penetration depth of electric field inside
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the metal increases. Near the critical velocity, the
characteristic compression is

A
Wi 52)

The effect of potential redistribution strongly mani-
fests itself if the distance between the tip and the
metal is of the order of a few unperturbed Thomas-
Fermi screening lengths.

Let us analyze the analytical properties of S in
the complex plane p. S(p) has a singularity along
the imaginary axis p =ig, which is in effect a
manifestation of the existence of the branching
points of two-dimensional .S [Eq. (37)]. In a three-
dimensional metal, maximal velocity of electron
motion parallel to the metal surface V|, =sin 6 may
be smaller than 1 at V' < 1 in some range of 8. The
function S(ig) attains different values when the
imaginary axis is approached from the left and from
the right, and remains analytical in the subspaces
Re p < 0 and Re p > 0. The values of S(p) to the
left and to the right of the imaginary axis are

Tt

v
S(ig) =1+~ J' dOR,(v, q/k),  (53)
0

V -ncosH

sin ©

U=

where n = ky/kx, and

0

D, ol <1

: (

O sgn (v) e
R,(v) = , ol > 1, < Vo2 =1

i( ) E_(Uz 1—362 )1/2 | | | |
0 1 sgn (vx) o —
e B S >1 > -1

(54)

where x = q/k

We can now calculate from (24) the potential
@(2). Integrating along the path shown in Fig. 7, we
obtain

dQ .
o) =y exp () + [ Zy exo Cing) +

d )
iy e X exp (igz) , (55)
2t 9

—00
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Fig. 7. Contour of integration for the calculation of the po-
tential @(z) [Eq. (24)] in a three-dimensional metal.

where, as follows from the requirement that @(z)
vanishes at z — o, a relation between @0) and

@(0) is

Q A¢
@(0) = -p,@0) - i Py + % (56)

The coefficients @), Z . and X in the expression

(55) are
— 2p0 A
- %( .[4" p0+y%E (57)

10 =)
%L(zvq,) D (zv¢)D b2 68
x ot 1t 0

77D,y D)

q +1ip,
0 )
Elq p())([( ) - J- ATT (po + 1y¢)(q + y¢)§A¢

(59)
where D(p) = p - k% - S(p) is the denominator of
an integrand of Eq. (24), which is appropriate for
the 3d case.

Proceeding further in the same manner as in
Sec. 2, we calculate with the help of Eq. (55) the
function Uy
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k.V H @

Uy = A¢ exp (—iy¢2) +

sin 6 sin ¢ H/¢ +ip, O
U

L (A9, P i)~ exp (ivy?)
4 0

Yo ~ Yo

where A, is an arbitrary constant. Requiring that
the terms proportional to exp (-iy,z) cancel each
other out at ¢ > 0, and using, at ¢ < 0, the bound-
ary condition (42), we obtain

exp (- - exp (-iy,2)0+
xp (pg?) ~ exp (~Yy2)J

© O
dq , ©xp(ig?) ~exp (-ivy2)H
o s

q
2n q+ VY E
2 0

RV U g v 7, X
o LY ey (R
sin O sin ¢ S/q) +1ip, 4 Yo ~ Vo g+ Yy
D —00
(60)
at -mm< ¢ <0, and
A_¢ =(1- q)A¢ +
I I
+qJ'sin edeJ’d¢A¢ sin O sin ¢ =£A¢ 61)
I
0 0
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OO0

at 0 < ¢ <, where L is a three-dimensional opera-
tor of a diffuse reflection, which can be written in
the form

~

L=1-g+gq, (62)
where ¢ is an operator
g4, =7 [da A, sin@sin ¢
q [0} T +0 (63)

(dQ, means a solid-angle integration with a posi-
tive ). It follows also that the inverse operator is

1-q
1-q°
Cobining Eqgs. (57) and (60), we obtain an integral
equation for A¢ in the domain 0 < ¢ <1

L= (64)
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dQ+DA

+LA¢DD1 (s

LA
sin 6 sin ¢J

29

_dq 9P
]
k.V D @,

~ sin Bsin ¢ E’q’ = ip,

where D, (iq) is a value of D(p) to the left /right of
an imaginary axis p=iqgx0.

Equation (66) is valid at V < V_when the linear
regime of the surface sheet motion is realized. In
this case the solution for A, , together with
Eq. (56), permits determination of the effective
boundary condition, i.e., the value of the ratio

¢g/patz=0

5. Energy dissipation in a moving surface
sheet

In this section we will consider the energy losses
in a surface sheet as a result of its interaction with
the external charge that pulls the sheet. The force
acting on the sheet is

F = Ep , (66)

where the surface charge density p is determined as
(1/4m(09/0z2), , and E, = — (09/02),, . The pro-
duct F .V =W gives the power dissipated in a
metal. Integrating with respect to space coordinates
x, y and performing the Fourier transformation, we
obtain

d’k

o’ k. p (67)

oK) lg (O Tm (k) ,

where k = (k, , k ) The quantity (k) is the coeffi-
cient in the boundary condition at the metal surface

@(0) = —po(1 + Y(k))¥0) (68)

[we dropped the index k in @ (0) and ¢ (0)]. Using
Eq. (56), we obtain

dQ A LA
k) = Po J- 4]_[* ;’ + iy ¥ ) Ty g/(p(O)
¢ 0 Un (69)
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dgid =Py 1 1

"0 [ o

ST o Y Yo~V Palivy) DGy
O
dQ., o Ay, ol A¢, %_
AT o + )@ +Yg) (g~ )T ~ V)
U

am y, -~ ig D,(i) D) 69

A

where A, is found from the integral equation (66).

In the case of absence of a y-dependence of the
potential (for example, for an infinite rod moving
parallel to the surface), an expression for the rate of
the energy dissipation per unit length is

vV ~dk

o hpole) 19, O Im (k) (70)

am
where {(k,) is found by setting k, =0 in (70). In
the case of small k|, Eq. (66) can be solved itera-
tively in & :

— A0 1
Ay = A+ R AL+ (71)
In the lowest approximation we obtain
. ka o 1
LA, = — +
®  sin Osin¢ S/q) - ip,
00 ' E
dgPo” ¥ 1
«0) ,
2 q -y, Puia) D (zq)
r a
(72)

where Yy is determined in (41) with v = +0. Typical
values of g are on the order of k. , i.e., much
smaller than the inverse Thomas- Fermi screening
length K; . (in the dimensionless units we have
|k x| << 1). We introduce the function

1|]1_1|]

Sl I (73)
20D (iq) D_(ig)3

R(q) =

where
S, (i9) =S(ig £ 0) .
(74)

obtain from

D,(iq) = k% - 4% - S (iq);

Setting S,(iq) = S4(q) £ iS,(q), we
(53)
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Fig. 8 Dependences of S, (upper curves) and S, (lower
curves) on ¢. (a) n=0. Curves /, 2, and 3 correspond to
V =0.3, 0.5, and 0.7; (b) V =0.7. Curves 1, 2, and 3 corre-
spond to n =0, 0.2, and 0.4.
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1
\% sgn (V - nx) 5 u
Si@)=1-+|dx 0 (Ax) — ¢° /€43
1 2] 0w - 22 )
-1
401
1
4 B(A()) sgn (V - nx) | Gy D
S(q) =+ [ dx ¢ - N(x)rsgk i
2 2 (q2/k;2¢ _ A(x))1/2 %7326 g % 30
-1
where x =cos®, and A(x)=(V-nx)?+x%-1. At 207
n=_«
, a
S1,2 dir 10F
1.0 ect
'/1 / / a int
0
egr
/2 o 05 06 07
3 on
iv Fig. 9. Dependence of g on V. Curves 7, 2, 3, and 4 corre-
8 spond to n =0, 0.2, 0.4, and 0.6.
0.5 €s
the following expression for the positive values of g and
3 k,:
2 0 1+ (V2 - qz/ki)1/2
O -Vin , q/k <V,
i 0 (1-V2+ q2/k;25)1/2 x
1.0 . . 51’ /> V.
ark, 0
81’2 and
1.01
1/2/3 b
0 1.0 2.0 3.0
a/k,
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g 1,2

E LU (1-Vv? O
E’V G ~ aresin d-v2+ qz/k2)1/2D’ q/k, <V
O — v21/2

0 1 (1-V% 0
LV rarcsin — arcsin , q/k > V.
0 g (1 - V2 4+ q2/kj2€)1/2 (1 - V2 + q2/k925)1/2|] x

The dependences 51 ,(q) at various V and n are shown in Fig. 8. An approximate value of R(q) at
|k | <<1is

52(6/) +S3(q)
R(g) is an odd function of g, which vanishes linearly at small |g/k | and which behaves as 1,/q at
lgl >> |&,].

The two terms on the right side of Eq. (73) represent the contributions to the dissipation emerging from
the main pole p = p, in the complex plane p, and from the branching point along the imaginary axis. The

contributions to {(k) , {,(k), and Z,(k) prove to be of the same order of magnitude. Substitution of Eq. (73)
into Eq. (70) at p, = 1 and small k [see Eq. (36)] gives

R(q) =

RV _dQ, 2-q- qy% RV _dQ, 1 dQ, ¢
Tm Z, (k) = '
-q ) 4n (1+y$)251n651n(|) 1-qg ) 4n 1+y(% I 1+y§J
’ e T (80)
1— J-4T[ 1+y$J’ oLy
m 2.0 = kV 2dQ, 2= qRy@) — VR (V) ~ YpR(Yy) . kY _dQ, | y
2 -q ] 4n (1+yg)sinesm¢ 1—qI 4T 1+yq2)
dQ, RV dQ, Yo dQ,

x I —* qu0<v¢) to v¢R(v¢)D q J’ g I mﬂ% (V) * 5 R(v¢)g, (81)
One can then evaluate integrals in (82). It appears
that the last term in this expression is of the same
order of magnitude as the corresponding term in Eq.
(81); therefore, it can be ignored. The second term

Ve
where
1 ¢ R@@)q"
R)=_ Y ———dq (82) 15
n) g-«

—00

Inspection of 1ntegrals in Eqgs. (81) and (82) shows
that at &, dQ, /(1 + yz) takes a constant
value, Whereas dQ A /(1 + y2) behaves as 1.0
k.In (1/k,). This”means that the last term in
Eq (82) can be ignored at small value of k. The L
second term is of the order of k, whereas the first

term behaves as k. In (1/k,). 05 o o
For orientation, we assume that R(g) is 0 0.5 1.0 1.5 2.0
Cq/(g> + a®, which gives from Eq. (81) n

Ro(q) = Ca/(q2 + a2) and R1(q) =- Caq/(q2 + 02)_ Fig. 10. Dependence of V_on .
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Fig. {1. Normalized dissipation W,/W, (curve {) and W/W,
(curve 2) as a function of the velocity V at A =2.5.
in Eq. (82) is proportional to k, and the first term
is proportional to k_1In (1,/k ). Evaluation of the
leading (logarithmic) term in {, requires the knowl-
edge of the functions R, at g =0. After some
algebra, we obtain
2g C Co0

CI/ Sn kfi +Uln ksz’ (83)

D X X
where Cyp~1are complex functions of V, n, and
g and [ is a quantity

Im {(k) = k, yl-a2

_ 2 ¢R(x)
“_EIde’ (84)
0

which is shown for different values V and n in
Fig. 9.

Since  is a small quantity (|| << 1), the field
outside the metal is almost equal to its value calcu-
lated for an ideally reflecting metallic surface
(A;=0). The power dissipated due to the tip
motion becomes (in the dimensionless units)

Vo’ 40P
W= E[J-W kR, ——— po(k) Im (k) . (85)

In the dimensional units, the dissipated power is
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Fig. 12. Schematic diagram of the electronically driven motion
of a surface charge. (a) Electric pulses switched periodically
between metallic electrodes near the metal surface; (b) Propa-
gating solitons in the semiconductor layer overlaying the bulk
metal .

2 _
1% 1-q/2

TuNE)V, 1-g
Z, .
2
@ (O)F + i ln :
I (on )2 t B Tedhrr " T
(86)

Assuming that the tip is a point charge Q, we
obtain an estimate of W valid at V <<V

VZQZ)\Z (- 9
PR L (87)
Vid 1-g

where d is a distance between the tip and the metal
surface. At small d = A, this expression matches
in order of magnitude the loss of a charged particle
that moves inside a metal.

For a charged rod with a charge Q per unit
length, an estimate of the loss per unit length is

W V2O L 1 - g2
2" V d3 1 - q (88)

The quantity p in (84) increases dramatically at
V near the critical velocity V,, . At a value of V
larger than V, , the linear regime of the surface
screening breaks down. An asymptotic behavior of
M near V',

1

e, kl<<t, (89
k[ +S,(V, n)

o=
where S, - 0 in the limit V' - V (n) . The func-
tion V (n) is shown in Fig. 10.

Sharp resonances of WU versus V occur at a fixed
values of the momenta & and k, . Dissipated power
W can be determined by integration of M in
Eq. (85) with respect to k. Whether the dissipated
power W vs V will have similar sharp resonances
depends on the actual potential distribution at the
metal surface.
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Let us consider as an example a point charge Q
at a height A above the metal surface giving at
A0

array of equally spaced metallic electrodes near the
bulk metal (Fig. 12,a) biased periodically in time
with the short electric pulses of fixed polarity. This
will create maxima in the surface charge distribu-
tion in a metal moving between subsequent loca-
tions in the metal surface with an average velocity

-n 0 _ -
=0 %xZ +y2+ @ -2 4yt (2 + ]1)2)1/25’ V = Ax/Dt (Ax is the distance between electrodes,

@r) =
1 1 0
(90)
from which we have
¢ (0) = 4TQ exp (-2[kl%) (91)

and an infinite thin rod with the linear charge
density Q, for which

Q, x*+(z-h?
== I 2
@r) =+ In ) (92)
and, correspondingly
@, (0) = 210 exp (-2/k Jh) . (93)
In the second case we then obtain
Wy (V)
W~ 2 5, h>>1, (94)
SV, 0) + 1,/4h
and in the first case
dn 1
W~ W, (V )
1) I (1 +n%)% SV, n) + (1 +n?)/4h?
0 (95)

The dependences (95) and (96) are shown in Fig. 11.

6. Discussion

Dynamical interaction of a moving charge with a
metal surface reveals singularities in the dissipated
power as a function of the velocity of motion V.
Depending on the topology of the Fermi surface,
the maximum of power dissipation in the surface
sheet occurs either at the Fermi velocity or slightly
below it. At the same value of V, the electric field
begins penetrating the metal to a depth much
greater than the Thomas-Fermi length, thus break-
ing the Thomas-Fermi screening barrier.

Crucial for the observation of such effects is the
possibility of realization of fast motion of a surface
charge. This can be achieved by propagating
charged particles or small charged bodies above and
near the metal surface. The other possibility may be
in creating an electronically driven motion of a
surface charge parallel to the metal surface. Con-
cerning the latter, we envisage a setup with an
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and At is the interval between pulses). The
velocity of the order of the Fermi velocity
Vi~ 108 - 108 cm /s can be easily obtained with the
corresponding choice of Ax and At.

The other possibility is a motion of a charged
soliton of some kind in a semiconducting or a super-
conducting film overlaying the metal (Fig. 12,6). For
instance, in the case of the Gunn effect in semicon-
ductors, a moving charged soliton is formed due to
an N-shaped current-voltage characteristic of the
semiconductor [14]. The size of the soliton in
GaAs is of the order of 10 um. The velocity of
soliton motion can be made quite large,
V ~107 cm/s. As a result of the interaction of
solitons with the induced surface charges in a metal,
the current-voltage characteristic of a semiconduc-
tor film overlaying the metal attains a singularity at
V near the Fermi velocity of the metal.

Another possibility is propagating low-frequency
charged plasmons [15—17] in a thin supercon-
ducting film in the vicinity of a bulk metallic
electrode.

It should be noted that the effect considered in
this paper, an additional dissipation related to the
surface charge, may have relevance to an evaluation
of the quality factor Q. of an rf cavity, in particu-
lar, a superconducting cavity. At the lowest tem-
perature at which the power absorption due to the
electronic excitations in a superconductor is quite
small (and, therefore, Qf large), a dissipation re-
lated to the surface charge may contribute to the
residual value of Q, attained at the lowest tempera-
ture in a very high-quality cavities (Qf ~ 1019 118].
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