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The difference equation
∆2u(k) + p(k) |u(σ(k))|λ sign u(σ(k)) = 0,

is considered, where 0 < λ < 1, p : N → R+, σ : N → N, σ(k) ≥ k + 1 for k ∈ N and the difference
operator is defined by ∆u(k) = u(k + 1)− u(k), ∆2 = ∆ ◦∆. Necessary conditions are obtained for the
above equation to have a positive solution. In addition, oscillation criteria of new type are obtained.

Розглядається рiзницеве рiвняння

∆2u(k) + p(k) |u(σ(k))|λ sign u(σ(k)) = 0,

де 0 < λ < 1, p : N → R+, σ : N → N, σ(k) ≥ k + 1 для k ∈ N, рiзницевий оператор визнача-
ється як ∆u(k) = u(k + 1) − u(k) та ∆2 = ∆ ◦∆. Отримано необхiднi умови для iснування до-
датного розв’язку наведеного рiвняння. Також встановлено новi критерiї коливання розв’язку.

1. Introduction. Consider the difference equation

∆2u(k) + p(k)|u(σ(k))|λsign u(σ(k)) = 0, (1.1)

where

p : N → R+, σ : N → N (1.2)

are functions defined on the set of natural numbers N = {1, 2, . . .}, ∆u(k) = u(k + 1) − u(k)
and ∆2 = ∆ ◦∆. Everywhere below it is assumed that

σ(k) ≥ k + 1 for k ∈ N, 0 < λ < 1, (1.3)
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sup{p(k) : k ≥ i} > 0 for i ∈ N. (1.4)

For each n ∈ N denote Nn = {n, n+ 1, . . . }.

Definition 1.1. Let n0 ∈ N. We will call a function u : Nn0 → R a proper solution of the
equation (1.1) if it satisfies (1.1) on Nn0 and

sup
{
|u(i)| : i ≥ k

}
> 0 for any k ∈ Nn0 .

Remark 1.1. Let the condition (1.3) be fulfilled, k0 ∈ N and u : Nk0 → R be a nontrivial
solution of (1.1). Then u is a proper solution. Indeed, if we assume the contrary, then there exists
k1 > k0 such that u(k) = 0 when k ≥ k1 and u(k1 − 1) 6= 0. Since σ(k1 − 1) ≥ k1, from the
equality

u(k + 2)− 2u(k + 1) + u(k) = p(k)|u(σ(k))|λsignu(σ(k)) = 0

we have u(k1 − 1) = 0. The obtained contradiction proves that u is a proper solution of (1.1).
Therefore if the condition (1.3) is fulfilled, then the set of nontrivial solutions of (1.1) coinci-
des with the set of proper solutions. On the other hand, we can give examples of difference
equations with a nontrivial solution which is its nonproper solution.

Definition 1.2. We say that a proper solution u : Nn0 → R of (1.1) is oscillatory if for any
k ∈ Nn0 there exist n1, n2 ∈ Nk such that u(n1)u(n2) ≤ 0. Otherwise the solution is called
nonoscillatory.

The problem of oscillation of solutions of linear difference equations has been studied by
several authors, see [1 – 6] and references therein.

As to investigation of the analogous problem for equations of type (1.1) (0 < λ < 1), to
our knowledge for them there have not been obtained results analogous to those known for
ordinary differential equations (see [7, 8]). In this paper we will try to fill this gap for second
order difference equations with advanced argument.

Everywhere below it is assumed that the condition

+∞∑
k=1

k p(k) = +∞ (1.5)

is fulfilled.

Remark 1.2. The existence of positive proper solutions of rather general functional-differen-
tial equations of higher order is well known (see e.g. Lemma 4.1 from [9]). We can analogously
prove the fact that if condition (1.5) is not fulfilled, then equation (1.1) has proper solution u
satisfying the condition limk→+∞ u(k) = c 6= 0.

Analogous results for n-th order Emden – Fowler type differential equations are given in [8].

2. Some anxiliary statement.

Lemma 2.1. Let (1.2) – (1.4) be fulfilled and u : Nn0 → R be a nonoscillatory proper solution
of (1.1). Then there exists k0 ∈ Nn0 such that

u(k) ∆u(k) > 0 for k ∈ Nk0 . (2.1)
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Lemma 2.2. Let (1.2), (1.5) hold and u : Nn0 → R be a nonoscillatory solution of (1.1). Then

lim
k→+∞

|u(k)| = +∞, lim sup
k→+∞

|u(k)|
k

< +∞. (2.2)

We refer the reader to [3] for the proof of Lemmas 2.1 and 2.2.

Lemma 2.3. Let (1.2), (1.3), (1.5) be fulfilled and u : Nn0 → (0,+∞) be a positive proper
solution of (1.1). Then for any s ∈ N there exists k0 ∈ Nn0 such that

u(k) ≥ ρs,k0(k) for k ≥ k0, s = 1, 2, . . . , (2.3)

where

ρ1,k0(k) =

(1− λ)

k∑
i=k0

+∞∑
j=i

p(j)

 1
1−λ

, (2.4)

ρs,k0(k) =

k∑
i=k0

+∞∑
j=i

p(j) (ρs−1,k0(σ(i)))λ , s = 2, 3, . . . . (2.5)

Proof. Let u : Nn0 → (0,+∞) be a positive solution of (1.1). Then according to Lemma 2.1
there exists k0 ∈ Nn0 such that (2.1) holds. Therefore, from (1.1) we have

∆u(k) ≥
+∞∑
i=k

p(i)uλ(σ(i)) for k ∈ Nk0 . (2.6)

Consequently, by (1.3) and Lemma 2.1,

∆u(k) ≥ uλ(k + 1)

+∞∑
i=k

p(i) for k ∈ Nk0 .

Thus, we have

k∑
i=k0

∆u(i)

uλ(i+ 1)
≥

k∑
i=k0

+∞∑
j=i

p(j)

 . (2.7)

Taking into account that

∆u(i) =

u(i+1)∫
u(i)

ds and u−λ(i+ 1) ≤ s−λ for u(i) ≤ s ≤ u(i+ 1),
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from (2.7) we have

k∑
i=k0

u(i+1)∫
u(i)

s−λds ≥
k∑

i=k0

+∞∑
j=i

p(j)

 for k ∈ Nk0 .

Therefore
u(k+1)∫
u(k0)

s−λ ds ≥
k∑

i=k0

+∞∑
j=i

p(j)

 for k ∈ Nk0 .

Hence it is clear that

u1−λ(k + 1)− u1−λ(k0) ≥ (1− λ)
k∑

i=k0

+∞∑
j=i

p(j)

 for k ∈ Nk0 .

Thus, since λ ∈ (0, 1), from the last equality we have

u(k + 1) ≥

(1− λ)

k∑
i=k0

+∞∑
j=i

p(j)

 1
1−λ

for k ∈ Nk0 . (2.8)

On the other hand from (2.6) we find

u(k + 1) ≥
k∑

i=k0

+∞∑
j=i

p(j)uλ(σ(j))

 .

Therefore, (2.8) and (1.3) obviously imply (2.5) for any k ≥ k0 and s = 2, 3, . . . .
The lemma is proved.
Let k0 ∈ N. Denote by Uk0 the set of all proper solutions of (1.1) satisfying the condition

u(k) > 0 for k ∈ Nk0 .

Lemma 2.4. Let k0 ∈ N and Uk0 6= ∅. Then for any ∆ ∈ [0, λ] and s ∈ N,

+∞∑
k=1

kλ−∆ (ρs(σ(k)))∆ p(k) < +∞, (2.9)

where

ρ1(k) =

(1− λ)

k∑
i=1

+∞∑
j=i

p(j)

 1
1−λ

, (2.10)

ρs(k) =
k∑
i=1

+∞∑
j=i

p(j)ρλs−1(σ(j))

 , s = 2, 3, . . . . (2.11)
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Proof. Let n0 ∈ N and Un0 6= ∅. Then (1.1) has a proper positive solution u : Nn0 →
→ (0,+∞). According to Lemma 2.3, there exist k0 ∈ Nn0 such that the condition (2.3) is
fulfilled, where ρs,k0 , s = 1, 2, . . . , is defined by (2.4) and (2.5). Therefore, by (2.1) and (2.6) we
have

u(k + 1) ≥
k∑

i=k0

+∞∑
j=i

p(j)u∆(σ(j))uλ−∆(σ(j)) ≥
k∑

i=k0

+∞∑
j=i

p(j) ρ∆
s,k0(σ(j))uλ−∆(σ(j)).

Hence, by (1.3) we get

u(k + 1) ≥
k∑

i=k0

+∞∑
j=i

p(j) ρ∆
s,k0(σ(j))uλ−∆(j + 1) ≥ (k − k0)

+∞∑
j=k

p(j) ρ∆
s,k0(σ(j))uλ−∆(j + 1),

(2.12)

k = k0 + 1, k0 + 2, . . . .

If ∆ = λ, by (2.2) and (2.12) we have

+∞∑
j=k

p(j) ρλs,k0(σ(j)) ≤ u(k + 1)

k − k0
< +∞. (2.13)

Let ∆ < λ. Then by (2.12) we have

uλ−∆(k + 1) ≥ (k − k0)λ−∆

+∞∑
j=k

p(j) ρ∆
s,k0(σ(j))uλ−∆(j + 1)

λ−∆

.

Hence

k∑
j=k0

uλ−∆(j + 1) ρλs,k0(σ(j)) p(j)(
+∞∑
i=j

uλ−∆(i+ 1) ρ∆
s,k0

(σ(i)) p(i)

)λ−∆
≥

k∑
j=k0

(j − k0)λ−∆ρ∆
s,k0(σ(j)) p(j). (2.14)

Denote

aj =

+∞∑
i=j

uλ−∆(i+ 1) ρ∆
s,k0(σ(i)) p(i).

Then from (2.14) we have

k∑
j=k0

aj − aj+1

aλ−∆
j

≥
k∑

j=k0

(j − k0)λ−∆p(j) ρ∆
s,k0(σ(j)). (2.15)
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On the other hand,

k∑
j=k0

aj − aj+1

aλ−∆
j

=
k∑

j=k0

a∆−λ
j

aj∫
aj+1

ds ≤
k∑

j=k0

aj∫
aj+1

s∆−λ ds =

=

ak0∫
ak+1

s∆−λ ds =
1

1− λ+ ∆

(
a1−λ+∆
k0

− a1−λ+∆
k+1

)
→

→ 1

1− λ+ ∆
a1−λ+∆
k0

for k → +∞.

Therefore, from (2.15) we have

+∞∑
j=k0

(j − k0)λ−∆p(j) ρ∆
s,k0(σ(j)) < +∞ for any ∆ ∈ [0, λ). (2.16)

According to (2.13) and (2.16), for any ∆ ∈ [0, λ] and s ∈ N (2.16) holds. Therefore, since

lim
k→+∞

ρs(k)

ρs,k0(k)
= 1 for any k0 ∈ N and s ∈ N,

by (2.16) it is obvious that for any ∆ ∈ [0, λ] and s ∈ N (2.9) holds, which proves the validity
of the lemma.

3. Sufficient conditions for oscillation.

Theorem 3.1. Let the conditions (1.2) – (1.5) be fulfilled and for some ∆ ∈ [0, λ] and s ∈ N,

+∞∑
k=1

kλ−∆ ρ∆
s (σ(k)) p(k) = +∞. (3.1)

Then all solutions of (1.1) are oscillatory, where ρs is defined by (2.10) and (2.11).

Proof. Assume the contrary. Then there exists k0 ∈ N such that (1.1) has a proper solution
u : Nk0 → (0,+∞) (the case u(k) < 0 is similar). Since the conditions of the Lemma 2.4
are fulfilled, for any ∆ ∈ [0, λ] and s ∈ N (2.9) holds, which condradicts (3.1). The obtained
condradiction proves the validity of the theorem.

Corollary 3.1. Let the conditions (1.2) – (1.4) be fulfilled and

+∞∑
k=1

kλ p(k) = +∞. (3.2)

Then all solutions of (1.1) are oscillatory.

Proof. To prove the corollary, it suffices to note that according to (3.2) the condition (3.1)
holds for ∆ = 0.
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Corollary 3.2. Let the conditions (1.2) – (1.5) be fulfilled and for some s0 ∈ N,

+∞∑
k=1

p(k) ρλs0(σ(k)) = +∞. (3.3)

Then all solutions of (1.1) are oscillatory.

Proof. It is obvious that by (3.3) for ∆ = λ and s = s0 the condition (3.1) holds.

Corollary 3.3. Let the conditions (1.2) and (1.3) be fulfilled and for some γ ∈ (0, 1)

lim inf
n→+∞

kγ
+∞∑
k=1

p(j) > 0 (3.4)

and

+∞∑
k=1

p(k)(σ(k))
λ(1−γ)
1−λ = +∞. (3.5)

Then all solutions of (1.1) are oscillatory.

Proof. It suffices to show that for s0 = 1 (3.3) is satisfied. Indeed, according (3.4), there
exist k0 ∈ N and c > 0 such that

+∞∑
j=k

p(j) ≥ c k−γ for k ∈ Nk0 .

Therefore, by (2.10) we have

ρ1(k) ≥

(
c(1− λ)

k∑
i=1

i−γ

) 1
1−λ

=

c(1− λ)
k∑
i=1

i−γ
i+1∫
i

ds


1

1−λ

≥

≥

c(1− λ)
k∑
i=1

i+1∫
i

s−γ ds


1

1−λ

=

c(1− λ)

k+1∫
1

s−γ ds


1

1−λ

=

=

(
c(1− λ)

1− γ
(
(k + 1)1−γ − 1

)) 1
1−λ (k + 1)

1−γ
1−λ

2

(
c(1− λ)

1− γ

) 1
1−λ

for k ≥ k1,

where k1 > k0 is a sufficiently large natural number. Thus, according to (3.5) it is obvious that
for s0 = 1 (3.3) holds, which proves the corollary.

Corollary 3.4. Let the conditions (1.2) and (1.3) be fulfilled and

lim inf
n→+∞

k

+∞∑
j=k

p(j) > 0, (3.6)
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+∞∑
k=1

p(k) (lnσ(k))
λ

1−λ = +∞. (3.7)

Then all solutions of (1.1) are oscillatory.

Proof. To prove the corollary, it is sufficient to note that according to (3.6), (3.7) implies
(3.3) for s0 = 1.

Theorem 3.2. Let the conditions (1.2) – (1.5) and (3.4) be fulfilled and there exist α ∈ (1,+∞)
such that

lim inf
n→+∞

σ(k)

kα
> 0. (3.8)

If, moreover, at least one the conditions

αλ ≥ 1 (3.9)

or
αλ < 1

and for some ε > 0

+∞∑
k=1

k
αλ(1−γ)
1−αλ −εp(k) = +∞ (3.10)

is fulfilled, then all solutions of (1.1) are oscillatory.

Proof. It suffices to show that the condition (3.3) is satisfied for some s0 ∈ N . Indeed,
according to (3.4) and (3.8) there exist α > 1, γ ∈ (0, 1), c > 0 and k0 ∈ N such that

+∞∑
j=k

p(j) ≥ c k−γ for k ∈ Nk0 (3.11)

and

σ(k) ≥ c kα for k ∈ Nk0 . (3.12)

According to (3.11) and (2.10), it is obvious that limk→+∞ ρ1(k) = +∞. Therefore, without loss
of generality we can assume that ρ1(k) ≥ 1 for k ∈ Nk0 . Thus, by (2.10), (2.11) and (3.11) we
have

ρ2(k) ≥ c

k∑
j=k0

j−γ = c
k∑

j=k0

j−γ
j+1∫
j

ds ≥ c
k∑

j=k0

j+1∫
j

s−γds =

= c

k+1∫
k0

s−γ ds =
c

1− γ

(
(k + 1)1−γ − k1−γ

0

)
.
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Choose k1 > k0 such that

ρ2(k) ≥ c

2(1− γ)
k1−γ for k ≥ k1.

Therefore, by (2.11), (3.11) and (3.12) for s = 2, if λα(1− γ)− γ < 0 we have

ρ3(k) =

k∑
i=k0

(
c iα(1−γ)

2(1− γ)

)λ +∞∑
j=i

p(j) ≥

≥ c1+λ

(2(1− γ))λ

k∑
i=k0

iαλ(1−γ)−γ =

=
c1+λ

(2(1− γ))λ

k∑
i=k0

iαλ(1−γ)−γ
i+1∫
i

ds ≥

≥ c1+λ

(2(1− γ))λ

k∑
i=k0

i+1∫
i

sαλ(1−γ)−γ ds =

=
c1+λ

(2(1− γ))λ

k+1∫
k0

s(1−γ)αλ−γ ds =

=
c1+λ

(2(1− γ))λ(1− γ)(1 + αλ)

(
(k + 1)(1−γ)(1+αλ) − k(1−γ)(1+αλ)

0

)
=

=
c1+λk(1−γ)(1+αλ)

2(2(1− γ))1+λ(1 + αλ)
for k ≥ k2, (3.13)

where k2 > k1 is a sufficiently large natural number.
If λα(1− γ)− γ ≥ 0, then we have

ρ3(k) ≥
k∑

i=k0

(
c

2(1− γ)

)λ
iλα(1−γ)−γ

i∫
i−1

ds ≥

≥ c

(
c

2(1− γ)

)λ k∫
k0−1

sλα(1−γ)−γ ds =

=

(
c

2(1− γ)

)λ ε

(1− γ)(1 + αλ)

(
k(1−γ)(1+αλ) − (k0 − 1)(1−γ)(1+αλ)

)
≥

≥
(

c

2(1− γ)

)1+λ k(1−γ)(1+αλ)

1 + αλ
for k ≥ k′2, (3.14)
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where k′2 > k1 is sufficiently large.
Thus by (3.13) and (3.14) we have

ρ3(k) ≥
(

c

2(1− γ)

)1+λ k(1−γ)(1+αλ)

1 + αλ
for k ≥ k3,

where k3 = max{k2, k
′
2}. Therefore, for any s0 ∈ N there exists ks0 ∈ N such that

ρs0(k) ≥
(

c

2(1− γ)(1 + αλ+ . . .+ (αλ)s0−2

)1+λ+...+λs0−2

k(1−γ)(1+αλ+...+(αλ)s0−2)

(3.15)
for k ≥ ks0 .

Assume that (3.4) holds. Choose s0 ∈ N such that (1− γ)(s0 − 1) ≥ 1. Then, according to
(1.5) and (3.15) it is obvious that (3.3) holds. In the case where (3.9) holds, the validity of the
theorem is proved. Assume now that αλ < 1 and for some ε > 0 (3.10) is fulfilled. Choose
s0 ∈ N such that

1 + αλ+ . . .+ (αλ)s0−2 >
1

1− αλ
− ε

α(1− γ)
.

Then from (3.15) we have

ρs0(k) ≥ c0 k
1−γ
1−αλ−

ε
α for k ≥ ks0 ,

where c0 > 0. Therefore by (3.12)

ρλs0(σ(k)) ≥ c1 k
αλ(1−γ)
1−αγ −ε for k ≥ ks0 ,

where c1 > 0. Consequently, according to (3.10), it is obvious that (3.3) holds.
The theorem is proved.
In a similar manner we can prove the following theorem.

Theorem 3.3. Let the conditions (1.2) – (1.5) and (3.6) be fulfilled and for some α > 0

lim inf
k→+∞

k−α lnσ(k) > 0.

Then all solutions of (1.1) are oscillatory.
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