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51200 Niğde, Turkey
e-mail: tcandan@nigde.edu.tr

B. Karpuz

Afyon Kocatepe Univ.
03200 Afyonkarahisar, Turkey
e-mail: bkarpuz@gmail.com
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In this article, we study oscillatory nature of all solutions of a class of neutral differential equations with
distributed deviating arguments. Some examples are also included to show the applicability of the results.

Вивчається коливна природа розв’язкiв класу нейтральних диференцiальних рiвнянь з розподi-
леними вiдхиленими аргументами. Наведено приклади застосування результатiв.

1. Introduction. We consider the neutral differential equation with distributed deviating argu-
ments

[x(t)−R(t)x(t− ρ)]′ +

τ2∫
τ1

[P (t, ζ)x(t− ζ)−Q(t, ζ)x(t− ζ + σ)]dζ = 0 for t ≥ t0, (1)

where R ∈ C([t0,∞),R+
0 ), P,Q ∈ C([t0,∞)× [τ1, τ2],R+

0 ). Here [τ1, τ2] is a positive interval in
reals and σ ∈ [0, τ1). Clearly, when Q ≡ 0, (1) reduces to the following form:

[x(t)−R(t)x(t− ρ)]′ +

τ2∫
τ1

P (t, ζ)x(t− ζ)dζ = 0 for t ≥ t0

whose oscillatory nature has been investigated in [2]. Note that a similar situation appears when
σ = 0, thus we suppose that σ > 0 holds for the rest of the paper.
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The neutral differential equation with concentrated delays, which corresponds to (1), has
the form

[x(t)−R(t)x(t− ρ)]′ + P (t)x(t− τ)−Q(t)x(t− σ) = 0 for t ≥ t0. (2)

Oscillation and nonoscillation of this equation has been investigated in the literature extensi-
vely (see [5 – 11]). Also the neutral difference equation corresponding to (1) is of the form

∆[x(n)−R(n)x(n− ρ)] + P (n)x(n− τ)−Q(n)x(n− σ) = 0 for n ∈ N,

which has been discussed in the papers [6, 12, 13]. We refer the readers to [1, 3] for the funda-
mental results of the oscillation theory.

The results of this study are motivated by the fundamental results on neutral differential
equations involving concentrated delays with positive and negative coefficients.

As it is customary, by a solution of (1), we mean a function x ∈ C([t0 −max{ρ, τ2},∞),R)
such that x(t) − R(t)x(t − ρ) is continuously differentiable for all t ≥ t0 and identically sati-
sfies (1) on [t0,∞). A solution of (1) is called nonoscillatory if it is eventually of constant sign;
otherwise, it is called oscillatory.

2. Preliminaries. In this section, we give some known results in the literature, which will be
used in the latter sections.

Consider the following first-order delay differential inequality

x′(t) +A(t)x(t− τ) ≤ 0 for t ≥ t0, (3)

where A ∈ C([t0,∞),R+) and τ > 0.

Theorem 2.1 ([3], Theorem 2.3.1). Assume that

lim inf
t→∞

t∫
t−τ

A(µ) dµ >
1

e
.

Then (3) has no eventually positive solutions.

Theorem 2.2 ([7]. Theorem 1). Assume that

∞∫
A(µ) ln

e
µ+τ∫
µ

A(λ)dλ

 dµ = ∞ and

t+τ∫
t

A(µ) dµ > 0 for all large t.

Then (3) has no eventually positive solutions.

Now consider the second-order delay differential inequality

x′′(t) +A(t)x(t) ≤ 0 for t ≥ t0 (4)

with A ∈ C([t0,∞),R+).
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Theorem 2.3 [4]. Assume that

lim inf
t→∞

t

∞∫
t

A(µ)dµ >
1

4
.

Then (4) has no eventually positive solutions.

3. Main results. This section is dedicated to the study of (1) under the following primary
assumptions:

(A1) H ∈ C([t0,∞)× [τ1, τ2],R+) defined by H(t, s) := P (t, s)−Q(t− σ, s), is not identi-
cally zero,

(A2) ρ1 :=

{
ρ, Q ≡ 0,
min{τ1 − σ, ρ}, otherwise,

and ρ2 :=

{
τ2, R ≡ 0,
max{τ2, ρ}, otherwise.

Throughout the paper, we assume that (A1) and (A2) hold.

Lemma 3.1. Assume that

R(t) +

t∫
t−σ

τ2∫
τ1

Q(µ, ζ) dζdµ ≤ 1 for all large t. (5)

If x is an eventually positive solution of (1), then the companion function z defined by

z(t) := x(t)−R(t)x(t− ρ)−
t∫

t−σ

τ2∫
τ1

Q(µ, ζ)x(µ− ζ + σ)dζ dµ for t ≥ t0 + ρ2, (6)

satisfies
z′(t) ≤ 0 and z(t) > 0 for all large t.

Proof. Let x be an eventually positive solution of (1). Then there exists a t1 ≥ t0 such that
x(t− ρ2) > 0 and (5) hold for all t ≥ t1. From (1) and (6), we obtain

z′(t) = [x(t)−R(t)x(t− ρ)]′ −

 t∫
t−σ

τ2∫
τ1

Q(µ, ζ)x(µ− ζ + σ)dζdµ

′ =

= [x(t)−R(t)x(t− ρ)]′ −
τ2∫
τ1

Q(t, ζ)x(t− ζ + σ)dζ +

τ2∫
τ1

Q(t− σ, ζ)x(t− ζ)dζ =

= −
τ2∫
τ1

H(t, ζ)x(t− ζ)dζ ≤ 0 (7)

for all t ≥ t1. Therefore, eventually nonincreasing z is either eventually positive or negative.
Suppose that z is eventually negative. Thus there exists a t2 ≥ t1 such that z(t) < 0 for all
t ≥ t2. Now we have the following possible cases.
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(C1) Let x be unbounded. Then there exists T > t2 + ρ2 satisfying x(T ) = max{x(t) : t ∈
∈ [t2, T ]}. From (5) and (6), we see that

x(T ) = z(T ) +R(T )x(T − ρ) +

T∫
T−σ

τ2∫
τ1

Q(µ, ζ)x(µ− ζ + σ)dζdµ ≤

≤ z(t2) +

R(T ) +

T∫
T−σ

τ2∫
τ1

Q(µ, ζ)dζdµ

x(T ) ≤ z(t2) + x(T ),

which yields a contradiction because of z(t2) < 0.
(C2) Let x be bounded. That is L := lim supt→∞ x(t) < ∞. Thus there exists an increasing

divergent sequence of reals {ξn}∞n=1 satisfying limn→∞ x(ξn) = L. Let {ηn}∞n=1 be a sequence
of divergent real numbers satisfying x(ηn) = max{x(t) : t ∈ [ξn − ρ2, ξn − ρ1]}. Clearly, we
have lim supn→∞ x(ηn) ≤ L. Thus from (5) and (6), we have

x(ξn) = z(ξn) +R(ξn)x(ξn − ρ) +

ξn∫
ξn−σ

τ2∫
τ1

Q(µ, ζ)x(µ− ζ + σ)dζdµ ≤

≤ z(t2) +

R(ξn) +

ξn∫
ξn−σ

τ2∫
τ1

Q(µ, ζ)dζdµ

x(ηn) ≤ z(t2) + x(ηn)

for all n ∈ N. By taking upper limit on both sides of the above inequality, we obtain L ≤
≤ z(t2) + L, which yields a contradiction and therefore the proof is complete.

We obtain contradictions in both of the possible cases (C1) and (C2). Therefore z is eventual-
ly positive.

Lemma 3.1 is proved.
We state below the first main result of the paper.

Theorem 3.1. Assume that (5) holds and

x′(t) +

τ2∫
τ1

H(t, ζ)x(t− ζ)dζ ≤ 0 for t ≥ t0

has no eventually positive solutions. Then every solution of (1) is oscillatory.

Proof. Suppose to the contrary that (1) has an eventually positive solution x. From Lemma 3.1,
we obtain x ≥ z > 0 eventually. Substituting z into (7), we see that the desired inequality holds
and leads to a contradiction with the positive nature of z.

Corollary 3.1. Assume that

lim inf
t→∞

t∫
t−τ1

τ2∫
τ1

H(µ, ζ)dζdµ >
1

e
(8)
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or

∞∫ τ2∫
τ1

H(µ, ζ) dζ ln

e
µ+τ1∫
µ

τ2∫
τ1

H(λ, ζ) dζ dλ

 dµ = ∞,

(9)
t+τ1∫
t

τ2∫
τ1

H(µ, ζ)dζdµ > 0 for all large t.

Then every solution of (1) is oscillatory.

Proof. Assume on the contrary that (1) has a nonoscillatory solution. Without loss of generali-
ty, we assume that x is an eventually positive solution on [t1,∞). Then we have by Lemma 3.1
that z(t) is positive and nonincreasing for all t ≥ t2, where t2 ≥ t1 is sufficiently large. Consi-
dering (6) and (7), we see that

0 = z′(t) +

τ2∫
τ1

H(t, ζ)x(t− ζ)dζ ≥ z′(t) +

τ2∫
τ1

H(tζ)z(t− ζ)dζ ≥

≥ z′(t) +

 τ2∫
τ1

H(t, ζ)dζ

 z(t− τ1) (10)

for all t ≥ t2. But in view of (8) or (9), the inequality (10) has no eventually positive solutions
by Theorem 2.1 and Theorem 2.2. This is the contradiction which completes the proof.

Almost all of the results for the oscillation of the neutral differential equation with concen-
trated delay (2) makes use of the condition

R(t) +

t∫
t−τ+σ

Q(µ)dµ ≤ 1 for all large t,

which can be regarded as the analogue of (5). For instance, see [3] (Theorem 2.6.1) and [8]
(Theorem 3.1).

Remark 3.1. Consider (1) withQ ≡ 0. In this case, Corollary 3.1 still improves [2] (Theorem
1) by dropping the condition

∞∫ τ2∫
τ1

P (µ, ζ)dζ dµ = ∞.

Now we give the following example.

Example 3.1. Consider the following neutral differential equation with distributed delays:

[x(t)− e−2πx(t− π)]′ +

3π∫
5
2
π

[
eζx(t− ζ)− eζ−4πx(t− ζ + π)

]
dζ = 0 for t ≥ 0. (11)
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Here R(t) = e−2π, ρ = π, P (t, s) = es, Q(t, s) = es−4π, σ = π, τ1 = 5π/2 and τ2 = 3π.
Hence we have

e−2π +

t∫
t−π

3π∫
5
2
π

eζ−4πdζdµ = e−
3
2
π
[
e−

π
2 + π(e

π
2 − 1)

]
< 1 for all t ≥ 0

and

lim inf
t→∞

t∫
t− 5

2
π

3π∫
5
2
π

(
1− e−4π

)
eζdζdµ =

5

2
πe−

3
2
π
(
e4π − 1

) (
e

1
2
π − 1

)
>

1

e
.

Therefore every solution of (11) is oscillatory by Corollary 3.1. Direct substitution shows that
x(t) = et sin(t) is such an oscillatory solution.

Lemma 3.2. Assume that

R(t) +

t∫
t−σ

τ2∫
τ1

Q(µ, ζ)dζdµ ≥ 1 for all large t. (12)

If x is an eventually positive solution of (1) and the second-order differential inequality

x′′(t) +

 1

ρ2

τ2∫
τ1

H(t, ζ)dζ

x(t) ≤ 0 for t ≥ t0 (13)

has no eventually positive solutions, then

z′(t) ≤ 0 and z(t) < 0 for all large t.

Proof. Let x be an eventually positive solution of (1). Say x(t − ρ2) > 0 for all t ≥ t1. As
in the proof of Lemma 3.1, we have z′(t) ≤ 0 for all t ≥ t2, where t2 ≥ t1. Thus z(t) is of
constant sign and (7) holds for all t ≥ t3, where t3 ≥ t2. We shall prove that z(t) < 0 for all
t ≥ t3. On the contrary assume that z(t) > 0 for all t ≥ t3. Now set M := min{x(t) : t ∈
∈ [t3− ρ2, t3]}/2 ≥ z(t3)/2 > 0. We claim that x(t) > M for all t ≥ t3− ρ2. If not, there exists
T > t3 such that x(t) > M for all t ∈ [t3 − ρ2, T ) and x(T ) = M. From (6) and (12), we see
that

x(T ) = z(T ) +R(T )x(T − ρ) +

T∫
T−σ

τ2∫
τ1

Q(µ, ζ)x(µ− ζ + σ)dζdµ >

> M

R(T ) +

T∫
T−σ

τ2∫
τ1

Q(µ, ζ)dζdµ

 ≥ M = x(T ),
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which is a contradiction. Now let L := limt→∞ z(t) and consider the following cases.
(C1) Let L = 0. There exists a T ≥ t3 satisfying z(t) < M/2 for all t ≥ T. Then we have

x(t) > M =
1

ρ2

M

2
2ρ2 ≥

1

ρ2

M

2
(t+ ρ2 − T ) >

1

ρ2

t+ρ2∫
T

z(λ)dλ

for all t ∈ [T, T + ρ2].

(C2) Let L > 0. Since z′(t) ≤ 0, we have z(t) > L for all t ≥ t3. From (6) and (12), we
obtain

x(t) > L+R(t)x(t− ρ) +

t∫
t−σ

τ2∫
τ1

Q(µ, ζ)x(µ− ζ + σ)dζ dµ ≥

≥ L+

R(t) +

t∫
t−σ

τ2∫
τ1

Q(µ, ζ)dζ dµ

 M ≥ L+M

for all t ≥ t3, which by induction yields to

x(t) ≥ nL+M for all t ≥ t3 + (n− 1)ρ2 and n ∈ N,

and thus limt→∞ x(t) = ∞. Therefore there exists a T ≥ t3 satisfying x(t) > 2z(T ) for all
t ≥ T. Hence

x(t) > 2z(T ) ≥ t+ ρ2 − T
ρ2

z(T ) ≥ 1

ρ2

t+ρ2∫
T

z(λ) dλ

for all t ∈ [T, T + ρ2].

Combining the cases (C1) and (C2) ensures existence of a t4 ≥ t3 satisfying

x(t) >
1

ρ2
y(t+ ρ2) (14)

for all t ∈ [t4, t4 + ρ2], where

y(t) :=

t∫
t4

z(λ) dλ for t ≥ t4.

Note that y is positive and increasing. Now we claim that (14) holds for all t ≥ t4. If not, there
exists a T > t4+ρ2 such that (14) holds for all t ∈ [t4, T ) and x(T ) = y(T+ρ2)/ρ2.Considering
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(6), (12) and (14), we get

x(T ) > z(T ) +
1

ρ2

R(T )y(T − ρ+ ρ2) +

T∫
T−σ

τ2∫
τ1

Q(µ, ζ)y(µ− ζ + ρ2 + σ) dζ dµ

 ≥

≥ z(T ) +
1

ρ2

R(t)y(T ) + y(T − τ2 + ρ2)

T∫
T−σ

τ2∫
τ1

Q(µ, ζ)dζdµ

 ≥

≥ 1

ρ2

T+ρ2∫
T

z(λ)dλ+
1

ρ2

R(t) +

T∫
T−σ

τ2∫
τ1

Q(µ, ζ)dζ dµ

 y(T ) ≥

≥ 1

ρ2

 T+ρ2∫
T

z(λ) dλ+ y(T )

 =
1

ρ2
y(T + ρ2) = x(T ),

which is a contradiction. Hence, (14) holds on [t4,∞), which implies

x(t− ζ) ≥ 1

ρ2
y(t− ζ + ρ2) ≥

1

ρ2
y(t) for all ζ ∈ [τ1, τ2] and t ≥ t4. (15)

Then y > 0, y′ = z > 0 and y′′ = z′ ≤ 0 hold on [t4,∞). By taking (15) into account and
substituting y into (7), we obtain

0 ≥ y′′(t) +

 1

ρ2

τ2∫
τ1

H(t, ζ)dζ

 y(t for all t ≥ t4,

which shows that (13) has an eventually positive solution. This contradiction proves the claim
that z is eventually negative.

The following is another main result of the paper.

Theorem 3.2. Assume that

R(t) +

t∫
t−σ

τ2∫
τ1

Q(µ, ζ) dζ dµ ≡ 1 for all large t (16)

and (13) has no eventually positive solutions. Then every solution of (1) is oscillatory.

Proof. For the sake of contradiction, let x be an eventually positive solution of (1), then the
companion function z is eventually positive by Lemma 3.1 while it is eventually negative by
Lemma 3.2.

Corollary 3.2. Suppose that (16) holds. If

lim inf
t→∞

t

∞∫
t

τ2∫
τ1

H(µ, ζ) dζ dµ >
ρ2
4
, (17)
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then every solution of (1) is oscillatory.

The conditions

R(t) +

t∫
t−τ+σ

Q(µ) dµ ≡ 1 for all large t (18)

and

lim inf
t→∞

t

∞∫
t

[P (µ)−Q(µ− τ + σ)] dµ >
ρ2
4
, (19)

which are analogues of (16) and (17), respectively, appear in recent results for the oscillation
of the neutral differential equation with concentrated delays (2), see [8] (Theorem 3.2), [10]
(Theorem 3.1) and [11] (Theorem 1), see also [10] (Theorem 3.1), where (18) is still required
but instead of (19) the following is assumed

∞∫
t0

[P (µ)−Q(µ− τ + σ)] exp

 1

ρ2

µ∫
t0

[P (ζ)−Q(ζ − τ + σ)] dζ

 dµ = ∞.

We would like to mention that the condition (18) is replaced with a weaker one in [9] (Theorem 1).
Now, we proceed with an example.

Example 3.2. Consider the following neutral differential equation with distributed deviating
arguments:

[
x(t)− 1

4
x(t− 1)

]′
+

4∫
1

[(
1

t2
√
ζ

+
1

4

)
x(t− ζ)− 1

4
x(t− ζ + 1)

]
dζ = 0 for t ≥ 5. (20)

In this equation, R(t) = 1/4, ρ = 1, P (t, s) = 1/(t2
√
s) + 1/4, Q(t, s) = 1/4, σ = 1, τ1 = 1

and τ2 = 4. Then we have

1

4
+

t∫
t−1

4∫
1

1

4
dζ dµ ≡ 1 for all t ≥ 5

and

lim inf
t→∞

t

∞∫
t

4∫
1

1

µ2
√
ζ
dζ dµ = 2 > 1.

Therefore every solution of (20) is oscillatory.

4. Iterative results. In this section, we advance the results given in the previous section by
using a recursive method.
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To this end, we need to introduce

Hn(t) :=


1, n = 0,

R(t)Hn−1(t− ρ) +

t∫
t−σ

∫ τ2

τ1

Q(µ, ζ)Hn−1(µ− ζ + σ) dζ dµ, n ∈ N.

Lemma 4.1. Assume that assumptions of Lemma 3.1 hold. Then, for any n ∈ N, z is an
eventually positive solution of the inequality

x′(t) +

τ2∫
τ1

H(t, ζ)
n∑
k=0

Hk(t− ζ)x(t− ζ) dζ ≤ 0 for t ≥ t0. (21)

Proof. From Lemma 3.1, we see that there exists a t1 ≥ t0 such that x(t) ≥ z(t) > 0 and
z′(t) ≤ 0 hold for all t ≥ t1. We claim that there exists an increasing divergent sequence of
reals {ξn}∞n=1 ⊂ [t1,∞) satisfying

x(t) ≥
n∑
k=0

Hk(t) z(t) (22)

for all t ≥ ξn and n ∈ N. We use mathematical induction. For n = 1, we see from (6) that

x(t) ≥ z(t) +R(t)z(t− ρ) +

t∫
t−σ

τ2∫
τ1

Q(µ, ζ)z(µ− ζ + σ) dζ dµ ≥

≥

1 +R(t) +

t∫
t−σ

τ2∫
τ1

Q(µ, ζ) dζ dµ

 z(t) =

1∑
k=0

Hk(t) z(t)

for all t ≥ ξ1 ≥ t1 + ρ2. Now suppose that (22) holds for some n. Then we have

x(t) = z(t) +R(t)x(t− ρ) +

t∫
t−σ

τ2∫
τ1

Q(µ, ζ)x(µ− ζ + σ) dζ µ ≥

≥ z(t) +R(t)

n∑
k=0

Hk(t− ρ)z(t− ρ)+

+

t∫
t−σ

τ2∫
τ1

Q(µ, ζ)

n∑
k=0

Hk(µ− ζ + σ)z(µ− ζ + σ) dsζ dµ ≥

≥

1+R(t)

n∑
k=0

Hk(t− ρ)+

t∫
t−σ

τ2∫
τ1

Q(µ, ζ)

n∑
k=0

Hk(µ− ζ + σ) dζ dµ

z(t) =
n+1∑
k=0

Hk(t)z(t),
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for all t ≥ ξn+1 ≥ ξn + ρ2, which shows that the claim is also true for (n+ 1). Substituting (22)
into (7), we see that z is an eventually positive solution of (21).

Lemma 4.1 is proved.
The last main result of the paper is the following.

Theorem 4.1. Assume that assumptions of Lemma 3.1 hold and there exists n0 ∈ N such that

x′(t) +

τ2∫
τ1

H(t, ζ)

n0∑
k=0

Hk(t− ζ)x(t− ζ) dζ ≤ 0 for t ≥ t0

has no eventually positive solutions. Then every solution of (1) is oscillatory.

Proof. Proof is trivial and is omitted.
As an immediate consequence of Theorem 4.1, we have the following corollary.

Corollary 4.1. Assume that there exists n0 ∈ N satisfying

lim inf
t→∞

t∫
t−τ1

τ2∫
τ1

H(µ, ζ)

n0∑
k=0

Hk(µ− ζ) dζ dµ >
1

e

or

∞∫
t0

τ2∫
τ1

H(µ, ζ)

n0∑
k=0

Hk(µ− ζ) dζ ln

e
µ+τ∫
µ

τ2∫
τ1

H(λ, ζ)

n0∑
k=0

Hk(λ− ζ) dζ dλ

 dµ = ∞,

t+τ1∫
t

τ2∫
τ1

H(µ, ζ)

n0∑
k=0

Hk(µ− ζ) dζ dµ > 0 for all large t.

Then all solutions of (1) are oscillatory.

As an application of Corollary 4.1, we present two simple examples below.

Example 4.1. Consider the following neutral differential equation with distributed delays:

[
x(t)− 3

8
x(t− 1)

]′
+

2∫
1

[(
1

t
+

3

8

)
x(t− ζ)− 1

8
x(t− ζ + 1)

]
dζ = 0 for t ≥ 5. (23)

For this equation R(t) = 3/8, ρ = 1, P (t, s) = 1/t + 1/8, Q(t, s) = 1/8, σ = 1, τ1 = 1 and
τ2 = 2. Then we have

H(t, s) =
1

t
+

1

4
and Hn(t) =

1

2n
for n ∈ N,

and so

L(n) := lim inf
t→∞

t∫
t−1

2∫
1

(
1

µ
+

1

4

) n∑
k=0

1

2k
dζ dµ =

(
1− 1

2(n+1)

)
1

2
.
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Note that L(0) < 1/e, while L(1) > 1/e. Hence every solution of (23) is oscillatory by
Corollary 4.2.

Example 4.2. Consider the following neutral differential equation:

[
x(t)− 13

16
x(t− 1)

]′
+

2∫
1

[(
1

t
+

1

2

)
x(t− ζ)− 1

16
x(t− ζ + 1)

]
dζ = 0 for t ≥ 5. (24)

For this equation R(t) = 13/16, ρ = 1, P (t, s) = 1/t + 1/16, Q(t, s) = 1/16, σ = 1, τ1 = 1
and τ2 = 2. Then we have

H(t, s) =
1

t
+

7

16
and Hn(t) =

(
7

8

)n
for n ∈ N,

and so

L(n) := lim inf
t→∞

t∫
t−1

2∫
1

(
1

µ
+

7

16

) n∑
k=0

(
7

8

)k
dζ dµ =

(
1−

(
7

8

)(n+1)
)

7

16
.

One can check that L(n) < 1/e for n = 0, 1, . . . , 12, while L(13) > 1/e. Hence every solution
of (24) is oscillatory by Corollary 4.1.
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12. Tang X. H., Yu J. S., Peng D. H. Oscillation and nonoscillation of neutral difference equations with positive
and negative coefficients // Comput. Math. Appl. — 2000. — 39, № 7 – 8. — P. 169 – 181.

13. Tian C. J., Cheng S. S. Oscillation criteria for delay neutral difference equations with positive and negative
coefficients // Bol. Soc. paran. mat. (3). — 2003. — 21, № 1 – 2. — P. 19 – 30.

Received 05.03.10,
after revision — 17.03.11

ISSN 1562-3076. Нелiнiйнi коливання, 2012, т . 15, N◦ 1


