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The aim of this paper is to study the asymptotic properties and oscillation of the n-th order delay differential
equation (

r(t)
[
x(n−1)(t)

]γ)′
+ q(t)f

(
x(τ(t))

)
= 0. (E)

The results obtained are based on some new comparison theorems that reduce the problem of oscillation
of an n-th order equation to that of the oscillation of one or more first order equations. We handle both the
cases

∫∞
r−1/γ(t) dt = ∞ and

∫∞
r−1/γ(t) dt < ∞. The comparison principles simplify the analysis of

equation (E).

Вивчено асимптотичнi властивостi та осциляцiю диференцiального рiвняння n-го порядку з
запiзненням (

r(t)
[
x(n−1)(t)

]γ)′
+ q(t)f

(
x(τ(t))

)
= 0. (E)

Отриманi результати базуються на деяких нових теоремах порiвняння, якi зводять задачу
про осциляцiю рiвняння n-го порядку до такої ж задачi для одного або кiлькох рiвнянь першо-
го порядку. Розглянуто обидва випадки:

∫∞
r−1/γ(t) dtt = ∞ та

∫∞
r−1/γ(t) dt < ∞. Теореми

порiвняння дозволяють спростити аналiз рiвняння (E).

1. Introduction. In this paper, we examine the asymptotic and oscillatory behavior of solutions
of the n-th order (n ≥ 3) delay differential equation(

r(t)
[
x(n−1)(t)

]γ)′
+ q(t)f

(
x(τ(t))

)
= 0. (E)

We assume that q, τ ∈ C([t0,∞)), r ∈ C1([t0,∞)), f ∈ C((−∞,∞)), and
(H1) γ is the ratio of two odd positive integers;
(H2) r(t) > 0, r′(t) > 0, and q(t) > 0;

(H3) τ(t) ≤ t, lim
t→∞

τ(t) = ∞, and τ(t) is nondecreasing;
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(H4) xf(x) > 0 for x 6= 0, f(x) is nondecreasing, and

−f(−xy) ≥ f(xy) ≥ f(x)f(y) for xy > 0.

By a solution of Eq. (E) we mean a function x(t) ∈ Cn−1[Tx,∞), Tx ≥ t0, for which
r(t)(x(n−1)(t))γ ∈ C1[Tx,∞), and x(t) satisfies Eq. (E) on [Tx,∞). We consider only those
solutions x(t) of (E) that satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx and we tacitly assume
that Eq. (E) possesses such solutions. A solution of (E) is called oscillatory if it has arbitrarily
large zeros on [Tx,∞) and it is said to be nonoscillatory otherwise. Equation (E) is said to be
oscillatory if all its solutions are oscillatory.

Equation (E) and its special cases, especially for n = 2, has been studied by many authors
(see, for example, [2 – 19]), mainly under the condition

∞∫
t0

r−1/γ(s) ds = ∞. (1.1)

There are comparatively fewer results (see, for example, [1] and [20]) for (E) in the case that

∞∫
t0

r−1/γ(s) ds < ∞ (1.2)

holds. In this paper, we consider both possibilities.
If the gap between t and τ(t) is small, then there exists a nonoscillatory solution of (E), and

so in this case our goal is to prove that every nonoscillatory solution of (E) tends to zero as
t → ∞. On the other hand, if the difference t − τ(t) is large enough, then we shall study the
oscillation of (E). Our aim in this paper is to study both of these cases as well.

Various techniques have been used in investigating higher order differential equations. Our
method here is based on establishing new comparison theorems that compare the n-th order
equation (E) to one or a couple of first order delay differential equations in the sense that the
oscillation of these first order equations imply the oscillation of Eq. (E). These comparison
theorems greatly simplify the analysis of Eq. (E).

Remark 1. All functional inequalities considered in this paper are assumed to hold eventually,
that is, they are satisfied for all sufficiently large t.

2. Main results. Our results make use of the following estimate that is due to Philos and
Staikos (see [17, 18]).

Lemma A. Let z ∈ Ck([t0,∞)) and assume that z(k) is of fixed sign and not identically zero
on a subray of [t0,∞). If, moreover, z(t) > 0, z(k−1)(t)z(k)(t) ≤ 0, and limt→∞ z(t) 6= 0, then
for every δ ∈ (0, 1) there exists tδ ≥ t0 such that

z(t) ≥ δ

(k − 1)!
tk−1 |z(k−1)(t)| (2.1)

holds on [tδ,∞).
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The positive solutions of (E) have the following structure.

Lemma 1. If x(t) is a positive solution of (E), then r(t)
[
x(n−1)(t)

]γ
is decreasing, all derivati-

ves x(i)(t), 1 ≤ i ≤ n− 1, are of constant signs, and x(t) satisfies either

x(n−1)(t) > 0, x(n)(t) < 0 (C1)

or, if (1.2) holds,

x(n−2)(t) > 0, x(n−1)(t) < 0. (C2)

Proof. Since x(t) is a positive solution of (E), then it follows from (E) that(
r(t)

[
x(n−1)(t)

]γ)′
= −q(t)f

(
x(τ(t))

)
< 0.

Thus, r(t)
[
x(n−1)(t)

]γ
is decreasing, which implies that either x(n−1)(t) > 0 or x(n−1)(t) < 0.

Note that the second case may occur only if (1.2) holds. Moreover, since x(t) > 0, it follows
from x(n−1)(t) < 0 that x(n−2)(t) > 0.

On the other hand, if x(n−1)(t) > 0, then using the fact that r′(t) > 0 in the expression

0 >
(
r(t)

[
x(n−1)(t)

]γ)′
= r′(t)

[
x(n−1)(t)

]γ
+ r(t)γ

[
x(n−1)(t)

]γ−1
x(n)(t),

we conclude that x(n)(t) < 0. This completes the proof of the lemma.
We next give some criteria for excluding the possibility that cases (C1) and (C2) occur.

Theorem 1. Let (1.1) hold. If for some constant δ ∈ (0, 1), the first order delay differential
equation

y′(t) + q(t)f

(
δ

(n− 1)!

τn−1(t)

r1/γ(τ(t))

)
f
(
y1/γ(τ(t))

)
= 0, (E1)

is oscillatory, then
(i) for n even, (E) is oscillatory;
(ii) for n odd, every nonoscillatory solution x(t) of (E) satisfies limt→∞ x(t) = 0.

Proof. Assume that x(t) is a nonoscillatory solution of (E), say x(t) > 0. It follows from
Lemma 1 that x(t) satisfies (C1).

If n is even, then it is clear from (C1) that limt→∞ x(t) 6= 0. Thus, it follows from Lemma A
that for every δ ∈ (0, 1)

x(τ(t)) ≥ δ

(n− 1)!

τn−1(t)

r1/γ(t)

(
r1/γ(t)x(n−1)(τ(t))

)
, (2.2)

eventually. Using (2.2) in (E), we see that y(t) = r(t)
[
x(n−1)(t)

]γ
is a positive solution of the

delay differential inequality

y′(t) + q(t)f

(
δ

(n− 1)!

τn−1(t)

r1/γ(τ(t))

)
f
(
y1/γ(τ(t))

)
≤ 0.
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By Theorem 1 in [16], we conclude that the corresponding equation (E) also has a positive
solution. This contradiction proves part (i) of the theorem.

Now assume that n is odd. We claim that limt→∞ x(t) = 0. If this is not the case, then
proceeding exactly as in the proof of part (i), we again obtain that (E1) has a positive solution.
This contradiction proves part (ii) of the theorem.

Remark 2. It follows from the proof of Theorem 1 that the oscillation of (E1) prevents case
(C1) of Lemma 1 from occurring provided that limt→∞ x(t) 6= 0.

Applying criteria for the oscillation of (E1), we immediately obtain sufficient conditions for
Cases (i) and (ii) of Theorem 1 to hold. We offer two such results.

Corollary 1. Assume (1.1) holds,

f(u1/γ)/u ≥ 1 for 0 < |u| ≤ 1, (2.3)

and for some δ ∈ (0, 1),

lim inf
t→∞

t∫
τ(t)

q(s)f

(
δ

(n− 1)!

τn−1(s)

r1/γ(τ(s))

)
ds >

1

e
. (2.4)

Then:
(i) if n is even, Eq. (E) is oscillatory;
(ii) if n is odd, every nonoscillatory solution x(t) of (E) satisfies limt→∞ x(t) = 0.

Proof. First note that (2.4) implies

∞∫
t0

q(s)f

(
δ

(n− 1)!

τn−1(s)

r1/γ(τ(s))

)
ds = ∞.

By Theorem 1, it is sufficient to show that (E1) is oscillatory. Assume to the contrary that (E1)
has an eventually positive solution y(t). Then y′(t) < 0. We claim that limt→∞ y(t) = 0. If this
is not the case, then there exists ` > 0 such that y(τ(t)) > `. Integrating (E1) from t1 to t, we
have

y(t1) = y(t) +

t∫
t1

q(s)f

(
δ

(n− 1)!

τn−1(s)

r1/γ(τ(s))

)
f
(
y1/γ(τ(s))

)
ds ≥

≥ f
(
`1/γ

) t∫
t1

q(s)f

(
δ

(n− 1)!

τn−1(s)

r1/γ(τ(s))

)
ds.

Letting t → ∞, we obtain a contradiction, so limt→∞ y(t) = 0. Thus 0 < y(t) ≤ 1 eventually.
Using (2.3) in (E1), it is easy to see that y(t) is a positive solution of the differential inequality

y′(t) + q(t)f

(
δ

(n− 1)!

τn−1(s)

r1/γ(τ(s))

)
y(τ(t)) ≤ 0. (2.5)
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But, by Theorem 2.4.1 in [13], condition (2.4) ensures that inequality (2.5) has no positive soluti-
ons. This is a contradiction and completes the proof of the theorem.

A second such result is contained in the following corollary.

Corollary 2. Let (1.1) hold and let β be the ratio of two odd positive integers with β < γ. If

lim sup
t→∞

t∫
τ(t)

q(s)

(
τn−1(s)

)β
rβ/γ(τ(s))

ds > 0, (2.6)

then the differential equation(
r(t)

[
x(n−1)(t)

]γ)′
+ q(t)xβ(τ(t)) = 0 (Eβ)

(i) for n even, is oscillatory;
(ii) for n odd, every nonoscillatory solution x(t) satisfies limt→∞ x(t) = 0.

Proof. First note that (2.6) implies

∞∫
t0

q(s)

(
τn−1(s)

)β
rβ/γ(τ(s))

ds = ∞.

Taking into account Theorem 1, it is sufficient to show that Eq. (E1), which now reduces to

y′(t) +

(
δ

(n− 1)!

)β
q(t)

(
τn−1(t)

)β
rβ/γ(τ(t))

yβ/γ(τ(t)) = 0, (Eβ1 )

is oscillatory. Assume that (Eβ1 ) has an eventually positive solution y(t). Similar to the proof of
Corollary 1, we can show that y(t) is decreasing and limt→∞ y(t) = 0. Integrating (Eβ1 ) from
τ(t) to t, we obtain

0 = y(t)− y(τ(t)) +
(

δ

(n− 1)!

)β t∫
τ(t)

q(s)

(
τn−1(s)

)β
rβ/γ(τ(s))

yβ/γ(τ(s)) ds.

From the monotonicity of yβ/γ(τ(t)), we have

(
(n− 1)!

δ

)β
y1−β/γ(τ(t)) ≥

t∫
τ(t)

q(s)

(
τn−1(s)

)β
rβ/γ(τ(s))

ds.

Taking the limit superior of both sides, we obtain a contradiction to (2.6), and this establishes
the desired result.

Next, we turn our attention to the case where n is odd. Employing an additional conditi-
on, we are able to ensure the oscillation of all solutions of Eq. (E) for n odd. That is, we are
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able to eliminate the possibility that there are nonoscillatory solutions converging to zero. For
convenience, we set

ξ1(t) = ξ(t), ξi+1(t) = ξi
(
ξ(t)

)
,

J1(t) = ξ(t)− t, Ji+1(t) =

ξ(t)∫
t

Ji(s) ds,

where ξ(t) ∈ C([t0,∞)).

Theorem 2. Let n be odd and (1.1) hold. Assume that ξ(t) ∈ C([t0,∞)) is such that

ξ(t) nondecreasing, ξ(t) > t, and ξn−1(τ(t)) < t. (2.7)

If for some δ ∈ (0, 1), Eq. (E1) is oscillatory and the equation

y′(t) + q(t)f
(
r−1/γ

(
ξn−1(τ(t)

)
Jn−1(τ(t))

)
f
(
y1/γ

(
ξn−1(τ(t)

))
= 0 (E2)

is also oscillatory, then Eq. (E) is oscillatory.

Proof. Assume to the contrary that x(t) is a positive solution of (E). Then, by Theorem 1,
the oscillation of (E) implies that limt→∞ x(t) = 0. Thus, in view of Lemma 1, x(t) satisfies

(−1)ix(i)(t) > 0, i = 1, 2, . . . , n− 1. (2.8)

Consequently,

−x(n−2)(t) ≥ x(n−2)(ξ(t))− x(n−2)(t) =
ξ(t)∫
t

x(n−1)(s) ds ≥

≥ x(n−1)(ξ(t))(ξ(t)− t) = x(n−1)(ξ(t))J1(t).

The repeated integration of the previous inequalities from t to ξ(t), yields

x(t) ≥ x(n−1)(ξn−1(t))Jn−1(t)

or equivalently

x(τ(t)) ≥
[
r1/γ

(
ξn−1(τ(t))

)
x(n−1)(ξn−1(τ(t)))

] Jn−1(τ(t))

r1/γ
(
ξn−1(τ(t))

) .
Using the last inequality in (E), we see that y(t) = r(t)

[
x(n−1)(t)

]γ
is a positive solution of the

delay differential inequality

y′(t) + q(t)f
(
r−1/γ

(
ξn−1(τ(t)

)
Jn−1(τ(t)))

)
f
(
y1/γ

(
ξn−1(τ(t)

)
)
)
≤ 0.
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ON THE OSCILLATION OF HIGHER ORDER DELAY DIFFERENTIAL EQUATIONS . . . 19

It follows from Theorem 1 in [16], that the corresponding equation (E2) also has a positive
solution. This contradiction completes the proof.

Remark 3. Similar to Remark 2 above, the oscillation of Eq. (E2) prevents case (C1) of
Lemma 1 from holding provided that limt→∞ x(t) 6= 0.

As an application of Theorem 2, we have the following corollary.

Corollary 3. Let n be odd and (1.1), (2.3), and (2.4) hold for some δ ∈ (0, 1). Assume that
ξ(t) ∈ C([t0,∞)) is such that (2.7) is satisfied. If

lim inf
t→∞

t∫
ξn−1(τ(t))

q(s)f
(
r−1/γ

(
ξn−1(τ(s))

)
Jn−1(τ(s))

)
ds >

1

e
, (2.9)

then (E) is oscillatory.

Proof. By Theorem 2, it is sufficient to show that both equations (E1) and (E2) are oscil-
latory. It follows from the proof of Corollary 1 that the oscillation of (E1) is due to (2.4). Using
arguments similar to those in the proof of Corollary 1, it can be shown that (2.9) guarantees the
oscillation of (E2). This proves the corollary.

We illustrate our results in the following examples.

Example 1. Consider the n-th order nonlinear differential equation(
t3
(
x(n−1)(t)

)3)′
+

b

t3n−5
x3(λt) = 0 (2.10)

with b > 0 and 0 < λ < 1. Condition (2.4) reduces to

δ3bλ3n−6 ln
1

λ
>

(
(n− 1)!

)3
e

for some δ ∈ (0, 1), (2.11)

or simply

bλ3n−6 ln
1

λ
>

(
(n− 1)!

)3
e

(2.12)

since (2.12) implies (2.11). Hence, Corollary 1 guarantees that if (2.12) holds, then
(i) for n even, (2.10) is oscillatory;
(ii) for n odd, every nonoscillatory solution x(t) of (2.10) satisfies limt→∞ x(t) = 0.
For n = 3 and β > 0 such that 3β3(β + 1)4 = bλ−3β, one such solution is x(t) = t−β.

Moreover, if n is odd, we set ξ(t) = αt, where α =
1 + λ−1/(n−1)

2
. Then condition (2.9)

takes the form

b

α3n−3λ3

(
(λ− 1)(λ2 − 1) . . . (λn−1 − 1)λn−1

(n− 1)!

)3

ln
1

αn−1λ
>

1

e
. (2.13)

It follows from Corollary 3 that (2.10) is oscillatory even if n is odd, provided that both condi-
tions (2.12) and (2.13) are satisfied.
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Now, we turn our attention to the case where (1.2) holds. It is useful to observe that in this
case, Eq. (E) may have a solution x(t) with the property x(t)x′(t) < 0 no matter if n is even or
odd.

Theorem 3. Let (1.2) hold. If for some constant δ ∈ (0, 1) and every t1 ≥ t0, both the first
order delay differential equations (E1) and

y′(t) + r−1/γ(t)

 t∫
t1

q(s)f

(
δ

(n− 2)!
τn−2(s)

)
ds

1/γ

f1/γ (y(τ(t))) = 0 (E3)

are oscillatory, then every nonoscillatory solution of (E) satisfies limt→∞ x(t) = 0.

Proof. Assume to the contrary that x(t) is a nonoscillatory solution of (E) such that
limt→∞ x(t) 6= 0. We may assume that x(t) > 0. Lemma 1 implies that x(t) satisfies either
(C1) or (C2). On the other hand, it follows from the proof of Theorem 1 that the oscillation of
(E1) implies case (C1) is not possible. We shall show that the oscillation of (E3) excludes the
case (C2).

Lemma 1 gives the estimate

x(τ(t)) ≥ δ

(n− 2)!
τn−2(t)x(n−2)(τ(t)). (2.14)

Using (2.14) in (E) yields(
r(t)

[
x(n−1)(t)

]γ)′
+ q(t)f

(
δ

(n− 2)!
τn−2(t)

)
f
(
x(n−2)(τ(t))

)
≤ 0.

Integrating, we obtain

−r(t)
[
x(n−1)(t)

]γ
≥

t∫
t1

q(s)f

(
δ

(n− 2)!
τn−2(s)

)
f
(
x(n−2)(τ(s))

)
ds,

which in view of the monotonicity of f
(
x(n−2)(τ(t))

)
gives

−x(n−1)(t) ≥ r−1/γ(t)f1/γ
(
x(n−2)(τ(t))

)  t∫
t1

q(s)f

(
δ

(n− 2)!
τn−2(s)

)
ds

1/γ

.

Consequently, y(t) = x(n−2)(t) is a positive solution of the delay differential inequality

y′(t) + r−1/γ(t)

 t∫
t1

q(s)f

(
δ

(n− 2)!
τn−2(s)

)
ds

1/γ

f1/γ (y(τ(t))) ≤ 0.

By Theorem 1 in [16], the corresponding equation (E3) also has a positive solution. This contradi-
ction shows that limt→∞ x(t) = 0 and completes the proof of the theorem.
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Remark 4. The oscillation of Eq. (E3) prevents the case (C2) in Lemma 1 from occurring
provided that limt→∞ x(t) 6= 0.

Next, we eliminate the possibility that limt→∞ x(t) = 0 from Theorem 3 even if (1.2) holds.
We shall consider another first order delay differential equation, namely,

y′(t) + r−1/γ(t)

 t∫
t1

q(s) ds

1/γ

f1/γ
(
Jn−2(τ(t))

)
f1/γ

(
y
(
ξn−2(τ(t)

))
= 0. (E4)

Theorem 4. Let (1.2) hold. Assume that for some δ ∈ (0, 1) and every t1 ≥ t0, both (E1) and
(E3) are oscillatory. Assume further that there exists ξ(t) ∈ C([t0,∞)) such that

(i) for n odd, (2.7) holds and (E2) is oscillatory;
(ii) for n even, (E4) is oscillatory for every t1 ≥ t0, and

ξ(t) nondecreasing, ξ(t) > t, and ξn−2(τ(t)) < t. (2.15)

Then Eq. (E) is oscillatory.

Proof. Assume that x(t) is a positive solution of (E). It follows from the proofs of Theorems 1
and 3 that limt→∞ x(t) = 0. Then, in view of Lemma 1, x(t) has to satisfy (2.8).

(i) If n is odd, it follows from the proof of Theorem 2 that (E) is oscillatory due to the
oscillation of (E2).

(ii) Assume that n is even. We shall show that (2.8) cannot hold. Proceeding exactly as in
the proof of Theorem 2, we obtain

x(t) ≥ x(n−2)(ξn−2(t))Jn−2(t). (2.16)

On the other hand, an integration of (E) yields

−r(t)
[
x(n−1)(t)

]γ
≥

t∫
t1

q(s)f(x(τ(s))) ds ≥ f(x(τ(t)))

t∫
t1

q(s) ds.

That is,

−x(n−1)(t) ≥ r−1/γ(t)f1/γ(x(τ(t)))

 t∫
t1

q(s) ds

1/γ

,

which combined with (2.16) implies y(t) = x(n−2)(t) is a positive solution of the delay di-
fferential inequality

y′(t) + r−1/γ(t)

 t∫
t1

q(s) ds

1/γ

f1/γ
(
Jn−2(τ(t))

)
f1/γ

(
y
(
ξn−2(τ(t)

)))
≤ 0.

Again by Theorem 1 in [16], the corresponding equation (E2) must have a positive solution.
This completes the proof of the theorem.
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Remark 5. The oscillation of (E4) prevents the case (C2) in Lemma 1 from holding provided
that limt→∞ x(t) 6= 0.

Corollary 4. Let (1.2) and (2.3) hold, and for some δ ∈ (0, 1) and every t1 ≥ t0, let both (2.4)
and

lim inf
t→∞

t∫
τ(t)

r−1/γ(u)

 u∫
t1

q(s)f

(
δ

(n− 2)!
τn−2(s)

)
ds

1/γ

du >
1

e
(2.17)

be satisfied. Then every nonoscillatory solution of (E) tend to zero as t → ∞.
Assume, in addition, that there exists ξ(t) ∈ C([t0,∞)) such that:
(i) for n odd, (2.7) and (2.9) hold;
(ii) for n even, (2.15) holds and

lim inf
t→∞

t∫
ξn−2(τ(t))

r−1/γ(u)

 u∫
t1

q(s) ds

1/γ

f1/γ
(
Jn−2(τ(u))

)
du >

1

e
. (2.18)

Then (E) is oscillatory.

Proof. Conditions (2.4), (2.9), (2.17), and (2.18) ensure that (E1), (E2), (E3), and (E4),
respectively, are oscillatory. The assertion now follows from Theorems 3 and 4.

Example 2. Consider the n-th order nonlinear differential equation(
t6
(
x(n−1)(t)

)3)′
+

b

t3n−8
x3
(
λt
)
= 0 (2.19)

with b > 0 and 0 < λ < 1. Conditions (2.4) and (2.17) reduce to

bλ3n−9 ln
1

λ
>

(
(n− 1)!

)3
e

, (2.20)

b1/3λn−2 ln
1

λ
>

31/3(n− 2)!

e
, (2.21)

respectively. Corollary 4 guarantees that every nonoscillatory solution x(t) of (2.19) tends to
zero as t → ∞ provided that both conditions (2.20) and (2.21) hold.

On the other hand, if n is odd, we set ξ(t) = αt, where α =
1 + λ−1/(n−1)

2
. Then condition

(2.9) takes the form

b

α6n−6λ6

(
(λ− 1)(λ2 − 1) . . . (λn−1 − 1)λn−1

(n− 1)!

)3

ln
1

αn−1λ
>

1

e
. (2.22)

Conditions (2.20) – (2.22) imply Corollary 4 holds, so all solutions of Eq. (2.19) with n odd are
oscillatory.
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For n even, if we set ξ(t) = αt, with α =
1 + λ−1/(n−2)

2
, then condition (2.18) takes the

form

b(λ− 1)(λ2 − 1) . . . (λn−2 − 1)λn−2 ln
1

αn−2λ
>

(n− 2)!(3n− 9)1/3

e
. (2.23)

It follows from Corollary 4 that Eq. (2.10) with n even is oscillatory if conditions (2.20), (2.21),
and (2.23) are satisfied.

Example 3. Consider the fourth order delay differential equation

(
etx′′′(t)

)′
+

et−1/2

16
x(t− 1) = 0, t ≥ 1. (2.24)

This equation has been studied by Zhang et al. in [20]. They showed that every nonoscillatory
solution of (2.24) tends to zero as t → ∞. (This conclusion also follows from our Corollary 4
as well). In particular, x(t) = e−t/2 is a solution of (2.24). Now, we consider the more general
differential equation (

etx′′′(t)
)′
+ b etx(t− 1) = 0, t ≥ 1. (2.25)

It is not difficult to verify that both (2.4) and (2.17) hold. If we set ξ(t) = t/4 then (2.18) takes
the form

b >
25

e
,

which according to Corollary 4 yields the oscillation of (2.25). This is a new phenomena that
does not appear to have been studied previously.

3. Summary. In this paper, we presented new comparison theorems for studying the asympto-
tic behavior and oscillation of Eq. (E) from the oscillation of a set of suitable first order delay
differential equations. Thus, our method essentially simplifies the examination of higher order
equations and what is more, it supports the value of continued research on first order delay
differential equations. Our results here extend and complement many recent ones in the li-
terature. Suitable illustrative examples were also provided.

1. Agarwal R. P., Grace S. R., O’Regan D. The oscillation of certain higher-order functional differential equati-
ons // Math. Comput. Modelling. — 2003. — 37. — P. 705 – 728.

2. Agarwal R. P., Grace S. R., O’Regan D. Oscillation theory for difference and functional differential equations.
— Dordrecht: Kluwer Academic, 2000.

3. Agarwal R. P., Grace S. R., O’Regan D. Oscillation criteria for certain nth order differential equations with
deviating arguments // J. Math. Anal. and Appl. — 2001. — 262. — P. 601 – 622.
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