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A plane harmonic problem of vertical vibrations of a rigid permeable stamp on a liquid saturated poroelastic
base is considered. The equations of two-phase Biot media, taking into account inertial and viscous interacti-
ons of phases, are used. The asymptotic properties of the contact stress in dependence on small frequency
of vibration are studied.

Poseaanymo eapmoriuny 3a0auy npo 6epmuKkaibHi KOAUBAHHA HOPCMKO20 NPOHUKHO0 WMAMNA HA
HOPUCMO-NPYICHILL OCHO8I, HacU4eHill piOuHor. Bukopucmano pieHAHHA 04A 080(A3HUX cepedosulty
Bio 3 ypaxysannam inepuitinux ma 6’a3Kux 63aemooii mixe ¢pazamu. JJocaionceHo HUIbKOUACHOMHI
ACUMNMOMUYHI 6AACMUBOCMI KOHMAKMHOL HANpy2U.

1. Introduction. Many specifics of the construction-base interaction can be explained when
studying solutions of stamp vibration problems on a poroelastic liquid saturated (PELS) half-
space, a foundation being simulated as a permeable or nonpermeable stamp. The sought for
quantities are, in the first case, the contact stresses of the base skeleton, in the second case,
the stresses in both phases. The most widely accepted theory for description of wave processes
in PELS media is the theory developed by M. Biot [1], which takes into account macroscopic
characteristics of the solid and the liquid phases, as well as their interaction.

This paper deals with low-frequency asymptotic behavior of contact stress in solving the
plane harmonic problem of vertical vibrations of a rigid permeable stamp. It considers both
the case of a given stamp displacement law and the case of stamp vibrations under a force
load. Sections 2, 3 of the paper contain Biot’s equations and integral representations of the
Lamb problem for a PELS half-space in a 2-D formulation [2]. Note that although when wave
problems are considered for PELS media, additional (in comparison with elastic media) di-
fficulties occur, nevertheless the use of integral Fourier transformation allows to write expli-
cit solutions for nonmixed boundary problems for Biot’s equations on a half-space. Integral
representation of the Lamb problem solution allows to reduce the considered mixed boundary
problem to an integral equation on a segment. It is shown that the equation has a logarithmic
kernel in the main part with a special entry of dimensionless vibration frequency ¢ (Section 4).
In Section 5 of the paper, abstract statements of an independent interest are given. They deal
with unique solvability and asymptotic behavior of the corresponding class of integral equations
for ¢ — 0.
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The principal results of the paper are contained in Section 6 where, on the base of the previ-
ous sections, a low-frequency asymptotic analysis of porous stamp vertical vibration problem
on a PELS base was conducted. It is shown that under the given uniform stamp displacement
law the contact stress at frequency ( tends to zero, possesses root singularities near the stamp
boundaries with an amplitude tending to 0 as 1/|In | . In the case of stamp vibrations under a
force loading it is found that the contact stress at ¢ tends to the statistical solution of the plane
problem about the rigid stamp pressure on an elastic half-space.

2. Biot’s equations. Let us consider dynamic stationary Biot’s equations of motion in the
plane (Z, y) (further the harmonic time factor e™? is omitted). Let us introduce the dimensi-
onless coordinates x, y, the time ¢ and the vibration frequency ¢,

) = ) =
a C2

% cat ¢ aw
where ¢ is a parameter of length dimension and c; is a transverse wave velocity in a two-phase
media not taking into account dissipation, ¢ = N[p11 — p?5/p22]~'. From this point on N is
the elastic skeleton shear module, p;1 = (1 — m)ps — p12, p22 = mps — p12 are the effective
densities of, correspondingly, solid and liquid phases. Here, m p12 < 0 is the porosity, p12 < 0
is the dynamic connection coefficient of the phases, ps, py are the densities of the solid and
the liquid phases. Let us denote the displacement of the solid phase by the index s, that of
the liquid phase by f. The equations of motion of the poroelastic medium in terms of Biot’s
equations for displacement vectors of the solid @ = {u,, v,} and the liquid U = {u £y VF}
phases in dimensionless variables are:

NAG + (A+ N) grad div @+ Q grad div U =
= — 2B(pud + p12U) + iCBckpui (@ — U), (1)

Q grad div @ + R grad div U= —C2c%(p1zﬁ+ p22[7) — iCBc%pn(ﬁ— (7),

where B is the dimensionless dissipation coefficient in the two-phase medium. At low vibration
frequencies, when dissipation effects in the elastic skeleton prevail, the coefficient B has the
form [3]

2
B__o m“6y ©)

C2p11 Kpr

The internal friction of the skeleton may be treated by introducing a complex shear module [4],

N = |N|e", 4 >0. (3)
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The displacement vectors , U allow the representation [5]

@ =Vo1+V x{1e.}, U= Vey+V x {1},

4)
¢1 = D1+ Py, Po = MiPy + Ma®o, 1 =T, 19 = M3V,
where the scalar potentials ®;, ¥ are solutions of the Helmholtz equations
(A+E)D; =0, j=1,2, (A+k)¥ =0, (5)
with the dimensionless wave numbers
2 2
L R
k] - 02 , J = 1727
(6)
12— (?pc3 [T11 + MsTyo + (1 — Ms)il)
3 N °
The values E are determined as roots of the quadratic equation z = z;,j = 1,2,
(11622 — ¢32)2° — (qu1T22 + q2al'11 — 2qu2l12 4 i) 2 4 (11 Tg — T'F, +4T) = 0,
whose coefficients are given by the expressions
Bpn Pij
r=- ) F”:ia p:(l_m)p+mp7
oY ’ !
H A+2N Q R
2
= = = = = = —, H=A+2N+ R+ 2Q. 7
c o’ q11 g 0 2= g 2= 5 + + R+ 2Q (7)

The constants M in (4) and (6) have the form

M {T11g22 — T12q12 — (q11022 — 2) 712 + (q22 + qu2)iT'}
12 = :
’ {T22q12 — T12q22 + (g22 + q12)il'}

)

—T'o +14T
My = — 217
37 Ty 44l

The equations (5) show [5, 6] that in an elastic porous media saturated with a viscous
compressible liquid, longitudinal waves of three types can propagate. Their propagation constants
depend on characteristics of the media as well as on the vibration frequency (. Let’s define the
values 3; = k;/¢, j = 1,2,3, and introduce the notations

A+QM]‘:| 9

nj—[Q+RMj] 2 =12

ON o
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Based on the representation (4), we obtain, for the displacements, the following representati-
ons in terms of the potentials ®1, Py, U :

WO 0 OV 0By 00y OV
S Oz or oy’ 7 Oy oy  Ox’
(8)
0P, 0P, ov 0P, 0P, ov
_ 28y M2E = M Mt T
U 18m+ 28x+ oy’ v 18y+ 2"y 5 o
For the stresses, according to Hooke’s law and taking into consideration the equations
Vit = k&) —k3®y, V-U = —Mk>®, — Mok3ds,
we get the expressions
Lo L - o — — )
2N 8x{ ox + ox + ay} 1 = BT @1 = [ma = B¢,
—= = — 00— 4+ —=—— > — — o) — — ) 9
2N 8y{ ay + ay or [ml /Bl]c 1 [mQ IBQ]C 25 ( )
Ty 0? 10?0 10?0 of 5 5
2N 6x8y< L+ ®) 4 20y 2022 aN M6 Pt

3. Lamb problem. Let us examine a plane Lamb problem of dynamic displacements of a
PELS half-space y < 0 with permeable surface under a given vertical loading,

7oy (2,0) =0, = —p(z), o/(z,0) =0. (10)

We consider the case where there is an internal friction v > 0 in the elastic skeleton (see (3))
and, in this connection, it is assumed that the wave numbers k;, in the considered frequency
range, are not real. Then the boundary conditions (10) are complemented with the conditions
of the displacements @, U to decrease as y — —oo. From here on we shall use the notations

& = &(6) = /€ — k2, € € (—00,00), Reg; >0, j =123
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The potentials ®;, ¥, according to (6), are sought as the Fourier integrals

B, (z,y) = / A;(€)emeiee e,
(11)

U(e,y) =i / B(€)eEveiee e

with unknown densities A;(€), A2(£), B(§). For the stresses in the elastic skeleton, o7;, and the
force o, acting on the liquid, we get the expressions

N [ K
=i [ e {aeeact + (et + BO(S - ),

—00

o0
S

= / L A1()[62 = miPet + A3(§)[€2 — ma?e + B(§)€ae™ b,

o0

[e.o]

— =2 / eiﬁx{Al(f)nlegly + Ag(é)nQG&y}df.

—00

The fulfillment of the boundary conditions (10) and the inversion of the Fourier transform result
in a system of linear algebraic equations with respect to the functions A;(§), A2(§), B(&),
whose solution is [2]

CFA1(€) = naP(262 = k)P(E),  CPF(§)A2(8) = —mi(*(26% — k3) P(€),
(12)

CPF(§)B(E) = —26¢%[na& — m&)P(¢),
where the determinant is
F(&) = 2(26% — k) {m[€® — maC®] — nof€® —mi (]} + 4% [na&s — o) (13)

and the inverse Fourier transform of a given loading is

o0

PO) = o [ pla)eda.

—00
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8 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK

For vertical displacement of the solid phase boundary, according to the formulas (8), (11),
(12), we have the integral representation

oo

n(e0) = 3 [ HIA e

—0o0

(14)
Fi(§) = ((mé& — no&y).

This representation in terms of a given loading is used for building solution for the stamp vi-
bration problem on a PELS half-space. Here, the asymptotic analysis of the corresponding
integrand is of primary importance. On the other hand, for the low-frequency analysis it is
necessary to know the asymptotic behavior of this integrand at ¢ — 0. Both asymptotic forms
can be obtained in the same way by using specifics of appearance of the argument ¢ and the
vibration frequency ( in the functions.

The functions under study, F'(§) and F} (), are even, therefore it is enough to analyze their
behavior at & — +oc. Let us define the parameters n; = n;/37, m; = m;/B7, j = 1,2, and
introduce the variables z; = k3 /£, j = 1,2,3.

Then the determinant F'(£) can be written as (2F(§) = ¢°D(x1, 29, 23), with the function

D(:L‘l,{L‘Q,:Eg) = 2(2 — 133)[ﬁ1$1(1 — m2l’2) — ﬁQl‘Q(l — mll'l)]—i—

+4(1 — 23) P [Faaa (1 — 1) Y2 — Fran (1 — a2) V2.
Using the asymptotic identity
(1—zj)Y? =1-2;/2+0(z?), z; =0,
we get, for |z1| + |z2| + |x3] — 0,

D(l’l,xg, :EL;) = 2$1$2[2(m1ﬁ2 — mgﬁl) — (ﬁg — ﬁl)] + O(K,),

k= |w3|(|lz1ze| + |23 max{|z1], [v2]}).
Similarly, we use the representation
Fi(€) = EF (a1, 20), FO(z1,20) = mai(1 — 22)Y2 = Aama(1 — 21)V/2,
and, for |z1| + |x2| + |z3] — 0, the following relation is fulfilled:

0 _ _
Fl( )(331,952) = nix] —ngxe + O(K1), K1 = |r122| max{|z1], |z2|}.
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ASYMPTOTIC SOLUTION OF A HARMONIC CONTACT PROBLEM FOR A PERMEABLE STAMP... 9

The considerations above show, in particular, that for the Raley’s determinant the following
asymptotics at { — +oo is valid:

F(€) = do&? +0(1),

d():(Q{(ml—ﬁ%)ng—(mg—g)m}.
2 2

For the function F; (&) we get the following asymptotic expressions at { — +oo (we omit the
computations):

(15)

Fi(§) = Ci€+0(E7Y), C1=(%(n1—na). (16)
Thus, from (15) and (16) it follows that for the integrand in (14) the following estimate hold:
nE G,y 3
=——¢§ +0 : 17
e = at o) (17)

The use of the estimate (17) and the well-known Fourier transform properties show that when
the condition p(z) € Ly(R) is fulfilled, the integrals (14) are absolutely convergent for any
x € R and are continuous functions tending to zero at z — oo.

When studying the integrands’ asymptotics for ( — 0, two cases should be considered
depending on the presence or absence of dissipation due to the pore liquid friction (see expressi-
on (2). In the case B = 0, the roots z; of the quadratic equation (6), as well as the numbers
B; = k;/¢ and the coefficients M}, depend on the frequency, so that

k‘%_ﬂ

— = = % = const
k;% 29 1 )

k3 _ pc® [[1lag — IRy

—-= = = 0% = const.
k‘% N ZQFQQ

In the presence of dissipation, i.e., for B # 0, the quadratic equation (6) for determining
the roots z;, from which the wave numbers k1, ko are computed, contains frequency dependent
coefficients. Set by = (I' = —Bp11/p, then for ( — 0 we obtain

iboC_l + by

s —14+0(0), 2 =1+0(0).

zZ1 =

with the constants by = ¢11go2 — q%Q, ba = qi111'22 + q22'11 — 2¢12119. So, for the squares of
the wave numbers, we have the estimates

2 (b b
K =2 (be + (5 - 1)<> +0(¢%),

2
=240, (o
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10 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK

Taking into account the equation I';; + 2I'12 4+ I's2 = 1 and the relation

Z.F12 + Iy

M; =1
3 + T

+0(¢%), ¢—0,
we get k3 = (?(c3p)/N + O(¢?), ¢ — 0. So, the modulus of the wave number ki, for ¢ — 0,
tends to zero as ¢!/2, while the modulus of the numbers ks, k3 tend to zero as C.

4. Vertical vibrations of a rigid permeable stamp. Consider the plane problem for the force
Pe’St (P = const) acting on a permeable rigid stamp of the width 2a, height k and density pg, on
a PELS half-space [7]. The normal reaction distribution along the stamp contact with the base
and its vertical displacement w, in the absence of friction along the contact, is studied. As inital
data, the Biot’s equations for a two-phase medium and stamp motion equations in the case of
harmonic vibrations (in dimensionless variables) are assumed [8],

1
2
) CCw=R-P, R= —a/a;(x,o)dx, 2] < 1, (18)

-1

MO (T
a

where My = 2hapy is the mass of the stamp, R the resultant of the normal contact stresses (the
time factor ¢’ is omitted). On the boundary of the stamp and the 2-phase base, the following
conditions are fulfilled:

Toy(2,0) = Jf(ac,O) =0, vs(z,0) =w, |z|]<]1, (19)

where v;(z, 0) are vertical displacements of the solid phase boundary. Outside of the stamp, the
stress and pore pressure are absent, that is,

75,(2,0) = 05(2,0) = o/ (2,0) =0, |z| > L (20)

Let us define a normalized unknown contact stress

p(z) = p(==), |z <1.

Using the representation (14) for the shear vg(x, 0), on the base of the conditions (19), (20),
we get the integral equation for finding the even function p(x) € L[—1, 1],

1

(KOW) =+ [ Kls=n0p(s)ds = flo). @€ (-LD), e1)

-1

where the kernel and the right-hand side of the equation are

o 8

a2
K(z;¢) = /6}1:(‘15()5) cos(xz€)d¢, f(x) = — = const. (22)
0
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ASYMPTOTIC SOLUTION OF A HARMONIC CONTACT PROBLEM FOR A PERMEABLE STAMP... 11

Here, the constant w contains, according to (18), both the given load P and the integral of the
unknown function p(z).

If the constant w is considered as given in the equation (22), than the integral equation (21)
will be used for finding the contact stress for a given uniform motion of the massless stamp.

5. Asymptotic solution of the integral equation with logarithmic kernel. According to (17),
the function Fy(&)/F (&) behaves at infinity like ¢! and this means that the kernel K (s — ; (),
independent of the value of the parameter ( > 0, has logarithmic singularity as |z — s| — 0.
On the other hand, it will be shown later that for  — 0 the singularity of the kernel K (s —x; ()
is characterized by the function In(|s — z|E. In this section a statement is given on unique
solvability and asymptotic behavior of equations of this kind as the parameter { — 0.

Let us recall the Noether’s operator theory necessary for the further account [9, 10]. Let
X, Y be Banach spaces, R(X,Y) a Banach space of linear continuous operators acting from
X to Y. The norm in the space X will be denoted by || - ||x. Let I be the identity operator
in the corresponding space. By the kernel of the operator A € R(X,Y’) we call the subspace
kerA = {¢p € X : Ap = 0} C X and its co-kernel is the kernel of the conjugate operator
A* € R(Y*, X*), cokerA = {¢p € Y* : A% = 0} C Y*. The operator A € R(X,Y) is called
a Noether operator, if its image AX is closed in the space Y and the kernel and the co-kernel
are finite-dimensional subspaces,

n = dimker A < oo, m = dimcoker A < oo.

The difference x(A) = n — m is called the Noether operator index, and the Noether operator
with zero index is called Fredholm operator.

Further by H, a € (0, 1], we denote the Banach space of functions, given on [—1, 1] and
satisfying the Hoelder condition (see, e.g. [10], § 1),

|f(x1) = f(z2)| < clay —x2|®, z1, 22 € [—1,1].

Set r(z) = V1 — a2, |z| < 1.
Let a;, as be certain constant values, and L(z, s;() a family of continuous on the square
|x| < 1,]|s| < 1 functions, continuously differentiable with respect to z. Le us assume

Lip(Q) = | max {1,501+ |50} < 00, ¢ > 0. 23)

For { > 0, introduce a family of integral operators £y(¢), £1(¢), and £((), acting on functions
given on the segment [—1, 1] by

1 1

(o)) = 2 [ls = alpls)ds + 2 [ ployis,
21

-1

<m@mw»=/Lma>mwm (24)
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12 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK
L(O)p = Lo(C)p + L1()p-
It is known (see [11, 12]) that if the condition

a1 In(¢/2)+az # 0 (25)

holds and the function f(z) is continuous on the segment [—1, 1], and its derivative belongs to
the Hoelder space H® for a certain o € (0,1) (i.e. the function f € H{'), then the equation
Lo({)p = f possesses a solution,

p(z) = (L5 (O)f)(2) =

1
L [r(@)f (s) 1 £(5)
al_/l s—z BT D o / (o) ™ (- (26)

1
r(x)

This solution is unique in the class of functions p(z) that belong to the whole Hoelder space
He(r),

1 -1
The following formula hold [11] (§ 55)

1 1
jr/ln\s —z|p(s)dt = —(JSp)(s) + i/ln(l + s)p(s)ds, p e H(r). (27)

-1 -1

Here, the operator S is a Noether operator in the space L,[—1,1] for any ¢ € (1,2) and has
the index «(S) = 1 [10] (§11,31). Since the operator J € R(L,, qu) is Noether and has the
index x(.J) = —1, it follows from (27) that the operator Lo(¢) € R(Lg, W) is Fredholm for any

€ (1,2). On the other hand, since (26) gives unique solvability of the equation Ly({)p = f,
f € H¢, by virtue of density of inclusion of the space H*(r) in the Banach space L,[—1, 1], we
get that the integral operator £y((), if the conditions (25) and ¢ € (1, 2) are fulfilled, defines an
isomorphism between the Banach spaces L,[—1, 1] and W, [-1,1].

On the base of the above considerations and using standard methods of the theory of linear
operators the following theorem is proved.

Theorem 1. Let q € (1,2) and L1(() — 0, — 0. Then there is (o > 0 such that, for any
¢ € (0,¢o), the operators Lo(C) € R(Lqg, W, ) and L(¢) € R(Lg, W) are continuously invertible
with

L7 = LU +TE) ITOllrwy < elio(Q), ¢ € (0,6)- (28)
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ASYMPTOTIC SOLUTION OF A HARMONIC CONTACT PROBLEM FOR A PERMEABLE STAMP... 13

Proof. For sufficiently small ¢ (so that the condition (25) is trivially fulfilled) an inverse
operator £;1(¢) € R(W}, L,) exists, determined by the expression (26). Hence it follows that,
for a certain ¢; > 0, the uniform estimate

1251 O lrgwiny <o < 00, € € (0,61)

holds. Further, from the condition (23) it follows that the operators £;({) continuously act from
the space L, into the space qu, so that their norms are subject to the following estimate:

11D lr(Lyw2) < L1o(¢) =0, ¢ —=0.

Thus, by choosing the number ¢y € (0, (;) from the condition lpL1 o(¢) < 1/2,¢ € (0,(p), we
get that for ¢ € (0, (o) the operators £(¢) € R(Lq, W,) are continuously invertible and the
following equation holds:

L) = LM O + L)Ly ()

Hence we get, that (28) is fulfilled with the operator

T(C) = —(I + L1(O)Ly () L1(O) LG ().

The theorem is proved.

Corollary. Under conditions of Theorem 1, the equation L({)p = f, for any function f €
€ qu, has a unique solution p € L,. Also, in the space L, solutions p = p(z;() satisfy the
asymptotic representation

p(x:¢) = (L' (Q)f) (@) + O(L10(¢)), ¢ — 0, (29)

where the expression (Ly'(¢)f)(2) is defined by the formula (26). If the function f € HY (a €
€ (0,1)), then the asymptotic formula (29) is valid also in the space H,(r) and, in particular, in
the weight space of continuous functions C(r),

sup |(p(z;¢) — (L5 () f)(@)r(z)| = O(L10(¢)), ¢ — 0. (30)

lz|<1

If f(x) = fo = counst, then for solution of the equation L({)p = f(z), the following asymptotic
estimate hold:

sup |p(x;Q)r(x) — o

lz|<1 m = O(L10(¢)), ¢ —=0. (31)

6. A low-frequency analysis of the solution of the problem of vertical vibrations of a perme-
able stamp. In this section for ( — 0 an asymptotic analysis of solutions of the integral equation
(21) is conducted. It is shown that the use of the structure of the functions F} (§), F'(£) and the

ISSN 1562-3076. Heaninitini koausarnsa, 2002, m. 5, N2 1



14 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK

asymptotic formulas of Section 2 allows, for { — 0, to reduce (21) to a consideration of the
equation £(¢)g = f with the operator of the type (24) and some constants aj, as. This, in its
turn, enables to apply the results from the Section 5. Next, we will need the relations from [13]
(Chapter 6),

/coséxg)dg = —C —In|z|+ Si(2),
1
(32)
_ y 1—cosé . = (=1)Fa?
Si(w) = /§d5 = _;%(%)!’
/ —

where C = 0,577 is the Euler’s constant.
Let us use the notations for the constants

aj2 = 2(Memy —mima), b2 = N2 —M1, di = a2 — bia,

and for the functions

Bt B3 B3
Dy(s) =D <3;’3§’ 8—‘3 , §>0, Dy(r)= D(Bf#,ﬁ%#,ﬁ%#), 7> 0.

Let us examine the equation (21) in the absence of dissipation (B = 0). Then the functions
D1 (s), Da(7) don’t depend of the frequency (. Let us represent the function defining the kernel
of the equation (21) in the form

K(z;¢) =K1(z;¢) + Ka(z;¢) =

q
B3 (w1, w9)
cos(z§)d§ + / &3D(x1, 22, x3)

_ [ BCF (@1, 1)

= | Dy 12 29) cos(z€)dE, (33)
¢

where the values z; = k7 /&% = (87¢%)/€>.
For K (z;(), after the change of the integration variable, £ = s(, we obtain the expression

oo (0)p2/.2 42/.2
K1(90;C)=5§/1 i (iégl(’s%/s)cos(xqs)ds.

Here, according Section 4 (taking into account the assumption B = 0), we have the relation

L (8352, B3/57)

= Ros™ ' + Ri(s)s?,

3 s3D1(s)
where the coefficient
7162 — Mg 32 QQ(ﬁlﬂQ*ﬁg)
Ry = 32 (157 —M2f3) _ 1 34
0 =P 2232d, 202d, (34)
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ASYMPTOTIC SOLUTION OF A HARMONIC CONTACT PROBLEM FOR A PERMEABLE STAMP... 15

and the function R;(s) = O(1), s — oo. Thus, the integral

o

RU7COS x(s) s+/R1 cos x(s)ds‘
1

1

It is not difficult to determine for ¢ > 0 a uniform with respect to = € [—1, 1] estimate,

/ |Ri(s ”{\cos(:c{s) — 1| + ¢|z|| sin(z¢s) s < coc2(|In¢] + 1), (35)

1

with a certain constant ¢y > 0.

Further we will use ¢y to denote various constants whose values are not essential. Using (32)
we get that there exists a constant K such that, in the space cl = Cl[—l, 1] of continuously
differentiable on the segment [—1, 1] functions, the following estimate holds:

151 (2;¢) + Roln[Cz| = Kifler < coC®(|In¢[+1), ¢ >0.

Let us consider the integral Ky (z; (), which after the substitution ¢ = (771, is reduced to
the form

Ky(x;¢) = /Rg cos(z¢r dr,
1

TF 72 272
Ry(1) = /33 (16)2( ’)52 )

Using the expressions for the functions Fl(o) (1, x2) and D(x1, x9, x3) from Section 4, we obtain
the estimates

(5%, B57) = 0(7°),

Do(1) = —B3B3B3a127° + O(r1), T — oo,

and so, Ry(7) = O(772), 7 — oo. Hence it follows that the function Ky (z;(¢) is infinitely
differentiable with respect to x € [—1, 1] and

o0

1Ka2(x,¢) — Kaller < eoC?, &:/RTM

0

Thus, taking into account (33) —(35), we have the following proposition.
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16 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK

Proposition 1. The function K(x;() can be represented as
K(w;¢) = —Roln |Co| + Ko + K (2;0), (36)

with the constant Ry from (34) and a certain constant Ky independent of ( > 0, and the function
K (z;(), for any ¢ > 0, is continuously differentiable and satisfies the estimate

1K (2, ¢)ller < eo¢®(In¢|+1), ¢ > 0.
From Proposition 1, the following statement follows.

Lemma 1. Let B = 0. Then one can find constants Ry, Ky such that
| K (2;¢) + Roln |Cz| — Koot < co?(JIn¢|+1), ¢ > 0.

Assume that the linear integral operator £y(() is defined by the expression (24) with the
constants a1 = —Ry, as = Ko, L({) = K(() is the integral operator from the equation (21).
Lemma 1 shows that the family of integral operators IC(¢), for ¢ — 0, tends in the operator
norm of R(Lg, W) to the operator Lo(¢) and one can apply Corollary 1 from the Section 5 to
the equation (21) with L1 o(¢) = ¢*(|In¢| + 1) (see also Remark). Thus we have the following
theorem.

Theorem 2. Let B = 0 and q € (1,2). Then for sufficiently small ¢, the equation (21) for
any function f(x) € W, has a unique solution p(x) = p(x;() € Ly and

p(z) = (L5 f)(x) + 0P| In¢]), ¢ —0

in the norm of the space L, where (Ly'(C)f)(x) is given by the expression (26). In the case of
a given uniform displacement of the stamp, f(x) = w/a = W, the solution p(x) satisfies the
asymptotic representation

w 1

Pe) =m0, (o (37)

in the sense of the norm of the weight space C(r).

Remark. From the foregoing considerations it follows that for the constant K, in (37) one
can give a rather bulky expression. On the other hand, simplifying (37) we get an asymptotic
representation for the solution

w 1 1
P =~ o viee 0 (g) - <0 (38)

Now let us consider a more complex case of the equation (21), when B # 0. Here the values
ﬂjz depend on the frequency ¢ and, for ¢ — 0,

’L'C% bo

25, OO, B3 = c3/ +0(), B3 =c3p/N+0(). (39)

B =Bt = -
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ASYMPTOTIC SOLUTION OF A HARMONIC CONTACT PROBLEM FOR A PERMEABLE STAMP... 17

Set the integrals in the representation of the function K (z; () = Ki(z;() + Ka(x; () to be

Ky(2;0) = /531 (x€)de,

<1/2

c1/2 5o
Ka(wi6) = [ B0 costatyae

Applying the substitution ¢ = ¢!/2s in the first integral and using the relations of the Section
4 for the integrand we obtain

2/ 2.2
Ki(2:¢) = 453/ s(?’ﬂl?l/(s/é%)/ )cos(mql/Qs)ds.

The integrand admits the representation

B3R (82/s%, (B3/5%)
D1 (s/C17?)

¢ = Ro1(Q)s ™" 4+ Ri(Q)¢s™" + (s Ra(s:()

with the coefficients

— 2 — 2
= 711/83 RI(C) = —ZiggR(ﬂ

and the finite, in respect to ¢ > 0 and s > 0, function Ra(s; (). Thus,

o 1/24) 1/2
Ki(z;¢) = (Roa(¢) + Ri(¢ /COS 76 ds—i—(/R Cos(xsgs)d&

1

Using the relationships (32) we get, for a certain constant K, the estimate for K (x; {):
1K1 (,€) + (Roa(¢) + Ra(¢)¢) In[¢ 22| = Killer < eol(|In¢|+1), ¢ > 0.
Let us show that the function K (z; () admits the estimate
[ Ka(2:¢) = Roa(Q)n¢ = Ria(Qller < e ([ +1), ¢ >0, (40)

with certain functions R 2(¢) continuous with respect to ¢ > 0. In the integral representation
for Ky(x;¢), we substitute ¢ = (7. Then

T G0
¢Ds(7)

C1/2

cos(z¢r dr,

Ks(x;¢) = B3
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18 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK

where
G(r:¢) = mB(1 = 3r) /2 = mBRC (¢ — pPr?) 12,
For ( D»(7) we have the equation
(Da(r) = D¢ 8%72, 8372, B37%) = 7 (ar(¢)r* + a2(C) + 91(73 Q) + 9a2(7: (),
where the continuously differentiable with respect to ¢ > 0 coefficients are

al(C) = 525§5§a127

az(¢) = 2maB3(CB3 + 2m1 B%) — 2m1 B%(B5 + 2maf3),

and the continuous, uniformly bounded with respect to 7 > 0 and ¢ € (0,(1), (1 < oo, functi-
ons are

g1(m5¢) = 4m BPr2(1 — (1 — B3rH)Y2 (1 - B3r?)1/3),
91(0;¢) = 2m18%(65 + 3),

92(7,¢) = —AmaB3r2C(1 — (1= B3r*) 2 (1 — 5272 /()12
In particular, there is a constant ¢ > 0 such that
|CDso(7)| > cot(T+1), 7>0. (41)
Further we have:
lcos(a¢r™ ) —1] < ¢, 7>¢Y <1 (42)
The use of (41), (42) gives the following expression for Ks(z;():

miB2B3(1 — B3V 2dr n
72 4+ a2(C) + 91(73¢) + g2(75C))

KZ('%';<> = ﬁl/BZB?% / T(CLI(C)
CI/Q

+O(CY?)|In¢|, ¢ =0, |z <1

Next, without loss of generality, we assume that ¢ € (0,1]. For 7 > (¢ 1/ 4, the estimate
lg2(m: Q)| < e¢'/*, 7 > 0,is true. Using this estimate and (41) we get

[e.9]

Do (1 — g3 2dr _
s 444 7(a1(Q)72 + a2 (¢) + g1(75¢) + g2(73¢))
B / Qi Q)dr + O(CM*In¢)), ¢ —0, |z| <1,
ci/a
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where the function

A (1 _5%72>1/2 _ -1 .
Q(1;¢) = (O + Q)+ (ri0) O(t™"), 7 — oo (uniformfor ¢ > 0).

Integration by parts gives the equation

o0

/rlmﬂomz—Qw%omG“+%m,%@>

C1/4

Q/ (1) InTdr,

Il
|
0\8

and the uniform, with respect to { > 0, estimates hold,
Q(r;¢) =0(1), =0, Q(ri¢)=0(r"?), 7 o0,
For ¢ — 0 we have Q(¢/*;¢) = 1/a4(¢) + O (¢/?), with the coefficient

as(¢) = a2(¢) + g1(0,¢) = 4mom 265 — dmma B3 + 2m1 8285 + O((), ¢ — 0.
So,

1
Kf (@10 = — s +a3(O + O nCl), ¢ 0, Jol <1

Let us examine the integral

KD (2:0) = Cl//4 (1— B33 %dr
2 (a7 + a2(€) + g1 (13 C) + g2(73Q))

41/2

Here, using the estimate (41) and the estimate
|CL12(€)T2‘ + ‘gl (T7 C) — g1 (07 C)‘ + ‘92(7—7 C) - 92,0(07 C)’ < COC1/27 T € (C1/27 61/4)7

where go0(7;¢) = 4m283¢T2(1 — f272/¢)Y/?, we obtain, for ¢ — 0,

L4
@ dr 1/2y —
Ky () //T(a4(0+92,0(7'§€)) Hoe
<12
c-1/2

ds
/ 2(aq(C)s + as(¢)(1 — 52s)1/2)

1

+0(¢?),

a5(¢) = 4myf33.
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20 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK

The foregoing considerations give the following asymptotic formula:

Ko(2;¢) = Ro2(Q)In¢"? + Rio + O(¢M* In[¢]), Rop(C) = —as(¢), ¢ — 0,

with a certain constant R; 2. Then, taking into account (39), we get the estimate (40) for K»(z; ()
in the space of continuous functions. Repeating the considerations for the integral Ks(x;()
and replacing the expression cos(x(7~!) with (7 !sin(z¢7~!) we get the estimate (40) for the
derivative of the function K (x; ().

So, in the case of non-zero dissipation coefficient B we obtain the following proposition.

Proposition 2. If B # 0, then for Ks(x; () the following asymptotic representation holds:

K(;¢) = —(Ro1(¢) + Ri(Q)Q) In [¢"?2] + Ro2(¢) In ¢ + Ky + Ki (23 (),

(43)
1K1 (25 O)ller < ¢4 (IIn¢| +1), ¢ > 0.
Note, that the use of (39) gives the equation
_ _ _mpgf 1 s
Ro(0) = Ran(©) = Roal0)/2 = "2 { o+ st (44)

Thus, according to Proposition 2 and Section 5, the following statement is true.

Theorem 3. Let B # 0 and q € (1,2). Then for sufficiently small { > 0 the equation (21),
for any function f(x) € qu, posseses unique solution p(z) € L, and

p(x) = (Lo () ) (@) + 0 Ing]), ¢ -0, (45)

with respect to the norm of the space L. In the case f(x) = W = const, in the spaces L, and
C(r), the following asymptotic representation is true:

W L,
ple) =  Ro(0)In¢ v/1— 42 "

Proof. According to (43) the equation (21) can be written in the form (Lo (¢'/2)+L£1(¢))p =
= f, where in the definition (24) of the operator Ly((), the constants a; = a;(¢) can be taken
to be the coefficients

(1/In%¢), ¢ — 0. (46)

a1 = —(Ro1(0) + R1(0)¢), a2 = Rp2(0)In¢+ K;.
We also have the following estimate:
L1 (DR (L, w2y < o¢MH(|In¢l+1), ¢ >0
Then, using Corollary 1 (see Remark) we obtain, for the solutions of the equation (21) with

f(x) € W, and sufficiently small { > 0 the asymptotic representations (45) and (46). The
theorem is proved.
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Thus, for  — 0, no matter what the value of the dissipation coefficient B is, for a given plate
displacement law w, the contact stress behaves similar to the contact stress of the corresponding
elasticity problem (see [14], §2 — 4), namely it has a root singularity near the stamp edges and
the amplitude tending to zero as the inverse logarithm. In the case of B = 0, this result, on a
physical level of rigor, was obtained in [15].

Let us consider the integral equation (21) corresponding to the original statement of the
problem of stamp vibrations, i.e., when the displacement of the plate w satisfies the equation of
motion (18). Set the constants

P
i Py = QP-

Pp=—
YT Mo(eo/a)?’ a

Then the corresponding integral equation assumes the form

1 1
L ) s)as — Pl s)as = T,
W[K@x«m<m Mﬁlm>d £(&:0),
@)
fx;¢) = 123-

The equation (47) differs from the above integral equation (21) by the presence of a one-
dimension perturbation with the coefficient increasing as (=2 for ¢ — 0 and a similar behavior
of the right side f(z) = f(x;() for ( — 0. Thus, one can use the foregoing asymptotic analysis
of the kernel K (s—x; ¢). Then the equation (47) can be written as (Lo(¢)+£L1(¢))p(x) = f(z; ),
with the constants a; = —Ry, as = Ko— P1( 2. So, for small values of { > 0 and B = 0, this
equation has a unique solution and, in the space C(r), we have the asymptotic representation

o P 1 ) B
p(@) = (RolnC/2 — Ko+ PiC2)C2 V1 — a2 + O neh =

__ P 1 2
=~ O], =0,

It B # 0, a similar asymptotic relation holds for the solution of the equation (47),

N
P =" V1—2x2

Thus, in the case when the plate displacement w satisfies the equation of motion (18), the
contact stress p(xz) = p(x; (), for ( — 0, no matter what the value of the dissipation coefficient
B is, approaches the limit value

+0(¢M*In¢]), ¢ — 0.

P 1
lim p(x) = ——

- 1. 48
lim o < (43)
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Note that the limit value (48) coincides with the static distribution of the contact stress obtained
by solving a 2D problem of pressure of a rigid plate on an elastic half-space [16, 17].
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