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A plane harmonic problem of vertical vibrations of a rigid permeable stamp on a liquid saturated poroelastic
base is considered. The equations of two-phase Biot media, taking into account inertial and viscous interacti-
ons of phases, are used. The asymptotic properties of the contact stress in dependence on small frequency
of vibration are studied.

Розглянуто гармонiчну задачу про вертикальнi коливання жорсткого проникного штампа на
пористо-пружнiй основi, насиченiй рiдиною. Використано рiвняння для двофазних середовищ
Bio з урахуванням iнерцiйних та в’язких взаємодiй мiж фазами. Дослiджено низькочастотнi
асимптотичнi властивостi контактної напруги.

1. Introduction. Many specifics of the construction-base interaction can be explained when
studying solutions of stamp vibration problems on a poroelastic liquid saturated (PELS) half-
space, a foundation being simulated as a permeable or nonpermeable stamp. The sought for
quantities are, in the first case, the contact stresses of the base skeleton, in the second case,
the stresses in both phases. The most widely accepted theory for description of wave processes
in PELS media is the theory developed by M. Biot [1], which takes into account macroscopic
characteristics of the solid and the liquid phases, as well as their interaction.

This paper deals with low-frequency asymptotic behavior of contact stress in solving the
plane harmonic problem of vertical vibrations of a rigid permeable stamp. It considers both
the case of a given stamp displacement law and the case of stamp vibrations under a force
load. Sections 2, 3 of the paper contain Biot’s equations and integral representations of the
Lamb problem for a PELS half-space in a 2-D formulation [2]. Note that although when wave
problems are considered for PELS media, additional (in comparison with elastic media) di-
fficulties occur, nevertheless the use of integral Fourier transformation allows to write expli-
cit solutions for nonmixed boundary problems for Biot’s equations on a half-space. Integral
representation of the Lamb problem solution allows to reduce the considered mixed boundary
problem to an integral equation on a segment. It is shown that the equation has a logarithmic
kernel in the main part with a special entry of dimensionless vibration frequency ζ (Section 4).
In Section 5 of the paper, abstract statements of an independent interest are given. They deal
with unique solvability and asymptotic behavior of the corresponding class of integral equations
for ζ → 0.
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The principal results of the paper are contained in Section 6 where, on the base of the previ-
ous sections, a low-frequency asymptotic analysis of porous stamp vertical vibration problem
on a PELS base was conducted. It is shown that under the given uniform stamp displacement
law the contact stress at frequency ζ tends to zero, possesses root singularities near the stamp
boundaries with an amplitude tending to 0 as 1/| ln ζ| . In the case of stamp vibrations under a
force loading it is found that the contact stress at ζ tends to the statistical solution of the plane
problem about the rigid stamp pressure on an elastic half-space.

2. Biot’s equations. Let us consider dynamic stationary Biot’s equations of motion in the
plane (x, y) (further the harmonic time factor eiωt is omitted). Let us introduce the dimensi-
onless coordinates x, y, the time t and the vibration frequency ζ,

x =
x

a
, y =

y

a
, t =

c2t

a
, ζ =

aω

c2
,

where a is a parameter of length dimension and c2 is a transverse wave velocity in a two-phase
media not taking into account dissipation, c22 = N [ρ11 − ρ212/ρ22]−1. From this point on N is
the elastic skeleton shear module, ρ11 = (1 − m)ρs − ρ12, ρ22 = mρf − ρ12 are the effective
densities of, correspondingly, solid and liquid phases. Here, m ρ12 ≤ 0 is the porosity, ρ12 ≤ 0
is the dynamic connection coefficient of the phases, ρs, ρf are the densities of the solid and
the liquid phases. Let us denote the displacement of the solid phase by the index s, that of
the liquid phase by f . The equations of motion of the poroelastic medium in terms of Biot’s
equations for displacement vectors of the solid ~u = {us, vs} and the liquid ~U = {uf , vf}
phases in dimensionless variables are:

N∆~u + (A+N) grad div ~u+Q grad div ~U =

= − ζ2c22(ρ11~u+ ρ12~U) + iζBc22ρ11(~u− ~U), (1)

Q grad div ~u+R grad div ~U =−ζ2c22(ρ12~u+ ρ22~U)− iζBc22ρ11(~u− ~U),

where B is the dimensionless dissipation coefficient in the two-phase medium. At low vibration
frequencies, when dissipation effects in the elastic skeleton prevail, the coefficient B has the
form [3]

B =
a

c2ρ11

m2θ0
Kpr

. (2)

The internal friction of the skeleton may be treated by introducing a complex shear module [4],

N = |N |eiγ , γ > 0. (3)

ISSN 1562-3076. Нелiнiйнi коливання, 2002, т . 5, N◦ 1
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The displacement vectors ~u, ~U allow the representation [5]

~u = ∇φ1 +∇× {ψ1~ez}, ~U = ∇φ2 +∇× {ψ2~ez},
(4)

φ1 = Φ1 + Φ2, φ2 = M1Φ1 +M2Φ2, ψ1 = Ψ, ψ2 = M3Ψ,

where the scalar potentials Φj , Ψ are solutions of the Helmholtz equations

(∆ + k2j )Φj = 0, j = 1, 2, (∆ + k23)Ψ = 0, (5)

with the dimensionless wave numbers

k2j =
ζ2c22zj
c2

, j = 1, 2,

(6)

k23 =
ζ2ρc22 [Γ11 +M3Γ12 + (1−M3)iΓ]

N
.

The values E are determined as roots of the quadratic equation z = zj , j = 1, 2,

(q11q22 − q212)z2 − (q11Γ22 + q22Γ11 − 2q12Γ12 + iΓ) z +
(
Γ11Γ22 − Γ2

12 + iΓ
)

= 0,

whose coefficients are given by the expressions

Γ = −Bρ11
ζρ

, Γij =
ρij
ρ
, ρ = (1−m)ρs +mρf ,

c2 =
H

ρ
, q11 =

A+ 2N

H
, q12 =

Q

H
, q22 =

R

H
, H = A+ 2N +R+ 2Q. (7)

The constants Mj in (4) and (6) have the form

M1,2 =

{
Γ11q22 − Γ12q12 − (q11q22 − q212)z1,2 + (q22 + q12)iΓ

}
{Γ22q12 − Γ12q22 + (q22 + q12)iΓ}

,

M3 =
−Γ12 + iΓ

Γ22 + iΓ
.

The equations (5) show [5, 6] that in an elastic porous media saturated with a viscous
compressible liquid, longitudinal waves of three types can propagate. Their propagation constants
depend on characteristics of the media as well as on the vibration frequency ζ. Let’s define the
values βj = kj/ζ, j = 1, 2, 3, and introduce the notations

mj =

[
1 +

A+QMj

2N

]
β2j ,

nj =

[
Q+RMj

2N

]
β2j , j = 1, 2.
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Based on the representation (4), we obtain, for the displacements, the following representati-
ons in terms of the potentials Φ1,Φ2, Ψ :

us =
∂Φ1

∂x
+
∂Φ2

∂x
+
∂Ψ

∂y
, vs =

∂Φ1

∂y
+
∂Φ2

∂y
− ∂Ψ

∂x
,

(8)

uf = M1
∂Φ1

∂x
+M2

∂Φ2

∂x
+M3

∂Ψ

∂y
, vf = M1

∂Φ1

∂y
+M2

∂Φ2

∂y
−M3

∂Ψ

∂x
.

For the stresses, according to Hooke’s law and taking into consideration the equations

∇ · ~u = −k21Φ1 − k22Φ2, ∇ · ~U = −M1k
2
1Φ1 −M2k

2
2Φ2,

we get the expressions

σsx
2N

=
∂

∂x

{
∂Φ1

∂x
+
∂Φ2

∂x
+
∂Ψ

∂y

}
− [m1 − β21 ]ζ2Φ1 − [m2 − β22 ]ζ2Φ2,

σsy
2N

=
∂

∂y

{
∂Φ1

∂y
+
∂Φ2

∂y
− ∂Ψ

∂x

}
− [m1 − β21 ]ζ2Φ1 − [m2 − β22 ]ζ2Φ2, (9)

τ sxy
2N

=
∂2

∂x∂y

(
Φ1 + Φ2

)
+

1

2

∂2Ψ

∂y2
− 1

2

∂2Ψ

∂x2
,

σf

2N
= −n1ζ2Φ1 − n2ζ2Φ2.

3. Lamb problem. Let us examine a plane Lamb problem of dynamic displacements of a
PELS half-space y < 0 with permeable surface under a given vertical loading,

τ sxy(x, 0) = 0,
σsy(x, 0)

2N
= −p(x), σf (x, 0) = 0. (10)

We consider the case where there is an internal friction γ > 0 in the elastic skeleton (see (3))
and, in this connection, it is assumed that the wave numbers kj , in the considered frequency
range, are not real. Then the boundary conditions (10) are complemented with the conditions
of the displacements ~u, ~U to decrease as y → −∞. From here on we shall use the notations

ξj = ξj(ξ) =
√
ξ2 − k2j , ξ ∈ (−∞,∞), Re ξj > 0, j = 1, 2, 3.
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The potentials Φj , Ψ, according to (6), are sought as the Fourier integrals

Φj(x, y) =

∞∫
−∞

Aj(ξ)e
ξjyeiξxdξ,

(11)

Ψ(x, y) = i

∞∫
−∞

B(ξ)eξ3yeiξxdξ

with unknown densities A1(ξ), A2(ξ), B(ξ). For the stresses in the elastic skeleton, σsij , and the
force σf , acting on the liquid, we get the expressions

τ sxy
2N

= i

∞∫
−∞

eiξx
{
A1(ξ)ξξ1e

ξ1y +A2(ξ)ξξ2e
ξ2y +B(ξ)

(
ξ2 − k23

2

)
eξ3y

}
dξ,

σsy
2N

=

∞∫
−∞

eiξx
{
A1(ξ)[ξ

2 −m1ζ
2]eξ1y +A2(ξ)[ξ

2 −m2ζ
2]eξ2y +B(ξ)ξξ3e

ξ3y
}
dξ,

σf

2N
=−ζ2

∞∫
−∞

eiξx
{
A1(ξ)n1e

ξ1y +A2(ξ)n2e
ξ2y
}
dξ.

The fulfillment of the boundary conditions (10) and the inversion of the Fourier transform result
in a system of linear algebraic equations with respect to the functions A1(ξ), A2(ξ), B(ξ),
whose solution is [2]

ζ2F (ξ)A1(ξ) = n2ζ
2(2ξ2 − k23)P̄ (ξ), ζ2F (ξ)A2(ξ) = −n1ζ2(2ξ2 − k23)P̄ (ξ),

(12)

ζ2F (ξ)B(ξ) = −2ξζ2[n2ξ1 − n1ξ2]P̄ (ξ),

where the determinant is

F (ξ) = 2(2ξ2 − k23){n1[ξ2 −m2ζ
2]− n2[ξ2 −m1ζ

2]}+ 4ξ2ξ3[n2ξ1 − n1ξ2] (13)

and the inverse Fourier transform of a given loading is

P̄ (ξ) =
1

2π

∞∫
−∞

p(x)e−iξxdx.
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For vertical displacement of the solid phase boundary, according to the formulas (8), (11),
(12), we have the integral representation

vs(x, 0) = β23

∞∫
−∞

P̄ (ξ)F1(ξ)

F (ξ)
eixξdξ,

(14)

F1(ξ) = ζ2(n1ξ2 − n2ξ1).

This representation in terms of a given loading is used for building solution for the stamp vi-
bration problem on a PELS half-space. Here, the asymptotic analysis of the corresponding
integrand is of primary importance. On the other hand, for the low-frequency analysis it is
necessary to know the asymptotic behavior of this integrand at ζ → 0. Both asymptotic forms
can be obtained in the same way by using specifics of appearance of the argument ξ and the
vibration frequency ζ in the functions.

The functions under study, F (ξ) and F1(ξ), are even, therefore it is enough to analyze their
behavior at ξ → +∞. Let us define the parameters nj = nj/β

2
j , mj = mj/β

2
j , j = 1, 2, and

introduce the variables xj = k2j /ξ
2, j = 1, 2, 3.

Then the determinant F (ξ) can be written as ζ2F (ξ) = ξ6D(x1, x2, x3), with the function

D(x1, x2, x3) = 2(2− x3)[n1x1(1−m2x2)− n2x2(1−m1x1)]+

+ 4(1− x3)1/2[n2x2(1− x1)1/2 − n1x1(1− x2)1/2].

Using the asymptotic identity

(1− xj)1/2 = 1− xj/2 + O(x2j ), xj → 0,

we get, for |x1|+ |x2|+ |x3| → 0,

D(x1, x2, x3) = 2x1x2[2(m1n2 −m2n1)− (n2 − n1)] +O(κ),

κ = |x3|(|x1x2|+ |x3|max{|x1|, |x2|}).

Similarly, we use the representation

F1(ξ) = ξ3F
(0)
1 (x1, x2), F

(0)
1 (x1, x2) = n1x1(1− x2)1/2 − n2x2(1− x1)1/2,

and, for |x1|+ |x2|+ |x3| → 0, the following relation is fulfilled:

F
(0)
1 (x1, x2) = n1x1 − n2x2 +O(κ1), κ1 = |x1x2|max{|x1|, |x2|}.
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The considerations above show, in particular, that for the Raley’s determinant the following
asymptotics at ξ → +∞ is valid:

F (ξ) = d0ξ
2 +O(1),

(15)

d0 = ζ2
{(

m1 −
β21
2

)
n2 −

(
m2 −

β22
2

)
n1

}
.

For the function F1(ξ) we get the following asymptotic expressions at ξ → +∞ (we omit the
computations):

F1(ξ) = C1ξ +O(ξ−1), C1 = ζ2(n1 − n2). (16)

Thus, from (15) and (16) it follows that for the integrand in (14) the following estimate hold:

F1(ξ)

F (ξ)
=
C1

d0
ξ−1 +O(ξ−3). (17)

The use of the estimate (17) and the well-known Fourier transform properties show that when
the condition p(x) ∈ L2(R) is fulfilled, the integrals (14) are absolutely convergent for any
x ∈ R and are continuous functions tending to zero at x → ∞.

When studying the integrands’ asymptotics for ζ → 0, two cases should be considered
depending on the presence or absence of dissipation due to the pore liquid friction (see expressi-
on (2). In the case B = 0, the roots zj of the quadratic equation (6), as well as the numbers
βj = kj/ζ and the coefficients Mj , depend on the frequency, so that

k21
k22

=
z1
z2

:= Ω2
1 ≡ const,

k23
k22

=
ρc2

N

[Γ11Γ22 − Γ2
12]

z2Γ22
:= Ω2 ≡ const.

In the presence of dissipation, i.e., for B 6= 0, the quadratic equation (6) for determining
the roots zj , from which the wave numbers k1, k2 are computed, contains frequency dependent
coefficients. Set b0 = ζΓ ≡ −Bρ11/ρ, then for ζ → 0 we obtain

z1 =
ib0ζ

−1 + b2
b1

− 1 +O(ζ), z2 = 1 +O(ζ),

with the constants b1 = q11q22 − q212, b2 = q11Γ22 + q22Γ11 − 2q12Γ12. So, for the squares of
the wave numbers, we have the estimates

k21 = ζ
c22
c2

(
ib0
b1

+
(b2
b1
− 1
)
ζ

)
+O(ζ3),

k22 = ζ2
c22
c2

+O(ζ3), ζ → 0.
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Taking into account the equation Γ11 + 2Γ12 + Γ22 = 1 and the relation

M3 = 1 + i
Γ12 + Γ22

Γ
+O(ζ2), ζ → 0,

we get k23 = ζ2(c22ρ)/N + O(ζ3), ζ → 0. So, the modulus of the wave number k1, for ζ → 0,
tends to zero as ζ1/2, while the modulus of the numbers k2, k3 tend to zero as ζ.

4. Vertical vibrations of a rigid permeable stamp. Consider the plane problem for the force
Peiζt (P = const) acting on a permeable rigid stamp of the width 2ā, height h̄ and density ρ0, on
a PELS half-space [7]. The normal reaction distribution along the stamp contact with the base
and its vertical displacement w, in the absence of friction along the contact, is studied. As inital
data, the Biot’s equations for a two-phase medium and stamp motion equations in the case of
harmonic vibrations (in dimensionless variables) are assumed [8],

M0

(c2
ā

)2
ζ2w = R− P, R = −ā

1∫
−1

σsy(x, 0)dx, |x| < 1, (18)

where M0 = 2h̄āρ0 is the mass of the stamp, R the resultant of the normal contact stresses (the
time factor eiζt is omitted). On the boundary of the stamp and the 2-phase base, the following
conditions are fulfilled:

τ sxy(x, 0) = σf (x, 0) = 0, vs(x, 0) = w, |x| < 1, (19)

where vs(x, 0) are vertical displacements of the solid phase boundary. Outside of the stamp, the
stress and pore pressure are absent, that is,

τ sxy(x, 0) = σsy(x, 0) = σf (x, 0) = 0, |x| > 1. (20)

Let us define a normalized unknown contact stress

p(x) = −
σsy(x, 0)

N
, p(x) = p(−x), |x| < 1.

Using the representation (14) for the shear vs(x, 0), on the base of the conditions (19), (20),
we get the integral equation for finding the even function p(x) ∈ L1[−1, 1],

(K(ζ)p)(x) :=
1

π

1∫
−1

K(s− x; ζ)p(s)ds = f(x), x ∈ (−1, 1), (21)

where the kernel and the right-hand side of the equation are

K(x; ζ) =

∞∫
0

β23F1(ξ)

F (ξ)
cos(xξ)dξ, f(x) =

w

ā
= const. (22)
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Here, the constant w contains, according to (18), both the given load P and the integral of the
unknown function p(x).

If the constant w is considered as given in the equation (22), than the integral equation (21)
will be used for finding the contact stress for a given uniform motion of the massless stamp.

5. Asymptotic solution of the integral equation with logarithmic kernel. According to (17),
the function F1(ξ)/F (ξ) behaves at infinity like ξ−1 and this means that the kernel K(s− x; ζ),
independent of the value of the parameter ζ > 0, has logarithmic singularity as |x− s| → 0.
On the other hand, it will be shown later that for ζ → 0 the singularity of the kernelK(s−x; ζ)
is characterized by the function ln ζ|s − x|E. In this section a statement is given on unique
solvability and asymptotic behavior of equations of this kind as the parameter ζ → 0.

Let us recall the Noether’s operator theory necessary for the further account [9, 10]. Let
X , Y be Banach spaces, R(X,Y ) a Banach space of linear continuous operators acting from
X to Y . The norm in the space X will be denoted by ‖ · ‖X . Let I be the identity operator
in the corresponding space. By the kernel of the operator A ∈ R(X,Y ) we call the subspace
kerA = {φ ∈ X : Aφ = 0} ⊂ X and its co-kernel is the kernel of the conjugate operator
A∗ ∈ R(Y ∗, X∗), cokerA = {ψ ∈ Y ∗ : A∗ψ = 0} ⊂ Y ∗. The operator A ∈ R(X,Y ) is called
a Noether operator, if its image AX is closed in the space Y and the kernel and the co-kernel
are finite-dimensional subspaces,

n = dim kerA < ∞, m = dim cokerA < ∞.

The difference κ(A) = n −m is called the Noether operator index, and the Noether operator
with zero index is called Fredholm operator.

Further by Hα, α ∈ (0, 1], we denote the Banach space of functions, given on [−1, 1] and
satisfying the Hoelder condition (see, e.g. [10], § 1),

|f(x1)− f(x2)| ≤ c|x1 − x2|α, x1, x2 ∈ [−1, 1].

Set r(x) =
√

1− x2, |x| < 1.
Let a1, a2 be certain constant values, and L(x, s; ζ) a family of continuous on the square

|x| ≤ 1, |s| ≤ 1 functions, continuously differentiable with respect to x. Le us assume

L1,0(ζ) ≡ max
|x|≤1, |s|≤1

{
|L(x, s; ζ)|+ |L′x(x, s; ζ)|

}
< ∞, ζ > 0. (23)

For ζ > 0, introduce a family of integral operators L0(ζ), L1(ζ), and L(ζ), acting on functions
given on the segment [−1, 1] by

(L0(ζ)p)(x) =
a1
π

1∫
−1

ln ζ|s− x|p(s)ds+
a2
π

1∫
−1

p(s)ds,

(L1(ζ)p)(x) =

1∫
−1

L(x, s; ζ)p(s)ds, (24)
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12 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK

L(ζ)p = L0(ζ)p+ L1(ζ)p.

It is known (see [11, 12]) that if the condition

a1 ln(ζ/2) + a2 6= 0 (25)

holds and the function f(x) is continuous on the segment [−1, 1], and its derivative belongs to
the Hoelder space Hα for a certain α ∈ (0, 1) (i.e. the function f ∈ Hα

1 ), then the equation
L0(ζ)p = f possesses a solution,

p(x) = (L−10 (ζ)f)(x) ≡

≡ 1

πr(x)

 1

a1

1∫
−1

r(x)f
′
(s)

s− x
ds+

1

a1 ln(ζ/2) + a2

1∫
−1

f(s)

r(s)
ds

 . (26)

This solution is unique in the class of functions p(x) that belong to the whole Hoelder space
Hα(r),

p(x) =
g(x)

r(x)
, g(x) ∈ Hα.

Let us introduce the integration operator J and the singular Cauchy operator S,

(Jp)(x) =

x∫
−1

p(s)ds, (Sp)(x) =
1

π

1∫
−1

p(s)

s− x
ds.

The following formula hold [11] (§ 55)

1

π

1∫
−1

ln |s− x|p(s)dt = −(JSp)(s) +
1

π

1∫
−1

ln(1 + s)p(s)ds, p ∈ Hα(r). (27)

Here, the operator S is a Noether operator in the space Lq[−1, 1] for any q ∈ (1, 2) and has
the index κ(S) = 1 [10] (§ 11, 31). Since the operator J ∈ R(Lq,W

1
q ) is Noether and has the

index κ(J) = −1, it follows from (27) that the operatorL0(ζ) ∈ R(Lq,W
1
q ) is Fredholm for any

q ∈ (1, 2). On the other hand, since (26) gives unique solvability of the equation L0(ζ)p = f,
f ∈ Hα

1 , by virtue of density of inclusion of the space Hα(r) in the Banach space Lq[−1, 1], we
get that the integral operator L0(ζ), if the conditions (25) and q ∈ (1, 2) are fulfilled, defines an
isomorphism between the Banach spaces Lq[−1, 1] and W 1

q [−1, 1].
On the base of the above considerations and using standard methods of the theory of linear

operators the following theorem is proved.

Theorem 1. Let q ∈ (1, 2) and L1,0(ζ) → 0, ζ → 0. Then there is ζ0 > 0 such that, for any
ζ ∈ (0, ζ0), the operators L0(ζ) ∈ R(Lq,W

1
q ) and L(ζ) ∈ R(Lq,W

1
q ) are continuously invertible

with

L−1(ζ) = L−10 (ζ)(I + T (ζ)), ‖T (ζ)‖R(W 1
q )
≤ cL1,0(ζ), ζ ∈ (0, ζ0). (28)
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ASYMPTOTIC SOLUTION OF A HARMONIC CONTACT PROBLEM FOR A PERMEABLE STAMP .. . 13

Proof. For sufficiently small ζ (so that the condition (25) is trivially fulfilled) an inverse
operator L−10 (ζ) ∈ R(W 1

q , Lq) exists, determined by the expression (26). Hence it follows that,
for a certain ζ1 > 0, the uniform estimate

‖L−10 (ζ)‖R(W 1
q ,Lq) ≤ l0 < ∞, ζ ∈ (0, ζ1)

holds. Further, from the condition (23) it follows that the operators L1(ζ) continuously act from
the space Lq into the space W 1

q , so that their norms are subject to the following estimate:

‖L1(ζ)‖R(Lq ,W 1
q )
≤ L1,0(ζ) → 0, ζ → 0.

Thus, by choosing the number ζ0 ∈ (0, ζ1) from the condition l0L1,0(ζ) ≤ 1/2, ζ ∈ (0, ζ0), we
get that for ζ ∈ (0, ζ0) the operators L(ζ) ∈ R(Lq,W

1
q ) are continuously invertible and the

following equation holds:

L−1(ζ) = L−10 (ζ)(I + L(ζ)L−10 (ζ))−1.

Hence we get, that (28) is fulfilled with the operator

T (ζ) = −(I + L1(ζ)L−10 (ζ))−1L1(ζ)L−10 (ζ).

The theorem is proved.

Corollary. Under conditions of Theorem 1, the equation L(ζ)p = f , for any function f ∈
∈ W 1

q , has a unique solution p ∈ Lq. Also, in the space Lq, solutions p = p(x; ζ) satisfy the
asymptotic representation

p(x; ζ) = (L−10 (ζ)f)(x) + O(L1,0(ζ)), ζ → 0, (29)

where the expression (L−10 (ζ)f)(x) is defined by the formula (26). If the function f ∈ Hα
1 (α ∈

∈ (0, 1)), then the asymptotic formula (29) is valid also in the space Hα(r) and, in particular, in
the weight space of continuous functions C(r),

sup
|x|<1

|(p(x; ζ)− (L−10 (ζ)f)(x))r(x)| = O(L1,0(ζ)), ζ → 0. (30)

If f(x) = f0 = const, then for solution of the equation L(ζ)p = f(x), the following asymptotic
estimate hold:

sup
|x|<1

∣∣∣∣p(x; ζ)r(x)− f0
a1 ln(ζ/2) + a2

∣∣∣∣ = O(L1,0(ζ)), ζ → 0. (31)

6. A low-frequency analysis of the solution of the problem of vertical vibrations of a perme-
able stamp. In this section for ζ → 0 an asymptotic analysis of solutions of the integral equation
(21) is conducted. It is shown that the use of the structure of the functions F1(ξ), F (ξ) and the
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14 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK

asymptotic formulas of Section 2 allows, for ζ → 0, to reduce (21) to a consideration of the
equation L(ζ)q = f with the operator of the type (24) and some constants a1, a2. This, in its
turn, enables to apply the results from the Section 5. Next, we will need the relations from [13]
(Chapter 6),

∞∫
1

cos(xξ)

ξ
dξ = −C − ln |x|+ S1(x),

(32)

S1(x) =

x∫
0

1− cos ξ

ξ
dξ = −

∞∑
k=1

(−1)kx2k

2k(2k)!
,

where C ≈ 0, 577 is the Euler’s constant.
Let us use the notations for the constants

a12 = 2(n2m1 − n1m2), b12 = n2 − n1, d1 = a12 − b12,

and for the functions

D1(s) = D

(
β21
s2
,
β22
s2
,
β23
s2

)
, s > 0, D2(τ) = D(β21τ

2, β22τ
2, β23τ

2), τ > 0.

Let us examine the equation (21) in the absence of dissipation (B = 0). Then the functions
D1(s), D2(τ) don’t depend of the frequency ζ. Let us represent the function defining the kernel
of the equation (21) in the form

K(x; ζ) =K1(x; ζ) +K2(x; ζ) ≡

≡
∞∫
ζ

β23ζ
2F

(0)
1 (x1, x2)

ξ3D(x1, x2, x3)
cos(xξ)dξ +

ζ∫
0

β23ζ
2F

(0)
1 (x1, x2)

ξ3D(x1, x2, x3)
cos(xξ)dξ, (33)

where the values xj = k2j /ξ
2 ≡ (β2j ζ

2)/ξ2.
For K1(x; ζ), after the change of the integration variable, ξ = sζ, we obtain the expression

K1(x; ζ) = β23

∫ ∞
1

F
(0)
1 (β21/s

2, β22/s
2)

s3D1(s)
cos(xζs)ds.

Here, according Section 4 (taking into account the assumption B = 0), we have the relation

β23
F

(0)
1 (β21/s

2, β22/s
2)

s3D1(s)
= R0s

−1 +R1(s)s
−3,

where the coefficient

R0 = β23
(n1β

2
1 − n2β22)

2β21β
2
2d1

=
Ω2(n1Ω

2
1 − n2)

2Ω2
1d1

(34)
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ASYMPTOTIC SOLUTION OF A HARMONIC CONTACT PROBLEM FOR A PERMEABLE STAMP .. . 15

and the function R1(s) = O(1), s → ∞. Thus, the integral

K1(x; ζ) = R0

∞∫
1

cos(xζs)

s
ds+

∞∫
1

R1(s)
cos(xζs)

s3
ds.

It is not difficult to determine for ζ > 0 a uniform with respect to x ∈ [−1, 1] estimate,

∞∫
1

|R1(s)|
s3

{| cos(xζs)− 1|+ ζ|x|| sin(xζs)|}ds ≤ c0ζ
2(| ln ζ|+ 1), (35)

with a certain constant c0 > 0.
Further we will use c0 to denote various constants whose values are not essential. Using (32)

we get that there exists a constant K1 such that, in the space C1 = C1[−1, 1] of continuously
differentiable on the segment [−1, 1] functions, the following estimate holds:

‖K1(x; ζ) +R0 ln |ζx| −K1‖C1 ≤ c0ζ
2(| ln ζ|+ 1), ζ > 0.

Let us consider the integral K2(x; ζ), which after the substitution ξ = ζτ−1, is reduced to
the form

K2(x; ζ) =

∞∫
1

R2(τ) cos(xζτ−1)dτ,

R2(τ) = β23
τF

(0)
1 (β21τ

2, β22τ
2)

D2(τ)
.

Using the expressions for the functions F (0)
1 (x1, x2) andD(x1, x2, x3) from Section 4, we obtain

the estimates

F
(0)
1 (β21τ

2, β22τ
2) = O(τ3),

D2(τ) = −β21β22β23a12τ6 +O(τ4), τ → ∞,

and so, R2(τ) = O(τ−2), τ → ∞. Hence it follows that the function K2(x; ζ) is infinitely
differentiable with respect to x ∈ [−1, 1] and

‖K2(x, ζ)−K2‖C1 ≤ c0ζ
2, K2 =

∞∫
0

R2(τ)dτ.

Thus, taking into account (33) – (35), we have the following proposition.
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16 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK

Proposition 1. The function K(x; ζ) can be represented as

K(x; ζ) = −R0 ln |ζx|+K0 + K̂(x; ζ), (36)

with the constant R0 from (34) and a certain constant K0 independent of ζ > 0, and the function
K̂(x; ζ), for any ζ > 0, is continuously differentiable and satisfies the estimate

‖K̂(x, ζ)‖C1 ≤ c0ζ
2(| ln ζ|+ 1), ζ > 0.

From Proposition 1, the following statement follows.

Lemma 1. Let B = 0. Then one can find constants R0, K0 such that

‖K(x; ζ) +R0 ln |ζx| −K0‖C1 ≤ c0ζ
2(| ln ζ|+ 1), ζ > 0.

Assume that the linear integral operator L0(ζ) is defined by the expression (24) with the
constants a1 = −R0, a2 = K0, L(ζ) = K(ζ) is the integral operator from the equation (21).
Lemma 1 shows that the family of integral operators K(ζ), for ζ → 0, tends in the operator
norm of R(Lq,W

1
q ) to the operator L0(ζ) and one can apply Corollary 1 from the Section 5 to

the equation (21) with L1,0(ζ) = ζ2(| ln ζ|+ 1) (see also Remark). Thus we have the following
theorem.

Theorem 2. Let B = 0 and q ∈ (1, 2). Then for sufficiently small ζ, the equation (21) for
any function f(x) ∈ W 1

q has a unique solution p(x) = p(x; ζ) ∈ Lq and

p(x) = (L−10 (ζ)f)(x) + O(ζ2| ln ζ|), ζ → 0

in the norm of the space Lq, where (L−10 (ζ)f)(x) is given by the expression (26). In the case of
a given uniform displacement of the stamp, f(x) = w/ā = W , the solution p(x) satisfies the
asymptotic representation

p(x) = − W

R0 ln ζ/2−K0

1√
1− x2

+ O(ζ2| ln ζ|), ζ → 0, (37)

in the sense of the norm of the weight space C(r).

Remark . From the foregoing considerations it follows that for the constant K0, in (37) one
can give a rather bulky expression. On the other hand, simplifying (37) we get an asymptotic
representation for the solution

p(x) = − W

R0 ln ζ

1√
1− x2

+O

(
1

ln2 ζ

)
, ζ → 0. (38)

Now let us consider a more complex case of the equation (21), whenB 6= 0.Here the values
β2j depend on the frequency ζ and, for ζ → 0,

β2 := ζβ21 = − ic
2
2b0
c2b1

+O(ζ), β22 = c22/c
2 +O(ζ), β23 = c22ρ/N +O(ζ). (39)
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ASYMPTOTIC SOLUTION OF A HARMONIC CONTACT PROBLEM FOR A PERMEABLE STAMP .. . 17

Set the integrals in the representation of the function K(x; ζ) = K1(x; ζ) +K2(x; ζ) to be

K1(x; ζ) =

∞∫
ζ1/2

β23F1(ξ)

F (ξ)
cos(xξ)dξ,

K2(x; ζ) =

∫ ζ1/2

0

β23F1(ξ)

F (ξ)
cos(xξ)dξ.

Applying the substitution ξ = ζ1/2s in the first integral and using the relations of the Section
4 for the integrand we obtain

K1(x; ζ) = ζβ23

∞∫
1

F
(0)
1 (β2/s2, ζβ22/s

2)

s3D1(s/ζ1/2)
cos(xζ1/2s)ds.

The integrand admits the representation

ζ
β23F

(0)
1 (β2/s2, ζβ22/s

2)

s3D1(s/ζ1/2)
= R0,1(ζ)s−1 +R1(ζ)ζs−1 + ζs−3R2(s; ζ)

with the coefficients

R0,1(ζ) =
n1β

2
3

2β22d1
, R1(ζ) = −n2β

2
2

n1β2
R0,1

and the finite, in respect to ζ > 0 and s > 0, function R2(s; ζ). Thus,

K1(x; ζ) = (R0,1(ζ) +R1(ζ)ζ)

∞∫
1

cos(xζ1/2s)

s
ds+ ζ

∞∫
1

R2(s; ζ)
cos(xζ1/2s)

s3
ds.

Using the relationships (32) we get, for a certain constant K1, the estimate for K1(x; ζ):

‖K1(x, ζ) + (R0,1(ζ) +R1(ζ)ζ) ln |ζ1/2x| −K1‖C1 ≤ c0ζ(| ln ζ|+ 1), ζ > 0.

Let us show that the function K2(x; ζ) admits the estimate

‖K2(x; ζ)−R0,2(ζ) ln ζ −R1,2(ζ)‖C1 ≤ c0ζ
1/2(ln |ζ|+ 1), ζ > 0, (40)

with certain functions Rj,2(ζ) continuous with respect to ζ ≥ 0. In the integral representation
for K2(x; ζ), we substitute ξ = ζτ−1. Then

K2(x; ζ) = β23

∞∫
ζ1/2

G(τ ; ζ)τ3

ζD2(τ)
cos(xζτ−1)dτ,

ISSN 1562-3076. Нелiнiйнi коливання, 2002, т . 5, N◦ 1



18 A.M. GOMILKO, O.A. SAVITSKY, A.N. TROFIMCHUK

where

G(τ ; ζ) = n1β
2(1− β22τ2)1/2 − n2β22ζ1/2(ζ − β2τ2)1/2.

For ζD2(τ) we have the equation

ζD2(τ) = D(ζ−1β2τ2, β22τ
2, β23τ

2) = τ4(a1(ζ)τ2 + a2(ζ) + g1(τ ; ζ)) + g2(τ ; ζ)),

where the continuously differentiable with respect to ζ ≥ 0 coefficients are

a1(ζ) = β2β22β
2
3a12,

a2(ζ) = 2n2β
2
2(ζβ23 + 2m1β

2)− 2n1β
2(β23 + 2m2β

2
2),

and the continuous, uniformly bounded with respect to τ ≥ 0 and ζ ∈ (0, ζ1), ζ1 < ∞, functi-
ons are

g1(τ ; ζ) = 4n1β
2τ−2(1− (1− β23τ2)1/2(1− β22τ2)1/2),

g1(0; ζ) = 2n1β
2(β22 + β23),

g2(τ, ζ) = −4n2β
2
2τ
−2ζ(1− (1− β23τ2)1/2(1− β2τ2/ζ)1/2).

In particular, there is a constant c > 0 such that

|ζD2(τ)| ≥ c0τ(τ + 1), τ > 0. (41)

Further we have:

| cos(xζτ−1)− 1| ≤ ζ, τ ≥ ζ1/2, |x| ≤ 1. (42)

The use of (41), (42) gives the following expression for K2(x; ζ):

K2(x; ζ) = n1β
2β23

∞∫
ζ1/2

n1β
2β23(1− β22τ2)1/2dτ

τ(a1(ζ)τ2 + a2(ζ) + g1(τ ; ζ) + g2(τ ; ζ))
+

+O(ζ1/2)| ln ζ|, ζ → 0, |x| ≤ 1.

Next, without loss of generality, we assume that ζ ∈ (0, 1]. For τ ≥ ζ1/4, the estimate
|g2(τ ; ζ)| ≤ cζ1/4, τ > 0, is true. Using this estimate and (41) we get

K
(1)
2 (x; ζ) ≡

∞∫
ζ1/4

(1− β22τ2)1/2dτ
τ(a1(ζ)τ2 + a2(ζ) + g1(τ ; ζ) + g2(τ ; ζ))

=

=

∞∫
ζ1/4

τ−1Q(τ ; ζ)dτ +O(ζ1/4| ln ζ|), ζ → 0, |x| ≤ 1,
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where the function

Q(τ ; ζ) =
(1− β22τ2)1/2

a1(ζ)τ2 + a2(ζ) + g1(τ ; ζ)
= O(τ−1), τ → ∞ (uniform for ζ > 0).

Integration by parts gives the equation

∞∫
ζ1/4

τ−1Q(τ ; ζ)dτ = −Q(ζ1/4; ζ) ln ζ1/4 + a3(ζ), a3(ζ) = −
∞∫
0

Q
′
(τ) ln τdτ,

and the uniform, with respect to ζ > 0, estimates hold,

Q
′
(τ ; ζ) = O(1), τ → 0, Q

′
(τ ; ζ) = O(τ−2), τ → ∞.

For ζ → 0 we have Q(ζ1/4; ζ) = 1/a4(ζ) +O (ζ1/2), with the coefficient

a4(ζ) = a2(ζ) + g1(0, ζ) = 4n2m1β
2β22 − 4n1m2β

2β22 + 2n1β
2β22 +O(ζ), ζ → 0.

So,

K
(1)
2 (x; ζ) = − ln ζ

4a4(ζ)
+ a3(ζ) +O(ζ1/4| ln ζ|), ζ → 0, |x| ≤ 1.

Let us examine the integral

K
(2)
2 (x; ζ) ≡

ζ1/4∫
ζ1/2

(1− β22τ2)1/2dτ
τ(a1(ζ)τ2 + a2(ζ) + g1(τ ; ζ) + g2(τ ; ζ))

.

Here, using the estimate (41) and the estimate

|a12(ζ)τ2|+ |g1(τ, ζ)− g1(0, ζ)|+ |g2(τ, ζ)− g2,0(0, ζ)| ≤ c0ζ
1/2, τ ∈ (ζ1/2, ζ1/4),

where g2,0(τ ; ζ) = 4n2β
2
2ζτ
−2(1− β2τ2/ζ)1/2, we obtain, for ζ → 0,

K
(2)
2 (x; ζ) =

ζ1/4∫
ζ1/2

dτ

τ(a4(ζ) + g2,0(τ ; ζ))
+O(ζ1/2) =

=

ζ−1/2∫
1

ds

2(a4(ζ)s+ a5(ζ)(1− β2s)1/2)
+O(ζ1/2),

a5(ζ) = 4n2β
2
2 .
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The foregoing considerations give the following asymptotic formula:

K2(x; ζ) = R0,2(ζ) ln ζ1/2 +R1,2 +O(ζ1/4 ln |ζ|), R0,2(ζ) = −a4(ζ), ζ → 0,

with a certain constantR1,2. Then, taking into account (39), we get the estimate (40) forK2(x; ζ)
in the space of continuous functions. Repeating the considerations for the integral K2(x; ζ)
and replacing the expression cos(xζτ−1) with ζτ−1 sin(xζτ−1) we get the estimate (40) for the
derivative of the function K2(x; ζ).

So, in the case of non-zero dissipation coefficient B we obtain the following proposition.

Proposition 2. If B 6= 0, then for K2(x; ζ) the following asymptotic representation holds:

K(x; ζ) = −(R0,1(ζ) +R1(ζ)ζ) ln |ζ1/2x|+R0,2(ζ) ln ζ1/2 +K1 + K̂1(x; ζ),

(43)

‖K̂1(x; ζ)‖C1 ≤ cζ1/4(| ln ζ|+ 1), ζ > 0.

Note, that the use of (39) gives the equation

R0(ζ) = R0,1(ζ)−R0,2(ζ)/2 =
n1β

2
3

2

{
1

2β22d1
+

β2

a4(ζ)

}
. (44)

Thus, according to Proposition 2 and Section 5, the following statement is true.

Theorem 3. Let B 6= 0 and q ∈ (1, 2). Then for sufficiently small ζ > 0 the equation (21),
for any function f(x) ∈ W 1

q , posseses unique solution p(x) ∈ Lp and

p(x) = (L−10 (ζ)f)(x) + O(ζ1/4| ln ζ|), ζ → 0, (45)

with respect to the norm of the space Lq. In the case f(x) = W = const, in the spaces Lq and
C(r), the following asymptotic representation is true:

p(x) = − W

R0(0) ln ζ

1√
1− x2

+ O(1/ ln2 ζ), ζ → 0. (46)

Proof. According to (43) the equation (21) can be written in the form (L0(ζ1/2)+L1(ζ))p =
= f , where in the definition (24) of the operator L0(ζ), the constants aj = aj(ζ) can be taken
to be the coefficients

a1 = −(R0,1(0) +R1(0)ζ), a2 = R0,2(0) ln ζ +K1.

We also have the following estimate:

‖L1(ζ))‖R(Lq ,W 1
q )
≤ cζ1/4(| ln ζ|+ 1), ζ > 0.

Then, using Corollary 1 (see Remark) we obtain, for the solutions of the equation (21) with
f(x) ∈ W 1

q and sufficiently small ζ > 0 the asymptotic representations (45) and (46). The
theorem is proved.
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Thus, for ζ → 0, no matter what the value of the dissipation coefficientB is, for a given plate
displacement laww, the contact stress behaves similar to the contact stress of the corresponding
elasticity problem (see [14], § 2 − 4), namely it has a root singularity near the stamp edges and
the amplitude tending to zero as the inverse logarithm. In the case of B = 0, this result, on a
physical level of rigor, was obtained in [15].

Let us consider the integral equation (21) corresponding to the original statement of the
problem of stamp vibrations, i.e., when the displacement of the plate w satisfies the equation of
motion (18). Set the constants

P1 =
π

M0(c2/ā)2
, P0 =

πP1

ā
P.

Then the corresponding integral equation assumes the form

1

π

1∫
−1

K(s− x; ζ)p(s)ds− P1

πζ2

1∫
−1

p(s)ds = f(x; ζ),

(47)

f(x; ζ) =
P0

ζ2
.

The equation (47) differs from the above integral equation (21) by the presence of a one-
dimension perturbation with the coefficient increasing as ζ−2 for ζ → 0 and a similar behavior
of the right side f(x) = f(x; ζ) for ζ → 0. Thus, one can use the foregoing asymptotic analysis
of the kernelK(s−x; ζ). Then the equation (47) can be written as (L0(ζ)+L1(ζ))p(x) = f(x; ζ),
with the constants a1 = −R0, a2 = K0−P1ζ

−2. So, for small values of ζ > 0 and B = 0, this
equation has a unique solution and, in the space C(r), we have the asymptotic representation

p(x) = − P0

(R0 ln ζ/2−K0 + P1ζ−2)ζ2
1√

1− x2
+O(ζ2| ln ζ|) =

= − P

πā

1√
1− x2

+O(ζ2| ln ζ|), ζ → 0.

It B 6= 0, a similar asymptotic relation holds for the solution of the equation (47),

p(x) = − P
πā

1√
1− x2

+O(ζ1/4| ln ζ|), ζ → 0.

Thus, in the case when the plate displacement w satisfies the equation of motion (18), the
contact stress p(x) = p(x; ζ), for ζ → 0, no matter what the value of the dissipation coefficient
B is, approaches the limit value

lim
ζ→0

p(x) = − P
πā

1√
1− x2

, |x| < 1. (48)
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Note that the limit value (48) coincides with the static distribution of the contact stress obtained
by solving a 2D problem of pressure of a rigid plate on an elastic half-space [16, 17].
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