Fizika Nizkikh Temperatur, 1998, v. 24, No 5, p. 498-500

Letters to the Editor

Thermal transport through Luttinger liquid constriction

[. V. Krive

B. 1. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine,
47, Lenin Ave., 310164, Kharkoo, Ukraine
E-mail: krive@ilt.kharkov.ua

Received February 23, 1998

The heat transport through one-dimensional quantum wire is considered in the frameworks of

inhomogeneous Tomonaga-Luttinger liquid model. It is shown that even for perfect (impurity free) wire

thermal transport is suppressed due to multiple scattering of plasmons on the boundaries which connect

quantum wire to the leads of noninteracting electrons. In the presence of impurity inside the Luttinger

liquid constriction resonant enhancement of thermal conductivity at certain conditions is predicted.

PACS: 71.10.Pm

Recently Kane and Fisher [1] studied the heat
transport in Luttinger liquid (LL). They claimed
that: (i) in pure LL thermal conductance K(T) does
not depend on electron-electron interaction and it
coincides with the one of Fermi liquid (FL)
Ky(T) = (m/3)T/h ( h is the Planck constant, T is
the temperature); (ii) in the presence of single
impurity K(T) O T3 at low temperatures and for
strong repulsive interaction g < 1,2 (g is the corre-
lation parameter of LL).

Both above results were obtained for infinitely
long LL. In this case it is known [2] that dc
electrical conductance G(T) (formally defined as
response function to the change in chemical poten-
tial) is renormalized by interaction. For pure LL
Gy = ge?/h and in the presence of single impurity
G(T) O T%/972. So the authors of Ref. 1 concluded
that the ratio of thermal to electrical conductance
L =K/TG is modified by interaction. In FL this

g
quantity, known as the Lorentz number, is univer-
sal L, =(T[2/3)(kB/e)2 (kg is the Boltzman con-
stant). In infinite perfect LL wire Lg =L,/ g and in
the presence of impurity Lorentz «numbers diverges
asT - 0forg<1/2][1]

The predictions obtained for homogeneous infi-
nite LL can not be applied directly to the realistic
situation when LL wire is connected to the reser-
voirs of noninteracting electrons (source and drain
leads). In this case it was proved [3] that in the
absence of electron backscattering dc electrical con-
ductance is not renormalized by interaction.
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The purpose of the present communication is to
reconsider Kane-Fisher problem [1] for realistic ex-
perimental setup. We will study thermal transport
through LL constriction in the frameworks of inho-
mogeneous Tomonaga-Luttinger liquid (ITLL)
model [3]. For simplicity we consider here only the
case of spinless electrons.

If electrons do not backscattered by inhomogeni-
ties, the entropy is totally carried by plasmons. The
simplest way to visualize charge and heat transport
in repulsively interacting electron system is to con-
sider the motion of 1D Wigner solid (WS) through
the constriction. At zero temperature the rigid shift
of WS results in interaction independent conduc-
tance e®/h. It is evident that at finite temperatures
thermally activated sound waves in WS (plasmons)
can not affect electrical transport through perfect
LL constriction. However the scattering of plas-
mons on the interfaces LL-FL will suppress heat
transport.

The heat transport associated with plasmons can
be expressed in terms of transmission probability,
T,¢), of plasmons through LL constriction. The
corresponding formula for thermal conductance is
readily derived in Landauer-Buttiker formalism for
transport coefficients (see e.g. [4])
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where fp(€) = (€T - 1)1 is the distribution func-
tion of plasmons. In ITLL model it is assumed [3]
that the transition from interacting to noninteract-
ing electrons is smooth (the characteristic length
Ap << § << L, where A, is the Fermi wavelength
and L is the length of LL wire). Therefore Eq. (1)
determines exact thermal conductance for perfect
(impurity free) LL when Lagrangian of LL is quad-
ratic in terms of boson variables (the leads are
modelled by 1D noninteracting electrons which
correspond to ¢ = 1 LL). In the presence of electron
backscattering inside LI constriction Eq. (1) for
g < 1/2 determines the main contribution to heat
transport at low temperatures.

So our problem is reduced to the calculation of
plasmon transmission coefficient. Here we consider
the special case when the scattering potential is
placed exactly in the middle of LL wire (in this case
one could expect the enhancement of heat transport
due to resonant tunneling of plasmons through the
impurity).

Backscattering of electrons causes the appearence
of nonlinear local term in bosonic form of LL
Lagrangian &L = —Vpé(x) cos ¢. For our problem
this term describes the scattering of plasmons,
¢ << 1, on O-function potential and we immedi-
ately find the desired trasmission coefficient for
infinite LL wire T (€)= g2 /(% + 8(2)), where € =
=2myV, / 7. The heat conductance Eq. (1) reads
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Here Y(z) =dInl(2)/dz, T(2) is the gamma-func-
tion. At low temperatures, T << gV, Eq. (2) re-
produces T3-behavior of heat conductance found in
Ref. [1].

To calculate trasmission probability of plasmons
through LL constriction we should additionally
take into account the scattering of plasmons on
L1-FL boundaries. For adiabatic contact (ITLL
model) it can be done by matching the wave func-
tions of plasmons at boundaries. The straightfor-
ward calculations yield
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where A=Tis/L, g, =1/2 (g7 £9), g =5/vp, s is
the plasmon velocity.
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Fig. 1. The dependence of Lorentz «number» of perfect LL con-
striction on temperature at different values of g: 0,5 () and
0,3 (2).

At first we consider the case of pure LL constric-
tion (g, — 0). In this limit the transmission coeffi-
cient T,(€) = [ cos %(e/A) + g2 sin *(g/B)] ™ is a pe-
riodic function of plasmon energy with the period

, = nmA (n is integer). This property is the ma-
nifestation of quantization of plasmons in LL con-
striction [5]. Plasmon transport through LI wire is
resonant at energies in the vicinity of €, (T (g,) = 1)
and is suppressed (strongly suppressed T, << 1 for
strong interaction g << 1) at off-resonance energies.

At low temperatures T << A thermal conduc-
tance K(T) is determined by the contribution of
long wavelength plasmons (z = 0 resonance) to in-
tegral Eq. (1). Low energies of plasmons corre-
spond to the region of noninteracting electrons and
therefore thermal transport is not affected by inter-
action [1]. Notice however that for long wires the
corresponding temperature interval is contracted to
a point. On contrary at temperatures T > A heat
conductance is strongly (for g << 1) renormalized
by interaction K(T)/K,= 2g <<1. The depend-
ence of Lorentz «<number» on temperature for pure
LL constriction is shown on Fig. 1. It clearly
demonstrates the violation of Wiedemann-Franz
law for LL wires (the effect is pronounced for the
case of strong interaction g << 1).

Now we proceed to the transport properties of
LL wire with impurity. Electrical conductance for
the problem under study was calculated in Ref. [6].
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As it was expected from physical considerations [2],
conductance of finite L1 wire at T << A is tempera-
ture independent G = (e2/h)(D/. ng) 2/972 and the
infinite LIL-like behavior [2] is restored only at
T >> A. The behavior of thermal conductance can
be found from Egs. (1), (3). At low temperatures
one can neglect the quantization of plasmons and
T3 dependence of infinite LL wire, Eq. (2),
K(T)= KO(T)(T/ng)Z could be expected. How-
ever in exactly the same manner as for electrical
conductance, the factor (T'/gV)? caused by interac-
tion effects is replaced by A/ng)z. With the
increase of temperature the quantization of plas-
mons comes into play. For our geometry when
impurity is placed in the middle of LI wire resonant
tunneling of plasmons through impurity occurs and
thermal conductance at T >> A attains its maxi-
mum for the perfect LL constriction value
K(T)= 2gK,(T) (g <<1). Therefore the Lorentz
«numbers of LL constriction is inverse function of
temperature as it was predicted in Ref. 1. For the
resonance case studied above the <«high» tempera-
ture (T > A) behavior of L_ is determined by the
temperature dependence of conductance of LL con-
striction [6] and hence Lg/L0 0 g(ng/T) 2/972,
Besides unlike for infinite homogeneous LL in a
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finite LL wire Lorentz number for g < 1,2 saturates
at value L, = Ly(gV,/B) 2/97% for T - 0.

When t%e above material was prepared for pub-
lication the author got to know that the thermal
transport in quantum wires was considered recently
in Ref. 7. Our results coincide with the ones of the
cited paper in the places where two investigations
are overlapped (pure LL constriction).
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