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In the presence of isotropic and anisotropic pinning the vortex dynamics is discussed in terms of
phenomenologically introduced, nonlinear viscosities. The formulas for linear galvanothermomagnetic
effects are derived and analyzed under the condition at which the transport current or temperature
gradient is directed at arbitrary angle with respect to the unidirected twins, which cause the anisotropic
pinning. It is shown that two new effects which appear due to the anisotropic pinning, namely (with
respect to the reversal of the magnetic field direction) even transverse and odd longitudinal voltage,
have a distinct origin. The first is due to the guided vortex motion, while the second appears only when
anisotropic (in contrast with isotropic) pinning changes the Hall drag coefficient. We also show that the
last effect might be masked in the experiment by a large, odd contribution, which has the same angular
dependence and which appears due to the Ettingshausen effect. In order to clarify the problem of
influence of the twins on the Hall drag coefficient, we discuss the possibility of separating these two

contributions in the experiment.

PACS: 74.25.Fy, 74.60.Ge

1. The influence of the pinning on the transport
properties of high-T', superconductors (HTSC) is a
very interesting problem. One of the open and
rather controversial issues in this field is the influ-
ence of the pinning on the Hall drag coefficient.
Recently, Vinokur et al. [1] have calculated the
effect of point (isotropic) pins on the Hall resistivi-
ty and showed that the Hall constant is pinning-in-
dependent. Is it also true for the anisotropic pinning
caused, for example, by a system of unidirected
twins in YBCO single crystal? Sonin et al. [2] have
shown that in the last case, in addition to the usual
longitudinal and transverse (Hall) resistivities
(even and odd, accordingly, with respect to the
reversal of a magnetic field direction) two new
contributions to the resistivity appear: the even
transverse and the odd longitudinal contributions.
These results follow in Ref. 2 from the general form
of the linear Ohm’s law in anisotropic media which,
in turn, was formulated on the basis of symmetry
considerations. In fact, it was postulated in Ref. 2
that presence of the twins changes the Hall conduc-
tivity. The experimental situation also is still con-
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troversial. Recent paper [3] claims that for a
twinned (and further irradiated with high-energy
Pb ions) YBCO single crystal the mixed-state Hall
conductivity does not depend on the pinning strength,
in complete agreement with the theory [1].

The main purpose of this paper is to suggest and
develop theoretically a new method for experimen-
tal verification of the plausible effect of twins on
the Hall drag coefficient within the framework of
the phenomenological approach used earlier in Ref.
1 for the case of isotropic pinning. We modify the
method of Ref. 1 for considering both the isotropic
and anisotropic pinning so that we can derive the
Ohm'’s law, which was postulated in Ref. 2. We can
therefore clarify the origin of the earlier introduced
[2] four phenomenological resistivities in terms of
the drag and pinning vortex viscosities, i.e., on a
more detailed level. In the linear case we show that
the above-mentioned, new, even, transverse contri-
bution is due completely to the guided vortex mo-
tion [4] and does not require the modification of the
Hall drag coefficient by twins, whereas the odd
longitudinal contribution depends entirely on the



different values of this coefficient for motion of
vortices along the twins and across them. It follows
from this conclusion that in order to justify the
influence of the twins on the Hall drag coefficient,
we must identify only odd longitudinal contribution
in the measurements.

But as we show below, experimental observation
of this small (Hall in nature) contribution may be
masked by the possible appearance (due to the
emergence of a small temperature gradient in the
presence of the transport current) of the odd See-
beck contribution with the same angular depend-
ence. In order to give a theoretical basis for the
separation of these two contributions, we also cal-
culated the thermomagnetic properties of the sam-
ple with anisotropic pinning, using the same ap-
proach. We will show that the main contribution to
the odd Seebeck resistivity now gives the guided
vortex motion, while the possible Hall contribution
is small and can be disregarded.

2. Following Ref. 1, we have for the average
velocity of vortices v the equation of motion

I’]V+C(V><n=f+fp, 1)

where n is the isotropic friction coefficient, a is the
isotropic Hall drag viscosity, f is the moving exter-
nal force (Lorentz or thermal, see below), and f _is
the average resulting pinning force, which is the
sum of the isotropic contribution f/ and the anisot-
ropic contribution &f? , where € = a,/d is relative
fraction of vortices placed on the twins (¢, and d
are the average distances between vortices and
twins, respectively). Considerations which may
lead to the equation of motion in the form (1) will
be discussed in detail elsewhere. If € = 0, we obtain
Eq. (2) in Ref. 1. We assume that the average
anisotropic pinning force f¢ can be decomposed
into two parts f; = ff? + fL | where, neglecting small
Hall viscosities, fl’; = f; , f; = f; Dn” . Here m
and my = z x m are the unit vectors directed perpen-
dicularly and parallel to the twins, respectively, z is
the unit vector which is perpendicular to the sam-
ple’s plane, f;”p = f; Cm, and f;) = fll[) Cimy . As in Ref.
1, we assume that f/ =-y,(v)v, where y,(v) > 0 is
phenomenological coefficient, which depends only
on the value of o = |v|. For f; and fé we assume that

f;; = _Vt(|7)t|)Vt - o, (2a)
fé = _V,z(|U|l)Vl —avpxn, (2b)

where y, and y, are the average phenomenological
anisotropic viscosities which include also the v-in-
dependent terms for the motion of vortices across
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the twins and along them, respectively; a, and a;
are the corresponding anisotropic Hall drag coeffi-
cients, and n is the unit vector in the magnetic field
direction (n = nz, where n =+ 1). Here v, = omy
and v, = o,m are longitudinal and transverse vortex
velocities, respectively (v = v, +v,). Below we will
show that incorporation of the Hall terms in (2) is
equivalent to the assumption that the anisotropic
pinning influences the Hall drag coefficient a and
leads to a new effect — the odd longitudinal contri-
bution to the resistivity of the sample.

Substitution of the expressions for f_into (1) leads
to a system of two nonlinear equations for v, and v,

5 N+ nogo =1, (32)
é‘”amvt N =1 (3b)
where
N, =N+ +eylo)) (4a)
n; =N+ y(0) + ey o)) (4b)
Oy, S0 +E€0,,0, =0+ed,, (4c¢)

and f,=f Om and f; =f Cimy are the transverse and
longitudinal components of the external force, re-
spectively.

In the linear case, where n, and n, are constants,
i.e., they do not depend on the velocities, the
solution of (3) is simple

0, =07\ fy —nag f) 5 o =870+ nag f)
A=nn; + 00, )

The electric field induced by the vortex motion is
E = (1/¢)B x v, and if the external force is equal to
the Lorentz force f = (®,/c)j x n, where ®, is the
flux quantum, ¢ is the light velocity, and j is the
transport current density, then from (5) we obtain

E, = ptm”(m" 0j) + p;m(m [0j) +
+ n%)Hlm”(m L) - thm(m” DJ)E, (6)

P, =BN; s P EBN, s Py =By s Py =By,
B =B®,/Ac? . ™

Note that four phenomenological resistivities may
be measured in two special, «basic» measurements,
namely, p; and p,; — in j OTB (twin boundary)
geometry, and p, , py, — in j| TB geometry.
Physically, relation (6) shows how to express E for
arbitrary angle between j and m in terms of four
basic resistivities. It was postulated earlier in Ref. 2
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on the basis of the symmetry considerations. In our
approach we are able to elucidate the origin of the
above-mentioned resistivities [see Eq. (7)] in terms
of the drag and pinning viscosities, i.e., at a more
detailed level. Equation (6) admits another repre-
sentation of E in terms of two mutually perpendicu-
lar unit vectors e =i/J and e =(z xj)/j; then
E = E"e” + EDeD y where

Ey=(@f+nop)i; Eq=@5+npg)i - (8)
Here E” and E are the longitudinal (dissipative)
and transverse (Hall, nondissipative) components
of the electric field (in relation to the transport
current density), respectively, and

=2°0, + Y70, QPO = Pyt Py

0 __ 9
Sp” =xYPy; ~ Py »

where x = m and y = my Cey. The angle-depend-
ent resistivities p|J—r and pf (in contrast to the «in-
trinsic» parameters p; , p, , Py; , and th) are
measurable values for a given sample and they do
not depend on the value of n. The sign (+) here
means that this value is even with respect to the
reversal of the magnetic field direction, where the
sign () means that the value npg | is odd.

In  the isotropic  limit = €=0; then
n,=N;=Nn=n+y) and ay =0y, =a. In the
limit a? << n? we obtain directly from Egs. (3) the
results of Ref. 1 [including the nonlinear scaling
relation p,, = p? (ac/Bdg); Eq. (7) in Ref. 1].

In contrast with the isotropic limit, where only
pﬁ“ and py are not equal to zero, in general (s 20),

B[(l —u)/u] tan 6
cot ¢ = gtan 8/u >> 1
01/tan 6 >> 1

We see that in the cases (10b) and (10c) always
Ef >> Ef . The last situation is real, because in the
experiment in Ref. 5 u may be well below unity (for
example, u < 1076 at T=87 K for YBCO; see
Fig. 1, curves 7 and 5 in Ref. 5).

The appearance of the odd longitudinal contribu-
tion pj , as we see from Egs. (2), (4), (7), and (9),
follows from the assumed influence of twins on the
«bare» Hall drag coefficient a. It must be stressed
that such influence should be different for the
vortex motion along and across the twins (y, # y,).
Physically, it may follow from a different behavior
of the Magnus force, whose microscopic origin may
be highly complex (see, for example, Ref. 6). It is
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as we can see from (9), two new contributions to
the resistivity appear: transverse even p, and longi-
tudinal odd npy Note that the angular dependence
of these two contributions is the same and has the
maximum value at 8 =1/4 (here 0 is the acute
angle between m and j). But unlike this similarity,
these contributions (as can be seen from their deri-
vation) have a completely different origin.

The even transverse resistivity pf; stems from the
evidently different pinning force for the motion of
the vortices along and across the twins, and we can
see in the experiment [5] the different critical
currents for these two directions. Usually, in some
temperature interval [5] p, <<p; , and such in-
equality promotes the so-called guided vortex mo-
tion [4], where the vortices prefer to move
mostly along the twins than to slip across them.
If we define the quantitative measure of guiding
as cot¢ = |EE/EH“| = |pE/p|J|'| , then cot¢ =
=(1 - u) tan 8/(u + tan® ) where u= p,/P; and
0<u<1.Ifu - 0,then § - B and we have a full
guiding. From the above formula follow several
conclusions with a simple physical interpretation:

a) at 0 <u <1 always tan ¢ > tan © and, in
addition, tan ¢ increases when tan 0 is increasing
with a fixed value of u,

b) if we assume u = const and change tan 6, then
tand as a function of tan® is convex down-
wards and corresponding minimal value of
(tan @), = 2Vu (1 - w) is attained at tan 8 = Vu ,

c) if tan © > 1, then always cot ¢ < 1. But when
tan 6 << 1, then depending on the relation between
u and tan O we have several opportunities:

u>tan 0, (102)
tan%0 << u << tan 0 , (10b)
u << tan@ . (10c)

evident, at least, that the vortices move along the
twin at the constant value of the order parameter,
whereas the order parameter value is not homogene-
ous for the vortices that move across the twins.

3. In what follows, however, we consider another
mechanism for the p; appearance, which implies that
the Ettingshausen e#lfect is possible. For this reason,
we will initially discuss the case in which, the trans-
port current is zero, but there is a thermal force

fT=S||DT+SDDTXn. (11)

Here OT is the temperature gradient vector in the
plane of the sample, and | and s, are the pheno-
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menological constants (s =.5; is the transport en-
tropy per vortex unit length, s, = ®,0, /p, , where
Q,, is the normal state thermoelectric power, and
P, is the normal state resistivity; see, for example,
Ref. 7). Substitution of the thermal force compo-
nents /I and f7 (instead of f, and f;) into Eqgs. (3)

T _
f = spep + nsgyr (12a)

flT = Sy~ nSty (12b)

si = (B/cb) sy + dsp) »

0
0
0
BSE = (B/cb)(Nsy — O(HZS") ,

Finally, we have the following equation for the
electric field E produced by OT [compare with
Eq.(6)]:

E; = stmy(my O07) + shm(m (O7) +
+ n[sﬁm”(m 7) - sﬁm(m" oan)] . (15)

Comparing (15) and (6), we see that if we change
sg —~ (®y/c) , sy - 0, and OT - j, then Eq. (15)
transforms into Eq. (6). All physical analysis of Eq.
(6) can therefore be repeated for Eq. (15) with only
one essential distinction: for thermomagnetic effects
all four parameters given by (14) are the values of
the same order of magnitude [7], because s; and s
in Eq. (11) are approximately of the same order of
magnitude for HTSC. Note, however, that in Eq. (6)
Py, << p; and py, <<p, . From Egs. (14) and (15)
it follows that the Hall contributions ( ~ a,;, and

) always are small in comparison with other
terms which are proportional to n, and n; . Because
of this circumstance, all new (i.e., those stemming
from anisotropy) thermomagnetic effects, giving
EW(DT) and E(OT), might be of the same order of
magnitude [unlike galvanomagnetic effects, where
usually Ej() << EL(]. Until now, several inter-
esting experimental investigations of the ther-
momagnetic effects in YBCO single crystals with
unidirected twins have been carried out [8]. But
below we deal only with «secondarys thermomag-
netic effects produced by OT, which, in turn, is
generated by the transport current density j due to
the Ettingshausen effect (the latter in almost adi-
abatic conditions was measured in YBCO by
Battlogg et al. [9]). In the case of anisotropic
pinning such «secondarys thermomagnetic effects
produce additional odd longitudinal («Seebeck»)
and even transverse («Nernst») contributions to the
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where tTEmEfT , flTEm Of and x, =m T,
yr = my LT leads to the solutions of Egs. (3) in
the form (5)

of = (c¢/B)(sjay + nshyy) |

(13)
of = (c/B)sjyr = nsiyep)
where
I _
ésu = (B/c)(nsy + ags) (14)
BSZD = (B/CA)(ntSD - aHtSH) :

measured voltages. If the real experiment is carried
out in nonisothermal conditions, these additional
contributions may mask the «intrinsic» odd longitu-
dinal contribution which is attributable to the pos-
sible influence of the twins on the Hall drag coeffi-
cient. Moreover, it is conceivable that in the case of
bad heat removal conditions the intrinsic Ej; = 0 (i.
e., Oy, =0p,= a), but we measure only &E; pro-
duced by the Ettingshausen effect. Analysis of the
experimental observations of Ey (in contrast to Ef)
therefore requires more accurate estimates of the
heat removal conditions, especially for the case of
large transport current densities. Theoretical esti-
mate of the additional odd longitudinal contribu-
tion OF; in the adiabatically isolated sample can be
derived as follows. First, we calculate (0T, , which
arises due to the heat current flow density Q
carried by the vortices which move with the veloci-
ty v; in the sample with the anisotropic pinning in
the presence of the transport current density j

Q, = Uy, =TSyv, =0T, . (16)

Here Uy = TS¢ is the thermal energy of the vor-
tices, and K is the thermal conductivity of the
sample. From (16) we have

OT, = -pv, = —~(ue/B)n xE,)) . (17)

Here u =TS, /k and E, is given by Eq.(6). Substi-

tution of (17) into the equation for E, (15) after

some calculations gives us the desired additional

odd longitudinal contribution OF|

8E] = (ue/Bi)ay)l(shp, = stpy) + (s{em; = siPad)] -
(18)

Neglecting a small Hall contribution in the second
part of the brackets and comparing (18) with the

1137



equation for Ej (8), we see that both contributions
have the same angular dependence and may have
the same order values.

For further estimates we can use (18), in which
we replace K by K, in order to take into account
the actual heat-transfer conditions (K, is always
greater than K). If the heat removal from the sample
is effective (in term of K. it means that K ¢ — ©),
then EEW - 0 and we can ignore it. In the opposite
case (K i — K) we would have 8Ey >> Ej .

In conclusion, we stress that Eqs. (3) allow us to
consider nonlinear galvanothermomagnetic effects.
This will be the subject of the next publication.
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