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Validity of t–J approximation for extended Hubbard model 
with strong repulsion 

V.O. Cheranovskii1, D.J. Klein2, E.V. Ezerskaya1, and V.V. Tokarev1 
1V.N. Karazin Kharkiv National University, 4 Svoboda Sq., Kharkiv 61022, Ukraine 

E-mail: cheranovskii@i.ua 
2Texas A&M University at Galveston, Galveston, TX, 77554 USA 

Received June 1, 2017, published online September 25, 2017 

It is shown that for finite cyclic systems described by two band Hubbard Hamiltonian with strong electron re-
pulsion the reduction to effective t–J model may give incorrect description of the ground state symmetry due to 
neglect of the correlated hopping terms. 

PACS: 75.10.Jm Quantized spin models, including quantum spin frustration; 
75.40.Сx Static properties (order parameter, static susceptibility, heat capacities, critical exponents, etc.). 
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Introduction 

One of the basic models in the theory of strongly corre-
lated electron systems is so called t–J model [1]. It can be 
derived from one-band Hubbard model with strong repul-
sion in second order of perturbation theory (PT) for the 
electron transfers allowing double occupancies in the limit 
of a small concentration of holes in half-filled band. If 
number of holes is comparable with number of electrons, 
the additional correlated hopping terms of PT expansion 
should be taken into account [2]. For linear Hubbard chain 
these hopping terms renormalized coupling parameter J of 
the corresponding t–J model only. For more complicated 
lattices like two-leg ladder or diamond chain similar 
renormalization cannot be done. Nevertheless, there is a 
big experience in successful application of t–J model to the 
study of different correlated systems, for instance, in the 
theory of high-Tc superconductivity [1,3–5] and people 
believe that this model reproduces adequately significant 
part of physics even at intermediate concentration of holes. 
In this work we study the effect of correlated hopping 
terms, omitting in t–J model, on the lowest states of two-
band Hubbard model for finite lattice fragments with the 
periodic boundaries (cycles). We show the importance of 
these terms for the correct description of the model ground 
state and lowest excitations. 

1. Two band 1D Hubbard model with strong repulsion

Let us consider the Hubbard model defined on the line-
ar chain formed by N unit cells with two different types of 

sites “a” and “b” (Fig. 1). The corresponding Hamiltonian 
has the form 
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Here abt  is the hopping integral, describing the electron 
transfer between neighbor sites of the chain; Δ is a difference 
between the orbital energies for “a” and “b” sites; ,aU  bU
are Hubbard energies for “a” and “b” sites, respectively. 

Well known realization of this model is, so called 1D 
Emery model for high-Tc superconducting copper oxides 
[3–7] (in this case, instead of electrons, we should consider 
holes in copper and oxygen bands). Such a model may also 
describe the common electron system of some stacked do-
nor-acceptor salts. 

Let us suppose that total number of electrons equals 
to 1N +  and model parameters satisfy the condition 

, .b abU t∆ >>  In this case each “b” site is occupied by one 
electron and only one electron belongs to “a” sites. In the 
limit 0abt →  we have degenerate ground state of the 
chain with respect to the localization of electron on a sites. 

Fig. 1. Fragment of the chain system formed by two unit cells and 
described by the Hamiltonian (1). 
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The doubly occupied sites have significantly bigger en-
ergy and effect on the lowest energy states of (1) in second 
order of PT in hopping integral abt . The corresponding 
second order PT processes result the translation of electron 
located on the given a site along the chain. First type of 
these processes is two consequent hops of “a” and “b” 
electrons, which may be depicted by following diagrams: 

During these consequent hops the spin exchange is ab-
sent and there is no restriction on initial spin configuration 
of two electrons involved into the process. 

For second processes the movement of the “a” electron is 
performed through intermediate doubly occupied “b” site. 

Therefore, such a movement is forbidden for parallel 
configurations of neighbor “a” and “b” electron spins. It 
corresponds to correlated hops of “a” electron along the 
chain. These processes are absent in case bU = ∞  studied 
in context of hole movement in 1D Emery model [4–7]. On 
the other side, the corresponding effective Hamiltonian for 
Emery model is essentially a t–J model for the Hamiltoni-
an (1). So, it is of interest to study the effect of the corre-
lated hopping terms on the low-energy spectrum of initial 
Hamiltonian. 

2. Effective low-energy Hamiltonians 

Let enumerate all N+1 electron spins in succession over 
the chain sites independently of type. In second order of 
PT in abt  the Hamiltonian (1) for this chain can be written 
in the following form: 
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Here n
+c  is a spinless Fermi operator which create electron 

on ith “a” site, ,n mP  is operator of the transposition of spin 
variables of two electrons with numbers n and m 
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In case of periodic boundary conditions this Hamiltonian 
should contain the additional term 

 ( ) ( )1 1 1 1 2 1, 1 1NJ J+
+= + − +H c c P   

 ( ) ( ){ }1 2 1, 2 3 1, 11 H.c. .N
N N NJ J J+

+ + − − + + c c Q Q  (3) 

Here 1, 1N+Q  is the cyclic permutation operator of all 
spin variables iσ  in spin part of wave function 

1 2 3 1( , , , ).N+Φ σ σ σ σ  

 ( ) ( )1, 1 1 2 3 1 2 3 1 1, , , , , ,N N N+ + +Φ σ σ σ σ = Φ σ σ σ σQ   .  

The Hamiltonian (2) has translation symmetry. There-
fore, the eigenfunctions of (2) should be characterized by 
hole quasi-momentum 2 / ,k l N= π  0,1, 2 1.l N= −  The 
symmetry adapted basis functions corresponding to a fixed 
value of k can be constructed by the combination of stand-
ard group theory approach and cyclic spin permutation 
technique [8,9]. 
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Omitting simple but cumbersome manipulations with 
the cyclic permutations, we can rewrite the Hamiltonian 
(2) in the basis of functions (3) in the following form: 

 corrt J−= +H H H , (5) 

( ) ( )1 2 1,2 1, 1 2t J NJ J− += + + − +H P P   

 ( )( )3 1, 1exp H.c. ,NJ ik ++ +Q   

 ( ) ( )corr 2 1, 1 1, 1exp 1 H.c.N NJ ik + + = − + H P Q .  

(Here we used the unitary transformation ( 1)n
n n= −c c  in 

order to derive the same form of the effective low-energy 
Hamiltonian for even and odd N.) 

The Hamiltonian t J−H  does not contain correlated 
hopping terms and corresponds to t–J like model. For 

2 0J =  the Hamiltonian (5) coincides with the effective 
Hamiltonian for 1D Emery model with one hole in the ox-
ygen band, which was introduced in [6,7]. The Hamiltoni-
an (5) commutes with the operator of square of total spin 

2S  and the corresponding operator of z-projection of total 
spin .zS  Therefore the eigenstates of (5) can be classified 
by quantum numbers: total spin S  and z-projection of total 
spin .M  The eigenvalue problem for (5) can be studied 
analytically for ( 1)/2S N= ± . In particular, for the states 
with maximal value of S  there is simple analytical formu-
la for the eigenvalues 

( )32 coskE J k= − . 
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The eigenvalue problem for the states with one inverted 
spin ( ( 1)/2)M N= −  can be reduced to finite difference 
equations studied in Appendix. The case of the states with 
more than one inverted spin is studied numerically only. 

3. Results of numerical simulation 

We study numerically the lowest energy states of the 
Hamiltonian (5) for finite lattice clusters with periodic 
boundaries containing 4–10 unit cells by means of Davidson 
method. Similar to [7] we put 0,aU =  which corresponds to 
the condition 1 3.J J=  The numerical calculations were per-
formed in each subspace with given value of total spin S and 
quasi-momentum k. The Hamiltonian matrix elements in 
subspace spanned on spin adapted basis functions were cre-
ated by means of branching diagram technique [10]. The 
results of these calculations for the case N = 10 are pre-
sented below on Figs. 2 and 3 (only the lowest energy 
levels with the total spin ( )1 /2S N m= + −  and 0 k≤ ≤ π  
are given). 

We found numerically that the ground state is doubly 
degenerate and corresponds to S = 1/2, 2 /5.k = ± π  The 
lowest excited states with 3/2,S =  5/2  are also doubly 
degenerate. The increase of the value of 2J  leads to the 
change of the symmetry of above energy states (Fig. 3). For 

2 14.33J J>  the ground state becomes nondegenerate and 
corresponds to k = 0. For cluster formed by 8 unit cells the 
ground state corresponds to /2k = ±π  at 1 2 1.J J= =  The 
transition to the nondegenerate ground state with 0k =  ap-
pear at 2 1~ 2.874J J . Probably, this effect is important only 
for finite clusters, because the increase of N leads to more 
and more flat character of the lowest excitation bands. 

In order to study the magnetic structure of the model 
ground state we calculated the values of the following spin-
spin correlator for the ground state Ψ0 of the Hamiltonian (2): 

 0 1 1 0
1

N

n n n n
n

+
− +

=
ρ = Ψ Ψ∑S S c c . (6) 

This quantity describes the ordering of “b” spins in vicinity 
of the “a” spin. It can be shown by spin permutation for-
malism, that the correlator (6) for the ground state 0Φ  of 
the Hamiltonian (5) can be rewritten as 

 0 2 1 0N+ρ = Φ ΦS S .  

The numerical calculations for cluster with 10N =  
showed preferably ferromagnetic character of the ordering 
of “b” spins near to “a” spin: ~ 0.2459ρ  for 2 1J J=  and 

~ 0.2499ρ  for 2 110J J= . 
If similar to t–J model, we neglect the contribution of 

correlated hopping terms corrH  in model Hamiltonian (5), 
the transition to nondegenerate ground state is absent. The 
results of the corresponding calculations are presented in 
Fig. 4. The corresponding dispersion law is similar to the 
case 1 2 1J J= = . 

In the result we may conclude that for finite cyclic sys-
tems described by two band Hubbard Hamiltonian with 
strong electron repulsion the reduction to effective t–J 
model may give incorrect description of the ground state 
symmetry due to neglect of the correlated hopping terms. 

Fig. 2. (Color online) Lowest energy levels of given spin and sym-
metry for cyclic cluster with N = 10 and J1 = J2 = 1, k = πl/5. 

Fig. 3. (Color online) Lowest energy levels of given spin and 
symmetry for cluster with N = 10 and J1 = 1, J2 = 10, k = πl/5. 

Fig. 4. (Color online) Lowest energy levels of given spin and 
symmetry for cluster with N = 10 and J1 = 1, J2 = 10 in the ab-
sence of correlated hopping terms. 
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Appendix. Exact solution for the states with one 
inverted spin 

The stationary states with N + 1 electrons and one invert-
ed spin are determined by Schrödinger equation (for sim-
plicity we shift all the eigenvalues by constant 2(J1 + J2)) 

 ( )corr 1 22( ) ,t J J J− + + + ψ = ε ψH H   
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Here is 0  “vacuum” state, ψ  is the vector of state. 
The wave function in the lattice-site representation mA  
obeys the finite difference equations 
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with the following “boundary conditions”: 
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Let seek the wave function in the form 

 ( )1 2e , 2,..., 1.ikm m m
mA C x C x m N−= + = +   

Omitting simple but cumbersome calculation, we obtain from (A.2) the following dispersion equation: 
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12 ,J J J x
x
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 (A.3) 

where parameter x obeys the algebraic equation 
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_______________________________________________ 

The values of exp( )x iq=  correspond to quasi-
continuous band and the real values of , | | 1x x <  corre-
spond to local levels. 

The formula (A.3) and Eq. (A.4) reproduce the results 
of exact diagonalization study for the energy states of finite 
lattice clusters with ( )1 /2.S N= ±  
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