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The rate of the quantum cavitation in normal fluid *He and superfiuid ‘He at temperatures down to
absolute zero has been studied. The effect of energy dissipation due to viscosity and the effect of the
finite compressibility of a fluid are incorporated into the calculation of the quantum cavitation rate.
Because of the dissipative processes, the kinetics of the quantum cavitation in JHe and *He proves to be
qualitatively different. In normal *He it corresponds to the dissipative tunneling through a potential
barrier. In contrast, in superfluid “He the effect of dissipation is of minor importance. In both fiquids
the role of the compressibility of a fluid enhances significantly for the small critical nuclei, which have
several interatomic distances and can provide us the nucleation rates sufficient for the experimental
observation of the homogeneous cavitation in the quantum regime.

PACS: 64.60.Qb, 67.90.+z, 47.55.Bx

1. Introduction

Considerable theoretical discussion on the macro-
scopic quantum nucleation has recently been fo-
cused on the low-temperature cavitation in liquid
helium at negative pressures [1—-4]. Some intriguing
problems, such as the tensile strength of liquid
heliom, i.e., the magnitude of the negative pressure
required to produce nucleation of cavities, and the
critical pressure at which liquid helium becomes
thermodynamically unstable against the density flu-
ctuations, have aroused special interest. Various
cavitation experiments have also been performed [5-7].

According to the first estimates [8] of the rates at
which bubbles nucleate in a liquid 4He, it is ex-
pected that quantum nucleation should dominate
over the thermally activated nucleation at tempera-
tures below = 0.3 K and that in this temperature
range the pressure providing the noticeable nuclea-
tion rate or the tensile strength should be about
P = —15 atm. Later, Maris and Xiong {2] pointed
out the possibility that, before this pressure can be
attained, the liquid *He is unstable against the
long-wavelength fluctuations of density since the
square of the sound velocity becomes negative. The
extrapolations of the sound velocity into the nega-
tive pressure range and some numerical calcuiations
suggest that the sound velocity at pressure P goes to
Zero as
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o(P) o< (P = PV . M

Here the exponent v is close from 1,3 to 174, The
critical pressure P, , i.e., the pressure at the lability
point, is estimated to be P, = —(8-9) atm at absolute
zero. For liquid 3He, it is expected that
P, =—(2-3) atm [2].

In order to find the tensile strength, one needs a
theory on the nucleation of cavities in the liquid. So
far all the calculations of the nucleation rate and
tensile strength in the region of the gquantum tun-
neling regime have been performed within the
framework of the Lifshitz~Kagan theory [9] of
first-order phase transitions. However, in this well-
known theory there were several assumptions that
reduced its general validity. In particular, metas-
table liquid phase was assumed to be absolutely
incompressible or, in other words, sound velocity in
the liquid is infinite. Clearly, a more realistic the-
ory of the quantum cavitation should involve the
effect of the finite compressibility, especially in the
closest vicinity of the instability point at which the
sound velocity vanishes.

As follows from the recent studies involving the
effect of finite compressibility on the quantum
decay rate of a metastable phase, the ratio of the
nucleus growth rate R to the sound velocity ¢ is a
physical parameter which governs the magnitude of
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the compressibility in the case of three-dimensional
nucleation [10]. In turn, for the decay of low-di-
mensional metastable systems the involvement of
nonzerg compressibility of a medium in the calcula-
tion of the decay rate is of principal importance
since the approximation of an incompressible me-
dium has no applicability [11]. Furthermore, com-
pared with the standard theories [9,12] based on the
models of an incompressible medium, in which the
decay kinetics of a metastable phase has a dissipa-
tionless character, the sound retardation due to the
finite velocity of sound propagation produces quali-
tative changes in the quantum decay, which be-
comes completely analogous to the dissipative quan-
tum tunpeling through a potential barrier. The
mechanism of energy dissipation is associated with
the emission of sound during the growth of the
stable phase. On the whole, this leads to the time
nonlocality of the effective Euclidean action and, as
a result, to the appearance of the explicit tempera-
ture dependence for the nucleation rate in the quan-
tum tunneling regime.

The examination of the compressibility effect on

the quantum nucleation of cavities in a metastable

liquid, which has not been made yet, is the main
tepic considered in this paper. In order to investi-
gate quantum-mechanical tunneling between the
metastable and stable states of a condensed medium
and to calculate the rate at which cavities nucleate,
we employ the formalism based on the use of the
finite-action solutions (instantons) of equations
continued to the imaginary time. (For review see,
for example, Ref. 13.) This approach [14,15] for
describing quantum-mechanical tunneling in the
systems with macroscopic number of degrees of
freedom was used for incorporating the influence of
energy dissipation in a metastable, condensed me-
dium on the quantum kinetics of first-order phase
transitions at low temperatures [11,16].

2. Dynamics of a thin-wall bubble in the liquid

The growth of a bubble in the liquid, as well as
the formation of a bubble, is a very complex proc-
ess. The growth of a bubble occurs in a condensed
medium representing a system of many particles. As
a result, the growth of a bubble is accompanied by
nondissipative and dissipative processes, including
the nonhomogeneous outflow of the liquid from the
bubble, the viscosity, the heat conduction, and
sound emission due to the compressibility of the
liquid. Thus, even for a spherical bubble that ex-
pands uniformly in all directions, the derivation of
the general growth equation, which is valid for an
arbitrary expansion rate, is a complex problem. We

528

therefore start from a number of simplifying as-
sumptions.

Let us consider a normal fluid, say, 3He held at
arbitrary pressure P, either positive or negative. As
the next step, we assume that a spherical bubble of
radius R(t) has been produced and that its radius is
growing at certain rate R(¢). For simplicity, we
disregard the possible presence of the helium vapor
inside the bubble, since the density of the vapor is
much smaller compared to that of the bulk liquid.
We can ther consider the bubble within a thin-wall
approximation assuming that the bubble has an
abrupt boundary between a void and the liquid
surrounding the bubble. In other words, we will
describe the liquid-vacuum interface in the terms of
the surface energy coefficient ¢, Of course, this is
reasonable only if the bubble radius is much larger
than the interface thickness.

The total energy of the system will then be

1

£= j d3r [7 p(r) v4() + p(r) a(p(r))] + droR%(t)

r>R() 03
where the velocity and density of the liquid at point
r are v(r) and p(r), respectively. The first bulk term
represents a sum of the kinetic and internal energies
of the liquid, and € is the internal energy per unit
mass. The second term is the surface energy of the
bubble. To make the further simplification of the

_ bubble growth, we disregard all the heat effects

which, in general, can accompany the growth of a
bubble. For this purpose, one should ignore the
possible temperature dependence in the coefficient
of surface energy o and the heat transfer due to the
viscosity of the medium.

Let us now turn to the derivation of the equation
which the growth of a bubble obeys. First of all, we
note that, according to the conservation of the mass
flux across the boundary of a bubble, we have an
equality between the fluid velocity and the growth
rate at r = R(f), i.e., '

o(R) = R(D) . (3)

Next, one possible way to obtain the growth
equation is to use the conservation of the momen-
tum density flux across the boundary at r = R(¢):

2 .
PR)+ 1, (R) + ?a =0. 4)
'Her;z P(R) is the pressure, and t,(R) is the radial
component of the viscous stress tensor at the surface

of the bubble. The viscous stress tensor 1, is de-
fined by the standard expression [17] as
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here n and { are the viscosity coefficients, and the
subscripts ¢, k and / run over the values of 1, 2, and
3 corresponding to the components of the radius
vector. The last term in Eq. (4) takes into account
the existence of the Laplace pressure due to the
curvature of the surface,

The boundary condition (4) is essentially an
equation of the bubble growth. We must express
the pressure P(R) and the viscous stress 1, (R) in
terms of the variables describing the growth of a
bubble, i.e., R(f) and R(f). For this purpose one
should employ two equations which govern the
motion of a fluid. The first is the equation of
continuity

R, v.iov) = ®
at-i-V(pv) 0

and the second is the Navier—Stokes equation {17]

av
P [B—t + (vVv ] =

=-VP + NV + (C + g-] V(Vv) . N

We are now in the position to calculate the
unknown quantities P(R) and t,(R), using Egs. (6)
and (7), and the boundary condition (3). However,
the derivation of the general analytic solution for an
arbitrary dependence of the growth rate R on time
t is unfeasible and we restrict the analysis to the
limit of sufficiently low growth rates, R — 0. In
what follows, only the guantities of the order not
smaller than R /¢ << 1 will be kept, where ¢ is the
sound velocity. The time derivatives of R(f) to third
order are also retained. Each term of the decompo-
sition has its own physical meaning and, in addi-
tion, its relative contribution to the bubble growth
kinetics depends on several factors, including the
bubble radius, growth rate, temperature, and ki-
netic properties of the liquid near the bubble.

As usual, to solve Eqs. (6) and (7), it is conven-
ient to introduce the velocity potential ¢(rt) accor-
ding to

v=Veo.
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In the above approximations the motion of a fluid
medium can be reduced to the linear equation corre-
sponding to the propagation of sound under dam-

ping
¢  U/3m+E .
Vip - %+ Vig=0. (8)
o-% mare ol
The general solution for the sound that propagates

from the bubble and vanishes at infinity can be
represented as

T 2pc

. =i\ r
) =J—d"’ e ow, (@
2n r
-1,/2
© . C in/3+L
lm=?{1-2$'fm-a) s ‘Ym-..—.a__mz’

where ¥, is the sound absorption coefficient due to
the viscosity of a fluid. The unknown function
&(t) must be determined from the boundary condi-
tion (3) setting do/dr = R(t) at r = R(#). The in-
volvement of first-order time derivative alone is
sufficient in our approximation; i.e.,
Vi) 4n
W) =~—, V(th=— Ry, (10)
(t) in &) =- R°(t)

where V(¢) is the volume of an expanding bubble.
Using the usual relation for the pressure in a fluid

. 2 4
P(rt)-P=—prp—p-(-v-§"’—)-+[gn+f;)V2¢

and Eq. (5) for the viscous stress tensor, we obtain
for the equation of the bubble growth

%+P+4n-g-+p(RR+§R2]-

-V ®e..=0,  aD
4nc

where P is the external pressure. In the absence of
the surface, viscous, and sound terms the equation
for the radial growth of a bubble was derived for
the first time by Lord Rayleigh. Later, the growth
equation was generalized by M. Plesset with allow-
ance for the surface tension.

For further analysis, let us rewrite the growth
equation in a more general form. Multiplying
Eq. (11) by 4=R2, we obtain
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1 Ky (R)
U'R) + 1, (RIR + y(R) | R + MZ(R)
2

The expression which we derived essentially repre-
sents a general form for lowest terms of the expan-
sion of the equation of bubble growth in a series in
the slowness of variation of the bubble radius R(#}
in time; i.e., expression {(12) is a low-frequency
expansion.

The term U’(R) which remains finite at R =0
originates from

4
U(R) = = PR3+ 4naR? . (13)

Accordingly, U(R) can be treated as a potential
energy of the bubble. Note that for negative pres-
sures the bubbles with radii exceeding the critical
size

R =30/P (14)

prove to be energetically favorable and cavitation
becomes unavoidable.

The second term with the first derivative repre-
sents the drag force, which hinders the growth of a
bubble and which is completely analogous to the
Stokes force, which is proportional to the growth
rate

Uy (R)R = 16mRR . 15

It is obvious that the drag force governs the evolu-
tion of a bubble at sufficiently small growth rate
when the other terms which depend on the temporal
derivatives, can be disregarded. As we shall see
below, such situation for the quantum cavitation is
possible provided the critical size R, of a bubble is
large enough or, identically, in the limit of small
negative pressures Pl - 0.

We would like to make an important remark
concerning the behavior of the friction coefficient
L(R) as a function of the bubble radius and tempera-
ture. The point is that in the course of deriving the
Rayleigh—Plesset equation (11) we employed the
Navier—Stokes equation with the viscous stress ten-
sor (5) in the form of the expansion in the gradients
of the fluid velocity. This implies, however, that
the hydrodynamic approximation is satisfied; i.e.,
the bubble radius should be much larger compared
with the mean free path XT) of excitations in the
medium surrounding the bubble, Since the mean
free path increases rapidly at low temperatures, in
particular, XT) = 1,/T2 for 3He, the crossover from
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R? - Ug(R) [ R +

1 {15 R nf R
+ -
2 (R 203R)

3 W3 (R)

R3+..=0.
) *

(12)

the hydrodynamic R >> { regime to the ballistic or
Knudsen regime of R << should occur at a certain
temperature T{R). '

In the ballistic regime the friction coefficient is
governed by the interaction of excitations with the
surface of a bubble and is proportional to the area
of the bubble surface. The general expression for
the friction coefficient p,(R) can be represented
as [16]

Hy(R) = 16mnRf(R/1) , (16)

1, ifx>>1
f(x)={ax, fr<<t:

Here f(x) is a dimensionless function of the ratio of
the bubble radius to the mean free path of excita-
tions in the liquid. The numerical factor a is of the
order of unity and depends on the particular fea-
tures of the interaction of excitations with the
bubble surface. It should be noted that in the
ballistic regime the friction coefficient p,(R) is
independent of the mean free path {(T) since
1 ~ pel.

The terms with the second derivative and with
the square of the first derivative in Eq. (12) are
standard terms and can be described in terms of the
variable mass of a bubble [9]:

1,(R) = 4mpR3 . an
These terms can be attributed to the kinetic energy
of the fluid that flows away from the bubble. ‘

The other third-order terms are associated mainly
with the finite velocity of the propagation of sound
in a medium. The corresponding coefficient U4(R) is
given by

e =4—::-9-R4. (18)
Clearly, the smaller the sound velocity, the larger
the effect of this term on the growth of a bubble
and on the cavitation kinetics.

To gain further physical insight, we represent the
growth equation in terms of the bubble energy

dissipated per unit time,

d 1 1
5 {U{R) + 7 I(RIR? ~ iy (RIRR - (R)R3J=
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= (RIR2 - L 12 (19)
4nc
As one can see, the right-hand side of Eq. (19) is
described by the dissipative function. The first term
of the dissipative function corresponds to the stand-
ard ohmic dissipation with the variable friction
coefficient. The second term is exactly equal to the
total intensity of the sound emission as the volume
of the body immersed in the fluid changes [17] if
the wavelength A of the sound emitted is much
larger than the size of the body; i.e., A >> R. In our
case the latter is identical to the inequality R << .
In conclusion, we would like to emphasize two
important points. First, the growth equation (12)
has a limited region of applicability, which is re-
stricted by the low growth rates so that the growth
time of a bubble would be longer than the charac-
teristic times of the relaxation processes in the
medium surrounding the bubble. Second, the ki-
netic coefficients p (R), in general, are different in
various media, for example, in the normal or super-
fluid liquid.

3. Quantum nucleation rate

In this section we shall estimate the thermal-
quantum crossover temperature and calculate the

B2 5
dR

1 1
St‘ff lRtI & j dt [U(RT) + 2' ﬂ.z(Rt) [E} ] + E"‘

BH2

B2

rate at which a bubbie nucleates at zero tempera-
ture. The quantum cavitation problem is treated
within the approach elaborated for describing the
decay of a metastable state in the presence of energy
dissipation [14,15] and used for the analysis of the
quantum nucleation processes during first-order
phase transitions [16]. This approach is based on
finding the extremum values of the effective Euclid-
ean action determined in imaginary time and on
using one-to-one correspondence between the clas-
sical equation of growth in real time and the Euler-
Lagrange equation for the effective action due to
the principle of the analytic continuation
(jo,| - —iw) into imaginary time.

The rate of the quantum nucleation can be writ-
ten as

N(T) =Ty exp (-SM/H ), 20
where the preexponential factor T’y is the rate of
cavitation per unit volume and unit time. According
to the general theory of the nucleation kinetics, the
factor Ty can be evaluated approximately as the
attempt frequency v, multiplied by the number of
centers at which the independent cavitation events
can occur.

In turn, the exponent S is the extremum value of
the effective Euclidean action

B2

J. (nT)?
dvdv [‘h(Rf) - 71(Rt’)]2 7 sin? aT(1 - 0)/0

Bn2

(21)

x 4_1_ .[ J‘ P [&rgcR,) _ &ratRf)]’ (xT)?
n

ot
B%2

where B = T"! is the inverse temperature. The path
R(t) which is defined in imaginary time 1 satisfies
the periodic boundary conditions R(-B#/2)=
= R(p%/2). It should be emphasized that all the
parameters of the effective action are associated
unambiguously with the corresponding parameters
in the classical equation of growth (12). The corre-
spondence can readily be settled with the analytic
continuation (o | - —~i@) of the Euler-Lagrange
(8S,¢;/8R_ = 0) equation for the effective action to
real time, which entails the classical equation of
growth. The substitution (o | — —i®) of the. Mat-
subara frequencies with the real frequencies must be
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o #2 sin? aT(t-1)/%

performed in the frequency representation of the
corresponding equations.

It is clear that the first two terms in Eq. (21) can
be attributed to the potential and kinetic energies of
a bubble. The other terms, nonlocal in time, are due
to the energy dissipation during the bubble growth.
The parameters ¥,(R) and y3(R) are determined by
the kinetic coefficients u,(R) and py(R), respec-
tively, .

&y,(R)T
I

FH(R) L] [

HR)\
_a_R_J _( 2 }-

(22)
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Depending on whether the hydrodynamic or ballis-
tic regime takes place, as it follows from Eq. (16),
we obtain

éwhs:m R32  ifR>>|
1,{R) = )
' -;-\flﬁnan/l R?, if R <<

Similar effective actions have been studied in the
application to the general theory of the quantum
kinetics of first-order phase transitions. However,
the various authors [9,10,16] used the kinetic terms
separately. It is interesting to note that, in contrast
to the term with the ohmic dissipation which is
related to the dissipative function proportional to
the square of the first-order time derivative, the
contribution due to the finite compressibility of a
fluid to the effective action is negative. The latter
results in enhancing the quantum nucleation rate
compared with the one calculated in the framework
of the Lifshitz—Kagan model of an incompressible
fluid. Some hints for such conclusion can bé seen
from the fact that the finiteness of the velocity of
the sound restricts the region of the bubble environ-
ment that can be disturbed and set in motion. The
size of this region is approximately A = ¢1, where 1
is a typical growth time. In a sense, one can say that
the total kinetic energy of the fluid flowing away
from the expanding bubble becomes smaller than in
the case of an incompressible fluid where the per-
turbation induced by the formation of the bubble
extends instantaneously to infinity.

To be closer to what can actually be observed in
low-temperature experiment, we consider only the
case of the ballistic R, >>1 regime, when the
critical radius is much larger than the mean free
path of excitations. In fact, at low temperatures,
T <1 K, the mean free path increases drastically in
the normal 3He and in the superfluid “He. Hence,
the opposite case of the hydrodynamic regime re-
quires large values for the critical bubble radius,
which increases progressively as the temperature
decreases. In addition, the large critical radius of a
bubble results in such negligible nucleation rates
that the homogeneous cavitation becomes unobserv-
able on the scale of the reasonable experimental
times. In the quantitative manner, the impossibility
of the hydrodynamic quantum regime is expressed
by the inequality of Ty(R ) > Ty(R,), where To(R)
is the thermal-quantum crossover temperature.

Eventually, it is convenient to represent the ef-
fective action in the following way:

332

h/2T

4 .
Sy (R = _[ dr [?’3 PR? + 4naR? + 2pr§33] +

/2T
.ﬁ/zr
L | o [2 wawy - ar,
i J‘ dt dt { 4 HARY — AR -
—&/2T
2
--L VR - VR e
e LY (B - VIRY] } # sin® aT(x - v)/0

(23)

where A = 4nR? is the area of the surface, and V =
= 4nR3/3 is the volume of a bubble. The quantity
u ~ n/p!l is approximately the characteristic veloc-
ity of excitations in a medium. For a normal liquid
like 3He, the order of magnitude of the velocity u is
the Fermi velocity and the possible temperature
corrections to the zero temperature are associated
with the quantities of about (T/T )%, where T is
the degeneration temperature of the Fermi-like ex-
citations,

In the superfluid #He where the energy dissipa-
tion of the ohmic type is due to the presence of the
normal component alone, we have a different be-
havior of the quantity u:

wT) = cp,(1)/p . 29

Here p,(T) is the density of the normal component
and at low temperatures 7 < 0.5 K the normal den-
sity is determined mainly by phonons [ 18]

2n? T¢
p(T) o Al

It should be noted that since u - ¢4, the relative
role of this ohmic term increases in the vicinity of
the lability point because of the reduction of the
sound velocity.

First, we consider the high-temperature region in
which there is only a classical extremum path. The
path which satisfies the condition R(1)=R,=
=2R_ /3 goes through the maximum U, of the
potential energy (13) and yields the action
§ = AU, /T resulting in the standard Arrhenius Jaw
for the nucleation rate,

16m0:2
I'=Tyexp (-UyT); U0=—3ﬁ2—. (25)

We begin the study of the low-temperature guan-
tum behavior of the nucleation rate by analyzing
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the classical R(t) = R, extremum path with respect
to small oscillations about the maximum of the
potential energy. For this purpose, we represent an
arbitrary path as

R(t)=Ry+ n1) .

Next we expand the effective action S {R(1)] in a
series in small powers of deviation of r(t). Truncat-
ing a series in r(t) at second order and turning to the
Fourier representation

T
r(t) = ;I— Z T, EXp (-iw,7) ,
n

. _ .
r.=71_g:

o, =2nTn/H, n=0 11,42, ..,
we obtain after some calculations the expression

W, r 2
Seff = —r + ﬁ E (ln Ifn] . (26)
n .

Here the coefficients o, are given by

4npRg
o, = Uy + 16rpuR3w,| + dmpR3w? - — Icoﬂl3 .
1))

As the temperature is lowered, the coefficients
oy, vanish first at T =T, , which is determined by
the equation

PR} o,
o+ 4puRjoy + PRI} - —— =0, T, =
' (28)

Below the temperature T, the classical path
R(1) = Ry becomes absolutely unstable against the
oscillations of mode 7, .

Depending on the type of the quantum-classical
path transition [16], the genuine thermal-quantum
crossover temperature T, coincides with the tem-
perature T, if the effective action matches smoothly
the exponent of the Arrhenius law or lies at a
temperature slightly higher than the temperature
T, if the quantum-classical path tramsition has a
discontinuous, jump-like character, ie., Ty<T, .
Although the action (23) we are concerned with
refers to the last case and although the crossover
temperature T, should be found from S(Tj)=
= Uy T, , the approximate estimate of 7y =T, is
fully sufficient for our purpose.

According to Eq. (28), in the limit of sufficiently
large radius R, — =< or, correspondingly, small ne-
gative pressures [Pl = 0 we obtain the following
estimate of the crossover temperature:
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fice )

T = = 2, (29)
0 SnpuRg 32rapu il

For the above formula to be correct, it is necessary
that the growth rate R be smaller than the velocity
of excitations and the sound velocity. Since the

- characteristic time of thé underbarrier evolution of

a bubble is (21tm1)"1, we have

2rw, R
T0__ ™ ey, (30)
u 20u’R,

Obviously, this inequality restricts the magnitude
of the pressure

P << put | (31)

for which our approximations hold true. If the
strong inequality (30) breaks down, in Eq. {28) we
must use terms of higher orders in w; , and the
estimate (29) of the thermal-quantum crossover
temperature ceases to be valid.

In contrast with normal 3He, in superfluid 4He
the density of the normal component p(T) vanishes
as T — 0 and therefore the contribution of the
ohmic term in Eq. (28) decreases. In order to
analyze ali the facts of the case, let us rewrite Eq.
(28) for temperature T, , taking into account Eq.
(24) for p,(T)

R} pRY
3.2 =
—a‘l‘mﬁ(ﬁ?'l'PRo(ﬂ‘—Tw‘?—o. {32)

Of course, the condition @ Ry/c <<1 is assumed
to be satisfied.

As one can see, the dissipative ohmic term linear
in ©,; has no significant influence on the ther-
mal-quantum crossover temperature T, provided
R, >> R, where the radius R, is given by

2 3 i/11
R, = —Tﬂu {33)
* 18100 n¥cBp® ‘

For the radius R, >> R, , the thermal-quantum
crossover temperature is found to be approximately
the same, as it follows from the nondissipative
model of the quantum cavitation [1,4]

NI
2n PR} " 4n Yop
To satisfy the approximation of the low growth rate

@Ry <<¢, we must impose a restriction on the
radius R or on the negative pressure P:

T, (34)
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Ry>> p_:f or |P| << pe?. . (33)
Numerically, if the physical parameters of 4le are
measured at zero pressure P =10, we find that
R, = a/pct. Since o/pc? =~ 0.3 A, the validity of
the estimate (34) is connected with the applicabil-
ity of the macroscopic description, which is correct
for large bubble radii compared with the interface
thickness. Note that the condition (35) can be
satisfied only in the range of pressures far enough
from the lability point at which the sound velocity
vanishes,

Let us now focus our attention on the low-tem-
perature 7 << T, behavior of the nucleation rate.
First, we consider the case of w(T) = const, which
corresponds to the normal 3He. Since we shouid
remain within the approximation of the low growth
rate, the main contribution to the effective action
originates from the dissipative ohmic term which is
nonlocal in time. The other two kinetic terms can
therefore be treated as perturbations. Accordingly,
for temperature T = 0 we have approximately

ST=0)=
2

U o
= dmpuRd [1 + ——%— - . o P[4
npu ° + Zpquc -gE[pqucJ I |

(36)

This result represents the decomposition of the

effective action in R /u << 1 if we take into ac-
count that the typical time of the bubble growth or,
identically, the transit time along the extremum
underbarrier path is about

puRf

T (37

¢ o

In contrast with the dissipationless kinetics [1,4,
9] the energy dissipation during the bubble growth
leads to the effective action in which the kinetic
terms depend on temperature in an explicit form, It
is natural therefore ta expect a temperature-depen-
dent behavior of the nucleation rate in the quantum
tunneling regime below the crossover temperature
T, - We thus can expect [16]

AS(T) = S(T) ~ S(0) = =S(OXT /T . (38)

It is obvious that the temperature correction affects
essentially the nucleation rate, while JAS(T)| > n.
Introducing the temperature T, at which |AS(T )| =
=F, ie.,

o 5 372
2 R—[ZT]
c
we obtain a noticeable range of temperatures
T,<T<<T,, for which the enhancement of nu-
cleation rate I(T) follows the law of
log [T(T),/TX)] = T2,

Let us turn now to the case of the cavitation in a
superfluid 4He. In contrast to a normal fluid, where
the density of excitations remains finite down to
zero temperature, the density of the normal compo-
nent in superfiuid 4He vanishes at zero temperature
and the nucleation kinetics is governed mainly by
the well-known nondissipative term , which is re-
lated to the kinetic energy of the liquid [1,4,9].
Using the correction due to the finite velocity of the
sound propagation, we can describe the effective
action at T = { approximately by

« Pt (39)

' 2
c

(40)

The order of magnitude of the second term is a ratio
of the underbarrier growth rate to the sound veloc-
ity. On the whole, the model of an incompressible
liquid [4,9], as one can see, underrates the cavita-
tion rate in the quantum regime. As the pressure
decreases, the underestimate of the cavitation rate

- increases due to the reduction of the critical radius

and the sound velocity. For large critical radii,
although the relative correction to the quantum
nucleation rate is small, the absolute value of the
correction is very large because of an exponential
dependence of the nucleation rate or the effective
action.

To conclude the section, we shall analyze the low
T << T, temperature behavior of the nucleation
rate. The temperature-dependent bshavior for the
nucleation rate is entirely due to the terms in the
effective action (23), which are nonlocal in time
and which describe the energy dissipation processes
occurring in the superfluid *He during the bubble
growth.

The temperature correction from the ohmic dissi-

| pation term is governed by the temperature beha-

vior of the normal density p (T) [16]
AS(Jhm(T) = 47‘9“(731'?3 = 41tcpn(T)Rg R

This contribution reduces the nucleation rate. In
contrast, the temperature correction resulting from
the sound emission term has a negative sign and
increases the nucleation rate [10]
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2p9 4
P°R; (T
AS(T) = -1 .
{5 ca [fl]
The temperature dependence of the correction is the
same as for p,(T). The total temperature correction

is determined by a sum

Cc

n

(41)

Note that at least in the immediate vicinity of the
lability point, when P — P, and ¢(P) = 0, the
correction associated with the existence of the nor-
mal component will dominate over the sound emis-
sion mechanism. In contrast, in the range of the
small negative pressures of p <-3a./R, or large
critical radii,

8ndn  P'RI\RE T
AS(T)=5(T)—S(0)"[*4—5'23--T] c[ J :

1/5
BEY “"] . @2

R>e(E

the sound emission mechanism governs the tempera-
ture behavior of the nucleation rate. If we take the
parameters of “He at zero pressure, the numerical
estimate gives the value of about 2.4 A for radius
R, . which is comparable with the interatomic
distruce a. In the whole region of the macroscopic
R, >> a approximation the contribution from the
ohmic dissipation is therefore negligible and the
nucleation rate ['(T) should increase with increasing
temperature.

Let us now evaluate the temperature T, at which
the temperature correction for the exponent be-
comes significant, i.e., if |AS(T,)|=#. Using
Eq. (41), we obtain

1/4
ﬁfﬁac]
T2=‘ _ERT .

LP
However, the temperature T, is smaller than the
temperature T, of the thermal-quantum crossover
only for the sufficiently large critical radii which
exceed a certain radius R,
R >R.oAn [161:?&]1/3

c ‘2 3 3a ks
The estimate for pressures |P| = 0 yields R, = 40 A
Thus, only for macroscopically large bubbles of
radius R, >> a there is a noticeable range of tem-
peratures T, <T <T, where |AS(T)|>#. For
R, <R, , the scale of the log I(T)/T(0) = T4 vari-
ation is not large. Note that the radius R, decreases
near the lability point ¢(P,) = 0.

(43)

(44)
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4. Summary

In this paper we have examined the effect of the
dissipative processes and finite compressibility on
the rate at which bubbles can nucleate via quantum
tunneling in the normal 3He and superfluid *He at
negative pressures and sufficiently low tempera-
tures. In conclusion, we would like to emphasize
several important points common and distinct for
the kinetics of the quantum cavitation in the normal
and superfluid liquids.

The common feature of quantum kinetics is that
the dissipative processes, which are associated with
the viscosity of a fluid, hinder the quantum nuclea-
tion of bubbles. The viscous phenomena have an
origin entirely in the spatially nonuniform flow of
the fluid which has to spread in the radial directions
away from the expanding bubble.

In contrast, the finite compressibility of a fluid
facilitates the quantum nucleation of the bubbles
since it is easier to push the fluid out from the
cavity if the medium surrounding it is light-com-
pressible. This phenomenon is accompanied by the
excitation and emission of the sound waves induced
by an expanding sphere.

This effect is essential for the negative pressures
of about several atmospheres when the critical sizes
of the bubbles should be approximately equal to
several interatomic distances and the rate of tunnel-
ing is comparable with the sound velocity. On the
whole, these two processes result in the appearance
of the explicit temperature-dependent behavior of
the cavitation rate in the quantum regime.

On the other hand, it is the dissipative processes
that make the quantum cavitation kinetics diverse
in the normal and superfluid ‘iquids. In the normal
fluid 3He, where the density ur excitations does not
vanish at low temperatures, the quantum cavitation
kinetics corresponds entirely to the dissipative tun-
neling through a potential barrier in the over-
damped regime. Compared with the calculations
[1,2,4,9] performed on the basis of the dissipation-
less models of quantum cavitation, the quantum
cavitation rate for the bubbles of the large critical
sizes proves to be significantly smaller and, corre-
spondingly, the tensile strength should be also so-
mewhat smaller.

In addition, the temperature necessary for observ-
ing the quantum tunneling regime instead of ther-
mal activation decreases and should be below about
70 mK. The log I(T)/T(0) < T2 behavior for the
nucleation rate is expected in the low-temperature
limit.

In contrast with the normal 3He, in superfluid
4He, where all ‘excitations are frozen out as the
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temperature tends to absolute zero, the dissipative
processes do not play an essential role with the
exception of the range of small negative pressures.
This range of pressures of about P > —1 atm refers
to the sufficiently large critical sizes of the bubbles
which have an astronomically large lifetime and
thereby do not determine the tensile strength of “He
under ordinary experimental conditions.

Although the compressibility and sound excita-
tion effects during the nucleation must undoubtedly
be involved in the cavitation kinetics of the bubbles
of small critical sizes, the quantum cavitation rate
I'(T) and therefore the tensile strength of 4He re-
main, as in the case of the incompressible liquid
‘models, nearly independent of the temperature. The
involvement of the compressibility of superfluid
4He leads to the thermal-quantum crossover tem-
perature which is somewhat higher than that calcu-
lated on the basis of the incompressible liquid
model. The last two consequences for the quantum
cavitation in the homogeneous 4He together with
the estimate of the crossover temperature of about
Ty=0.3 K for the small critical bubbles do not
contradict the recent low-temperature cavitation
experiments [19].
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