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One exactly solvable random spin-1/2 XY chain
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Considering one-dimensional spin-%2 isotropic XY model with Dzyaloshinskii-Moriya interaction in

random Lorentzian transverse field we have calculated exactly thermodynamic quantities of the model.

We used the derived average single-particle density of states to examine the validity of coherent

potential approximation.

PACS: 75.10.—b

1. Introduction

Random models that can be solved exactly are of
great importance in understanding the effects of
disorder because they do not contain uncontrolled
errors that are introduced by approximate treat-
ment. One such model has been known for almost
thirty years. Considering a model of tight-binding
electrons, P. Lloyd was first to recognize that
Lorentzian diagonal disorder allows one to perform
the averaging of one-electron Green’s functions over
random variables with the help of contour integrals
without making any approximation [1]. This idea
was exploited by H. Nishimori for spin-'4 isotropic
XY chain which is related to Lloyd’s model via the
Jordan-Wigner transformation.

In the present paper our aim is to extend the
consideration given in Ref. 2 by introducing addi-
tional Dzyaloshinskii-Moriya spin-spin interaction.
By analogy with Ref. 2, we obtained exactly ave-
rage, single-particle density of states and hence the
thermodynamic quantities (Sec. 2). Moreover, the
average density of states which we obtained enables
us to discuss the applicability of coherent potential
approximation which is usually used to describe
realistic quenched systems for which exact solutions
do not exist [3,4] (Sec. 3).

2. Density of states
and thermodynamic quantities

We consider N interacting spins %2 in a random
transverse field that are governed by the Hamil-
tonian
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The introduced Hamiltonian (1) contains the inter-
action terms proportional to D which describe the
Dzyaloshinskii-Moriya interactions of the neigh-
bouring spins.
The Jordan-Wigner transformation [5]
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converts (1) into a Hamiltonian of noninteracting
spinless fermions
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The boundary term B may be omitted since it does
not influence thermodynamic quantities [6]. Hence,
the thermodynamics of spin model (1) is determined
by the average one-fermion Green’s functions
Gim(E), where
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and, therefore, the main goal is to find sz(E).

The equation of motion for G, (t) that follows
from (2) leads to the following set of equations for
G} (E * ig):
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To average (3), it can be assumed that Q. are
complex variables and contour integration can be
used in complex planes Q:s. Following the paper
by John and Schreiber [7], we can rewrite Eq. (3)
in the form
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Evidently, the poles of G*(E * ig) are determined
by the zeros of det (A +iB*). If all eigenvalues A
of B are positive BY = (b* )2, where b¥ is symmet-
ric, (b¥)7! is symmetric, (b¥)™! A(bT)™! is Hermi-
tian, and therefore,

det (A + iB¥) = det B det gtﬁ ) 1A(DT )T £ iIH# 0.

Relying on Gershgorin criterion [8] for the matrix
B¥, we see that at least one of the inequalities

|£¥ImQj—)\|sO, j=1,...,N

must be true. Therefore, the retarded Green’s func-
tion G, (E +ig) [the advanced Green’s function
G, (E —ig)] does not have poles for Im Q. <0
(Im Q ;2 0). While averaging (3) one must close the
contours of integration in these planes and compute
the residua originating from the Lorentzian pro-
bability distribution density at ¥ iI", obtaining fi-
nally
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It is worthwhile to note that Eqs (4) may be
obtained in a slightly different manner. According
to (3), we can rewrite G} (E *i€) as a series in
degrees of (J/ £iD)/2. Due to a magic property of
the Lorentzian distribution
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the averaging is straightforward and after summa-
tion of the series we again obtain (4).

Equations (4) are translationally invariant and
can be solved in a standard way with the result
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From (5) it follows that
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where A = (E —Q)?- - J>- D? B=2I(E - Q).

Hence, the introduction of the Dzyaloshinskii-

Moriya interaction from the viewpoint of thermody-

namics results in the renormalization of the spin-spin

interaction: J2 - J% + D?. Thermodynamic quanti-

ties of the spin model (1) are determined by the

average density of states (6) in a standard way. The

corresponding formulas for entropy s, specific heat c,
transverse magnetization ﬁz = [{1/N) _Zj]\ii st and

static transverse susceptibility X, , = om,/0Q, are
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In the numerical calculations of thermodynamic
quantities J was set to 1. Figures 1—-4 show the
dependences of the entropy s, specific heat ¢, trans-
verse magnetization m_z , and static transverse sus-
ceptibility X,, on Q, at low temperatures. The
temperature dependences of m_ and X,, at Q,=0.5
are shown in Figs. 5 and 6. The dashed curves
correspond to D =0, and the solid curves corres-
pond to D =1; 1 refers to the nonrandom case ' =
=0, 2 refers to " =0.1, and 3 refers to T =0.5. It
can be seen how some of the pronounced features of
the plotted dependences disappear due to random-
ness. Dzyaloshinskii-Moriya interaction leads only
to quantitative changes in thermodynamic quanti-
ties.
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The importance of the two-spin correlation func- skii-Moriya interaction. Although the average one-
tions is obvious; it was recognized by Kontorovich fermion Green’s functions (5) yield the average
and Tsukernik [9] in connection with a possibility fermion correlation function Ec;“ncn(t)DHO], and at
for the appearance of the spiral structure in nonran- t =0and T = 0 the latter quantity can be calculated
dom spin-Y isotropic XY chain with Dzyaloshin- explicitly [11]
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where = (,0(2) -y -1, and D= 20y, this does not allow us to obtain the spin correlation functions. The
simplest equal-time zz spin correlation function in fermion representation has the form
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and hence its evaluation requires the knowledge of
the average products of two fermion correlation
functions. Similar difficulties arose in the calcu-

lation of the electric conductivity for Lloyd’s
model [12].

3. Coherent potential approximation

Consider the spin model (1) with arbitrary (not
necessarily Lorentzian) random transverse field in
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the framework of coherent potential approximation.
Choosing the random part of (1) and introducing a
coherent transverse field Q, we rewrite (3) in the
form of a propagator expansion

G (E) = G (E) + G} (E)Q, — Q)G (E) +...

WhereA(A};m(E) is determined by (5) with I =0 and
Q, + Q instead of Q, , and then as an expansion in
degrees of the t-matrix

G;'m(E) = G;'m(E) + G;'n(E) t GT (E)+....

n-nm

Here ¢, =(Q, - Q)/(1 - G (E)Q, - Q)). The co-
herent field is determined from the condition

tnzj-in s X

Q-0
- =0,
=GB,

where G (E) = [(E - Q- Q % ig)’- (J+ D*)[7'/?
(see Refs. 3 and 4).

In the case of a Lorentzian transverse field Eq. (7)
has a solution Q = ¥ il and, therefore, Gin(E) coin-
cides with the exact expression (5).

Consider another probability distribution density

xJ-dQNp(..., Qj ) oer)

N

Pl Qo) =|_"! Q) + (1 - ) 8(Q; - )5,
=

0<sx<1.

Equation (7) will then reduce to a qubic equation
for Q. Its solutions yield the Green’s functions and
the density of states p(E) = ¥ (1/mM Im G;n(E). In
Fig. 7 the quantity R(E?) = (p(E) + p(-EF)),/2|E],
which follows from the coherent potential approxi-
mation (dashed curves), is compared with the result
of exact finite-chain computation of this quantity
(solid curves) [13]. A good agreement between
approximate and exact results apparently is contin-
gent on the fact that thermodynamic averaging for
noninteracting fermions has been performed ex-
actly.

4. Conclusions

We have presented exact calculations of the ther-
modynamic quantities of spin-'4 isotropic XY chain
with the Dzyaloshinskii-Moriya interaction in ran-
dom Lorentzian transverse field. The approach ex-
ploits reformulation in terms of fermions and the
possibility of averaging exactly the equations for
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Fig. 7. R(E%) versus E%: the results of exact calculation (solid

curves) and coherent potential approximation (dashed curves).

one-fermion Green’s functions that yield thermody-
namics. Such scheme is essentially limited by Lo-
rentzian disorder. The results obtained by us supple-
ment to some extent the existing exact analytical
results for random spin—1/2 XY chains [14-20]. The
comparison of the density of states obtained within
the coherent potential approximation and the exact
result illustrates that the region of validity of more
sophisticated approaches of disordered spin systems
theory can be tested.
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