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A form of some sets of quadratic forms having a sign-fixed derivative by virtue of the linear
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AMS Subject Classification: 34D09, 34C40

Let us consider a system of differential equations

dϕ

dp
= a(ϕ),

dx

dt
= A(ϕ)x, ϕ ∈ Tm, x ∈ Rn, a(ϕ) ∈ CLip(Tm), A(ϕ) ∈ C0(Tm). (1)

And suppose that it has the Green – Samoilenko function

G0(τ, ϕ) =

{
Ω0
τ (ϕ)C(ϕτ (ϕ)), τ ≤ 0;

Ω0
τ (ϕ)

[
C(ϕτ (ϕ))− In

]
, τ > 0,

(2)

which satisfies the following exponential estimate:

‖G0(τ, ϕ)‖ ≤ Ke−γ|τ |, K, γ = const > 0.

Hereafter we use definitions and notation from [1].
Let us suppose that system (1) has a unique function of the form (2). Then the following

conditions (see [2])

C2(ϕ) ≡ C(ϕ), C(ϕt(ϕ)) ≡ Ωt
0(ϕ)C(ϕ)Ω0

t (ϕ) ∀ ϕ ∈ Tm, ∀t ∈ R (3)

hold true necessarily. Consider now the matrix-valued functions

S1(ϕ) =

0∫
−∞

{
Ωσ
0 (ϕ)[C(ϕ)− In]

}T{
Ωσ
0 (ϕ)[C(ϕ)− In]

}
dσ, (4)

S2(ϕ) =

+∞∫
0

{
Ωσ
0 (ϕ)C(ϕ)

}T{
Ωσ
0 (ϕ)C(ϕ)

}
dσ. (5)
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It is easy to verify that Sj(ϕ) ∈ C ′(Tm; a) and the following equations

Ṡj(ϕ) + Sj(ϕ)A(ϕ) +AT (ϕ)Sj(ϕ) =

{
[C(ϕ)− In]T [C(ϕ)− In], j = 1;

CT (ϕ)C(ϕ), j = 2,

take place. It is follows that the derivative of the quadratic form

V (ϕ;x) =
〈
[S1(ϕ)− S2(ϕ)]x, x

〉
, (6)

by virtue of system (1), is positive definite,

V̇ (ϕ;x) =
∥∥[C(ϕ)− In]x

∥∥2 +
∥∥C(ϕ)x

∥∥2 ≥ 1

2
‖x‖2.

It is worth noticing that for some systems of the form (1) the representation of the matrix-
valued functions Sj(ϕ) as integrals (4), (5) does not always lead to a desirable form of the
quadratic form (6). This is immediate from the following example:

dϕ

dt
= 1,

dx

dt
= (1 + 2 sinϕ)x. (7)

Obviously, in this case, C(ϕ) ≡ 0 and by (4) the quadratic form (6) has the following represen-
tation:

V =

 0∫
−∞

e2σ−4 cos(σ+ϕ)+4 cosϕdσ

x2. (8)

On the other hand, it is easy to see that the function

V = e4 cosϕx2 (9)

has positive definite derivative by virtue of the system (7). If we now introduce an auxiliary
function h(ϕ) ∈ C0(T1), h(ϕ) > 0, under the integral sign in (8), namely, we consider the set
of quadratic forms

V =

 0∫
−∞

e2σ−4 cos(σ+ϕ)+4 cosϕh(σ + ϕ)dσ

x2,

then, putting here h(ϕ) = 2e4 cosϕ, we obtain the quadratic form (9).
So, it is important to study the generalized matrix-valued functions (4), (5), namely,

S1(ϕ;H1) =

0∫
−∞

{
Ωσ
0 (ϕ)[C(ϕ)− In]

}T
H1(ϕσ(ϕ))

{
Ωσ
0 (ϕ)[C(ϕ)− In]

}
dσ, (10)

S2(ϕ;H2) =

+∞∫
0

{
Ωσ
0 (ϕ)C(ϕ)

}T
H2(ϕσ(ϕ))

{
Ωσ
0 (ϕ)C(ϕ)

}
dσ, (11)
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where both matrices H1, H2 are positive definite,〈
Hi(ϕ)x, x

〉
≥ εi‖x‖2, εi = const > 0. (12)

The present article is devoted to studying the set of quadratic forms with matrix-valued
coefficients (10),(11).

By a direct verification with the use of (12) we obtain that the derivative of the quadratic
form

V (ϕ;x) =
〈
[S1(ϕ,H1)− S2(ϕ,H2)]x, x

〉
, (13)

in virtue of the system (1), is positive definite,

V̇ (ϕ, x) =
〈
H1(ϕ)[C(ϕ)− In]x, [C(ϕ)− In]x

〉
+
〈
H2(ϕ)C(ϕ)x,C(ϕ)x

〉
≥ 1

2
min{ε1, ε2} ‖x‖2.

It should be mentioned that for any two matrices H1(ϕ), H2(ϕ) there always exists a matrix
H(ϕ) such that

S1(ϕ,H1)− S2(ϕ,H2) ≡ S1(ϕ,H)− S2(ϕ,H).

As H(ϕ) we can take, for example, the following one:

H(ϕ) = [C(ϕ)− In]TH1(ϕ)[C(ϕ)− In] + CT (ϕ)H2(ϕ)C(ϕ).

Obviously, if the matrices H1, H2 are positive definite, then such is H(ϕ).

Remark. Due to (3) the relation

det [S1(ϕ,H)− S2(ϕ,H)] 6= 0

holds true for any positive definite matrices H(ϕ).

Let us now consider the following quadratic form:

W = −
〈
[S1(ϕ,H)− S2(ϕ,H)]−1y, y

〉
. (14)

By a direct calculation we can check that the derivative of this form by virtue of the system that
is conjugate to (1),

dϕ

dt
= a(ϕ),

dy

dt
= −AT (ϕ)y, (15)

is positive definite,

Ẇ ≥ ε0‖y‖2, ε0 = const > 0.

On the other hand, if one considers the following two matrices:

S1(ϕ, H̃) =

0∫
−∞

C(ϕ)Ω0
σ(ϕ)H̃(ϕσ(ϕ))

{
C(ϕ)Ω0

σ(ϕ)
}T
dσ, (16)
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S2(ϕ, H̃) =

+∞∫
0

[C(ϕ)− In] Ω0
σ(ϕ)H̃(ϕσ(ϕ))

{
[C(ϕ)− In] Ω0

σ(ϕ)
}T
dσ, (17)

where the matrix H̃(ϕ) is positive definite, then the derivative of the quadratic form〈
[S1(ϕ, H̃)− S2(ϕ, H̃)]y, y

〉
= W, (18)

by virtue of the system (15), is positive definite. Because the quadratic form (14) is also positive
definite, there is the problem of comparison of two quadratic forms (18) and (14).

The following proposition takes place.

Theorem. For any positive definite symmetric matrix H(ϕ) ∈ C0(Tm) there exists a positive
definite matrix H̃(ϕ) ∈ C0(Tm) such that the equality

−[S1(ϕ,H)− S2(ϕ,H)]−1 = S1(ϕ, H̃)− S2(ϕ, H̃) (19)

holds true. And conversely for any positive definite symmetric matrix H̃(ϕ) there exists a positive
definite matrix H̃(ϕ) ∈ C0(Tm) such that the equality (19) takes place.

Proof. Fix any symmetric matrix H(ϕ) ∈ C0(Tm) and put

X(ϕ) = −[S1(ϕ,H)− S2(ϕ,H)]−1. (20)

Using notation (16), (17) , we can write the equality (19) in the following form:

0∫
−∞

C(ϕ)Ω0
σ(ϕ)H̃(ϕσ(ϕ))

{
C(ϕ)Ω0

σ(ϕ)
}T

dσ

−
+∞∫
0

[C(ϕ)− In] Ω0
σ(ϕ)H̃(ϕσ(ϕ))

{
[C(ϕ)− In] Ω0

σ(ϕ)
}T

dσ = X(ϕ). (21)

Substituting here ϕ → ϕt(ϕ) 0and differentiating both sides of the equality (21) with respect
to t gives

C(ϕ)H̃(ϕ)C(ϕ) + [In − C(ϕ)] H̃(ϕ)[In − C(ϕ)]T

=Ẋ(ϕ)−X(ϕ)AT (ϕ)−A(ϕ)X(ϕ). (22)

Let us denote the right-hand side of the latter equality by Ĥ(ϕ).
Obviously, if C(ϕ) ≡ 0, or C(ϕ) ≡ 1 we can take the matrix X̂(ϕ) as H̃(ϕ).
In order to take H̃(ϕ) = X̂(ϕ) in the general case, we have to prove that the matrix X(ϕ)

can be represented in the form

X̂(ϕ) = C(ϕ)F1(ϕ)C(ϕ) + [In − C(ϕ)]F2(ϕ) [In − C(ϕ)]T (23)
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with some matrices Fi(ϕ). Having this in mind, we use the notation (20) and formulate (10),
(11) to get

X−1(ϕ) = CT (ϕ)X−1(ϕ)C(ϕ) + [In − C(ϕ)]T X−1(ϕ) [In − C(ϕ)]. (24)

Let us verify that this equality yields

X(ϕ) = C(ϕ)X(ϕ)CT (ϕ) + [In − C(ϕ)]X(ϕ) [In − C(ϕ)]T . (25)

Indeed, multiplying the right-hand sides of the equalities (24), (25) and taking into considera-
tion the properties of the projection matrix (3) and the equality CX = XCT , we have

CTX−1CXCT + (In − C)TX−1(In − C)X(In − C)T = CT + (In − C)T = In,

which leads to (25).

Let us represent the matrix X̂(ϕ) in the form

X̂(ϕ) = Ẋ −XAT −AX = −X[−X−1ẊX−1 +ATX−1 +X−1A]X

= −X[−CTHC − (In − C)TH(In − C)]X.

Substituting X from (25) into this equality gives

X̂(ϕ) = CXCTHCXCT + (In − C)X(In − C)TH(In − C)X(In − C)

and, hence, the representation (23) holds true, which means that the matrix X̂(ϕ) can be taken
as H̃(ϕ) and, at the same time, the equality (22) holds true which implies the equality (19).
Similar arguments yield that for any fixed symmetric matrix H̃(ϕ) ∈ C0(Tm) there exists a
symmetric matrix H(ϕ) which satisfies the equality (19).

Remark. Considering the case where the matrix C(ϕ) ≡ In we can easily see that the

equation

0∫
−∞

Ω0
τ (ϕ)X(ϕτ (ϕ)){Ω0

τ (ϕ)}Tdτ = M(ϕ) has the unique solution X(ϕ) = Ṁ(ϕ) −

M(ϕ)AT (ϕ)−A(ϕ)M(ϕ) for any fixed n× n-matrix M(ϕ) ∈ C ′(Tm; a).

As an example of system (1) for which there exits a nondegenerate quadratic form (13)
possessing positive definite derivative, we consider the following one:

dϕi
dt

= ωi,
dxj
dt

=

[
λj +

m∑
i=1

N∑
k=1

(aijk cos kϕi + bijk sin kϕi)

]
xj ,

ωi = const 6= 0, i = 1,m, λj = const 6= 0, j = 1, n, aijk, bijk = const.

Choosing a suitable function H(ϕ) in the formulae (10), (11) we obtain the following quadratic
form:

V =

n∑
j=1

{
sign (λj) exp

[
m∑
i=1

N∑
k=1

−2aijk sin kϕi + 2bijk cos kϕi
kωi

]}
x2j ,

and its derivative is positive definite by virtue of the system in question.
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Let us consider the case where the system (1) has two different Green – Samoilenko func-
tions of the form (2). Then, obviously, there exists an infinite number of such functions and the
conditions (3) fail to hold for each of them. In such a case one can always write the following
quadratic form:

W =
〈
[S1(ϕ;H1)− S2(ϕ;H2)]y, y

〉
, (18′)

which has positive definite derivative by virtue of the system (15), with the matrix of coefficients
having the form S(ϕ;H1, H2) = S1(ϕ;H1)− S2(ϕ,H2), where

S1(ϕ;H1) =

0∫
−∞

Ω0
σ(ϕ)C(ϕσ(ϕ))H1(ϕσ(ϕ))

{
Ω0
σ(ϕ)C(ϕσ(ϕ))

}T
dσ, (26)

S2(ϕ;H2) =

+∞∫
0

Ω0
σ(ϕ) [C(ϕσ(ϕ))− In]H2(ϕσ(ϕ))

{
Ω0
σ(ϕ)[C(ϕσ(ϕ))− In]

}T
dσ. (27)

It is worth noticing that the matrices (26), (27) can not be represented in the forms (16), (17),
because the conditions (3) fail.

A question arises: whether there exists a unique positive definite matrix H(ϕ) ≡ HT (ϕ)
such that

S(ϕ;H1, H2) = S(ϕ;H,H) (28)

for any fixed symmetric and positive definite matrices H1(ϕ), H2(ϕ) ∈ C0(Tm)?
It turns out that, in general, this is not the case. We show this by the following example:

dϕ

dt
= sinϕ,

dx

dt
= (cosϕ)x.

Obviously, this system has an infinite number of different Green – Samoilenko functions. For
example, some of them have the form

G
(n)
0 (τ, ϕ) =



enτ sin2n ϕ

2(
e−τ cos2

ϕ

2
+ eτ sin2 ϕ

2

)n−1 , τ ≤ 0;

(
e−τ cos2

ϕ

2
+ eτ sin2 ϕ

2

)  enτ sin2n ϕ

2(
e−τ cos2

ϕ

2
+ eτ sin2 ϕ

2

)n − 1

 , τ > 0,

where n = 1, 2, 3, . . . . Putting here n = 1, we write down

S(ϕ;H1, H2) =

0∫
−∞

[
eτ sin2 ϕ

2

]2
H1(ϕτ (ϕ))dτ −

+∞∫
0

[
e−τ cos2

ϕ

2

]2
H2(ϕτ (ϕ))dτ,

where Hi are positive scalar functions.
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Let us suppose that there exists a unique function H(ϕ) > 0 for which the equality (28)
holds true, namely,

sin4 ϕ

2

0∫
−∞

e2τH1(ϕτ (ϕ))dτ − cos4
ϕ

2

+∞∫
0

e−2τH2(ϕτ (ϕ))dτ

= sin4 ϕ

2

0∫
−∞

e2τH(ϕτ (ϕ))dτ − cos4
ϕ

2

+∞∫
0

e−2τH(ϕτ (ϕ))dτ. (29)

Substituting here ϕ → ϕt(ϕ) gives

sin4 ϕ

2

t∫
−∞

e2σH1(ϕσ(ϕ))dσ − cos4
ϕ

2

+∞∫
t

e−2σH2(ϕσ(ϕ))dσ

= sin4 ϕ

2

t∫
−∞

e2σH(ϕσ(ϕ))dσ − cos4
ϕ

2

+∞∫
t

e−2σH(ϕσ(ϕ))dσ.

Differentiating both sides of this equality with respect to t and putting t = 0 gives to

H(ϕ) =
H1(ϕ) sin4 ϕ

2
+H2(ϕ) cos4

ϕ

2

sin4 ϕ

2
+ cos4

ϕ

2

. (30)

So, if a function H(ϕ) for which the equality (29) holds true exists, this function must have
the form (30). Putting now the function (30) into the right-hand side of (29) we obtain

sin4 ϕ

2

0∫
−∞

e2τ
H1(ϕτ (ϕ))e2τ sin4 ϕ

2
+H2(ϕτ (ϕ))e−2τ cos4

ϕ

2

e2τ sin4 ϕ

2
+ e−2τ cos4

ϕ

2

dτ

− cos4
ϕ

2

+∞∫
0

e−2τ
H1(ϕτ (ϕ))e2τ sin4 ϕ

2
+H2(ϕτ (ϕ))e−2τ cos4

ϕ

2

e2τ sin4 ϕ

2
+ e−2τ cos4

ϕ

2

dτ

= sin4 ϕ

2


0∫
−∞

e2τH1(ϕτ (ϕ))dτ +

0∫
−∞

[H2(ϕτ (ϕ))−H1(ϕτ (ϕ))] cos4
ϕ

2

e2τ sin4 ϕ

2
+ e−2τ cos4

ϕ

2

dτ



− cos4
ϕ

2


+∞∫
0

e−2τH2(ϕτ (ϕ))dτ +

+∞∫
0

[H1(ϕτ (ϕ))−H2(ϕτ (ϕ))] sin4 ϕ

2

e2τ sin4 ϕ

2
+ e−2τ cos4

ϕ

2

dτ

 .
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It follows that the equality (29) holds true if and only if

+∞∫
−∞

[H1(ϕτ (ϕ))−H2(ϕτ (ϕ))] sin4 ϕ

2
cos4

ϕ

2

e2τ sin4 ϕ

2
+ e−2τ cos4

ϕ

2

dτ ≡ 0.

Obviously, the last identity holds true not for any functions H1, H2.
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