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Let’s consider a system of linear stochastic Ito differential equations,

dx = A(t)xdt+

m∑
i=1

Bi(t)xdWi(t), (1)

where t ≥ 0, x ∈ Rn, A(t), Bi(t) are matrices determinate, continuous, and bounded on the
positive semiaxis, Wi(t), i = 1, . . . , are jointly independent scalar Winner processes defined on
a probability space (Ω, F,P). As implied by [1, p. 230], for x0 ∈ Rn system (1) has a unique
strong solution of the Cauchy problem, x(t, x0), x(0, x0) = x0, defined for t ≥ 0 and such that
the second moment of the solution is finite for t ≥ 0.

Definition 1. System (1) is called exponentially dichotomous in mean square on the semiaxis
t ≥ 0, if the space Rn can be represented as a direct sum of two subspaces R−, R+ such that an
arbitrary solution x(t, x0) of system (1), where x0 ∈ R−, satisfies the inequality

M |x(t, x0)|2 ≤ K exp{−γ(t− τ)}M |x(τ, x0)|2, (2)

for t ≥ τ ≥ 0, and an arbitrary solution x(t, x0) of system (1), where x0 ∈ R+, satisfies the
inequality

M |x(t, x0)|2 ≥ K1 exp{γ1(t− τ)}M |x(τ, x0)|2 (3)

for t ≥ τ ≥ 0 with an arbitrary τ > 0. Here K,K1, γ, γ1 are positive constants independent of
τ and x0.

An example of such a system is an exponentially stable in mean square system (1)(in this
case R+ = {0}, and R− = Rn).

As opposed to the ordinary differential equations, where conditions for dichotomy are well
known [2, p. 230; 3], the problems in stochastic systems remain opened. The author knows only
the results of [1, p. 296], where the conditions for exponential dichotomy in mean square are
obtained for system of type (1) and for stochastic systems with delay in case where the matrices
A(t), B(t) are constant or periodic. But the results of [1, p. 296] are obtained with help of a
system of ordinary differential equations written for second moments of solutions of system (1)
or a system of matrix equations for correlation matrix of the solutions. It leads to an analysis of
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systems of dimension much greater than the dimension of the initial system, and moreover, this
system may not be exponentially dichotomous, although the initial system is such.

That’s why there is an interest in studying dichotomy conditions for system (1), when the
matrices A(t) and B(t) are not obligatory constant or periodic, and the conditions can be obtai-
ned in terms of the initial system, without an analysis of an auxiliary system for other moments.

From the cited works it follows that for ordinary differential equations, the question of
exponential dichotomy on the semiaxis is equivalent to the question of existence of solutions,
bounded on the semiaxis, of a nonhomogeneous system. This work is devoted to a study of this
problem for system (1). Another point of view on studying dichotomy with the use of quadratic
forms is published in other work.

In the sequel, we’ll assume that there is only the one scalar Winner process W (t) in system
(1), and system (1) is of the form

dx = A(t)xdt+ B(t)xdW (t). (4)

Let us consider a system of linear nonhomogeneous equation,

dx = [ A(t)x+ α(t)]dt+ B(t)xdW (t), (5)

where α(t) is n-dimensional and measurable, and for each t ≥ 0, Ft is a measurable stochastic
process. Here, Ft is a flow of σ-algebras involued in the definition of the solution of the ini-
tial systems solution. We will assume that supt≥0 M |α(t)|2 < ∞. With the norm ||α||2 =

(supt≥0 M |α(t)|2)1/2, the set of stochastic processes becomes a Banach space. Denote it by B.

Theorem 1. Let the system (5) with an arbitrary stochastic process α(t) ∈ B have a bounded
in mean square positive solution x(t, x0), x0 ∈ Rn . Then the system (4) is exponentially di-
chotomic in mean square on the positive semiaxis.

Proof. Let G1 ⊂ Rn be the set of initial values of solutions of system (4), which are
bounded in mean square on the semiaxis. It follows from linearity of system (4) that G1 is a
subspace of Rn. Let’s show that it plays the role of R− in the definition of the exponential
dichotomy. Let’s prove the lemma.

Lemma 1. Suppose that the conditions of Theorem 1 hold. Then, for each stochastic processes
α(t) ∈ B, there exists a unique bounded in mean square solution x(t, x0) of system (5) such that
x(0, x0) ∈ G⊥1 = G2. (G⊥1 is the orthogonal complement.) This solution satisfies the estimate

||x||2 ≤ K||α||2, (6)

where K is some positive constant, independent from α(t).

Proof. Let α(t) satisfy the condition of the Theorem. Then for this α(t), it follows from the
conditions of the lemma that there is a bounded in mean square solution x(t, x0) of system (5).

Let P1, P2 be a pair of complement projectors onG1, G2. Let x1(t) be a solution of equation
(4), corresponding to equation (5), with the initial condition x1(0) = P1x0. From the definition
of the subspace G1, it follows that such a solution is bounded in mean square on the semiaxis
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t ≥ 0. It is obvious that x2 = x(t, x0)− x1(t) is a solution of system (3). It is easy to see that it
is bounded on the positive semiaxis. We have x2(0) = x0−P1x0 = P − 2x0 ∈ G2. So its initial
condition belongs to G2. The unicity of the solution follows from the fact that the difference of
two such solutions is a solution of a homogenous equation, bounded in mean square and starts
in G2, which is possible only for the zero solution.

Let’s prove inequality (6). Let’s consider the space B1 of all bounded in the norm || ||2
solutions of the stochastic equation

x(t) = x(0) +

t∫
0

(A(s)x(s) + α(s))ds+

t∫
0

(B(s)x(s))dW (s) (7)

with the condition that x(0) ∈ G2, α(t) ∈ B.
This equation defines a one-to-one linear operator F : B1 → B which ∀x ∈ B1 defines

α ∈ B such that x(t) is a bounded in mean square solution of equation (5). Indeed, if x(t) ∈ B1,
then it follows from the definition of this space that there exists α(t) ∈ B such that x(t) is a
solution of equation (7) with this α(t). Let there exist another α1(t) ∈ B such that x(t) is a
solution of the equation

x(t) = x(0) +

t∫
0

(A(s)x(s) + α1(s))ds+

t∫
0

(B(s)x(s))dW (s). (8)

Subtracting (7) from (8) we get

t∫
0

(α(s)− α1(s)) ds = 0. (9)

Then α(t) = α1(t), for t ≥ 0, with probability 1, from which it follows that α(t) and α1(t) are
equal as elements of the space B. It was showen above that for an arbitrary α(t) ∈ B there
exists only one solution, x(t), of equation (7) such that x(0) ∈ G2, x(t) ∈ B1. The linearity of
the operator F is obvious.

Let’s introduce the norm

|||x||| = ||x||+ ||Fx||2. (10)

This at once implies continuity of the operator F . Let’s prove completeness of the space B1.
Let {xn(t)} be a fundamental sequence. Then it is fundamentality in B, as follows from (10).
Hence, there exists a limit x(t) ∈ B. So, ∀t ≥ 0, M |xn(t) − x(t)|2 → 0, n → ∞. And thus
|xn(0)− x(0)| → 0, n → ∞. Since xn(0) ∈ G2 and G2 is a subspace of in Rn, x(0) ∈ G2.

It follows from the inequality ||F (xn − xm)||2 ≤ ||F |||||xn − xm||| that the sequence Fxn =
αn is fundamental in B, and so there is a limit α(t) such that supt≥0 M |αn(t) − α(t)|2 → 0, as
n → ∞, and α(t) ∈ B.

Let’s show that x(t) satisfies the equation

x(t) = x(0) +

t∫
0

(A(s)x(s) + α(s))ds+

t∫
0

(B(s)x(s))dW (s). (11)
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Since A(t) and B(t) are continuous and bounded, x(t) ∈ B, we have that x(t) is Ft-measurable
and both integrals in (11) exist. Let’s estimate, for each t ≥ 0, the expression

M

∣∣∣∣∣x(t)− x(0)−
t∫
0

(A(s)x(s) + α(s))ds−
t∫
0

B(s)x(s)dW (s)

∣∣∣∣∣
2

≤ M

|x(t)− xn(t)|+

∣∣∣∣∣xn(t)− x(0)−
t∫
0

(A(s)x(s) + α(s)) ds

−
t∫
0

(B(s)x(s))dW (s)

∣∣∣∣∣
2

≤ 2

[
M |x(t)− xn(t)|2 + M

∣∣∣∣∣xn(t)− x(0)

−
t∫
0

(A(s)x(s) + α(s))ds−
t∫
0

(B(s)x(s))dW (s)

∣∣∣∣∣
2
 . (12)

The first summand in the last expression tends to zero when n → ∞. Let’s estimate the second
summand. Since xn(t), for each n, belongs to B1, it satisfies the equation

xn(t) = xn(0) +

t∫
0

(A(s)xn(s) + αn(s))ds+

t∫
0

B(s)xn(s)dW (s). (13)

Let’s substitute (13) into (12). We get that the second summand in (10) does not exceed the
following expression

3

[
M |xn(0) − x(0)|2 + M

( t∫
0

(||A(s)|| |xn(s)− x(s)|+ |αn(s)− α(s)|)ds

)2

+ M

∣∣∣∣∣
t∫
0

B(s)(xn(s)− x(s))dW (s)

∣∣∣∣∣
2


≤3

[
M |xn(t)− x(0)|2 + 2t

t∫
0

||A(s)||2M |xn(s)− x(s)|2ds

+ 2t

t∫
0

M |αn − α(s)|2ds+

t∫
0

||B(s)||2M |xn(s)− x(s)|2ds

]
.
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Each of the summands in the last expression tends to zero as n → ∞. From (12) it follows
that x(t) satisfies (11) with probability of 1 for each t ≥ 0. So, the space B1 is complete. That’s
why the linear continuous operator F defines a one-to-one mapping of the Banach space B1

onto the Banach space B. By the Banach theorem, the inverse operator B−1 is also continuous.
Then, for the solution of equation (3), we have the estimate

||x||2 ≤ |||x||| ≤ ||F−1||||α||2,

what is the needed estimate (4). The Lemma is proved.

Let x(t) be a nonzero solution of system (4), so that x(0) ∈ G1. Let

y(t) = x(t)

t∫
0

β(s)

(M |x(s)|2)
1
2

ds, (14)

where

β(t) =


1, 0 ≤ t ≤ t0 + τ,
1− (t− t0 − τ), t0 + τ ≤ t ≤ t0 + τ + 1,
0, t ≥ t0 + τ + 1.

It is obvious that y(t) is Ft-dimensional and has a stochastic differential. Let’s evaluate it,

dy =

t∫
0

β(s)

(M |x(s)|2)
1
2

dsdx+ x(t)
β(t)

(M |x(t)|2)
1
2

dt

=

t∫
0

β(s)

(M |x(s)|2)
1
2

ds(A(t)xdt+B(t)xdW (t)) + x(t)
β(t)

(M |x(t)|2)
1
2

dt

= A(t)ydt+ x(t)
β(t)

(M |x(t)|2)
1
2

dt+B(t)ydW (t).

So, y(t) is a solution of equation (5) with α(t) = x(t)
β(t)

(M |x(t)|2)1/2
. Obviously, ||y||2 < ∞ and

α(t) ∈ B. And since y(0) = 0 ∈ G2, the previous Lemma gives that

||y||2 ≤ K||α||2.

Whence,

(M |y(t)|2)
1
2 ≤ K(sup

t≥0
M |α(t)|2)

1
2 ≤ K
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for t ≥ 0. In particular, if t = t0 + τ , then

(M |y(t)|2)
1
2 = (M |x(t0 + τ)|2)

1
2 ≤ K. (15)

Let’s consider the function

ψ(t) =

t∫
t0

1

(M |x(s)|2)
1
2

ds.

Since the second moments of system (4) satisfy a system of ordinary linear differential equati-
ons, see [1, p. 236], this function is continuously differentiable. Then (15) gives that

ψ′(t0 + τ)

ψ(t0 + τ)
≥ 1

K
.

If we integrate the last inequality from 1 to τ , we get

ψ(t0 + τ) ≥ ψ(t0 + 1) exp

{
τ − 1

K

}
(16)

for τ ≥ 1. Since x(t) is a solution of system (4),

x(t) = x(t0) +

t∫
t0

A(s)x(s) ds+

t∫
t0

B(s)x(s) dW (s). (17)

And, hence, if t ∈ [t0 t0 + 1], we have

M |x(t)|2 ≤ 3

(
M |x(t0)|2 +

t0+1∫
t0

||A(s)||2M |x(s)|2 ds+

t0+1∫
t0

||B(s)||2M |x(s)|2 ds

)
.

This and the Gronwall – Bellman inequality give

M |x(t)|2 ≤ 3M |x(t0)|2 exp{C}, (18)

where C > 0 is a constant independent of t0. Therefore,

ψ(t0 + 1) =

t0+1∫
t0

1

(M |x(s)|2)
1
2

ds ≥ 1

3
1
2

(M |x(t0)|2)−
1
2 exp

{
−C

2

}
.

From this inequality using (15) and (16), we get for τ ≥ 1 that

(M |x(t0 + τ)|2)
1
2 ≤ K

ψ(t0 + τ)
≤ N(M |x(t0)|2)

1
2 exp

{
− τ

K

}
, (19)
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where N > 0 is a constant independent of τ and t0. If τ ≤ 1, it follows from inequality (18)
that

M |x(t0 + τ)|2 ≤ 3M |x(t0)|2 exp

{
2

K
+ C − 2τ

K

}
. (20)

Since t0 ≥ 0 is arbitrary, (19) and (20) the first inequality in Definition 1 with

γ =
2

K
, K1 = max

{
N2; 3 exp

{
2

K
+ C

}}
.

Let us prove the second inequality in Definition 1. Let x(t) be a nonzero solution of equation
(4) with x(0) ∈ G2. It’s easy to see that

y(t) = x(t)

∞∫
t

β(s)

(M |x(s)|2)
1
2

ds

is a solution of equation (5) with

α(t) = − x(t)

(M |x(s)|2)
1
2

β(t)

and, since t ≥ t0 + τ , supt≥0 M |y(t)|2 < ∞. It is obvious that y(0) ∈ G2. Therefore, because of
the Lemma,

(M |y(t)|2)
1
2 = (M |x(s)|2)

1
2

∞∫
t

β(s)√
M |x(s)|2

ds ≤ K.

So, ∀τ ≥ 0 and ∀t ≥ 0,

∞∫
t

β(s)√
M |x(s)|2

ds ≤ K√
M |x(t)|2

. (21)

The left-hand side of this inequality is monotone increasing for τ ≥ 0 and is bounded, so it has
a limit for τ → ∞. But

∞∫
t

β(s)√
(M |x(s)|2)

ds =

t0+τ∫
t

1√
(M |x(s)|2)

ds+

t0+τ+1∫
t+τ

β(s)√
(M |x(s)|2)

ds,

where the second summand tends to zero as τ → ∞ (since the integral is convergent), and so
if τ → ∞, we get the inequality

∞∫
t

1√
M |x(s)|2

ds ≤ K√
M |x(t)|2

. (22)
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Let

ψ(t) =

∞∫
t

1√
M |x(s)|2

ds.

Then it follows from (22) that

ψ′(t) ≤ − 1

K
ψ(t).

Whence we get

ψ(t) ≤ ψ(t0) exp

{
− 1

K
(t− t0)

}
. (23)

Since x(t) is a solution of system (4),we have for τ ≥ t that

M |x(τ)|2 ≤ C1M|x(t)|2 exp{L(τ − t)},

where L, C1 are positive constants, independent of τ and t. From the last inequality, it follows
that

M |x(τ)|2 ≤ 3M |x(t)|2 exp{3L(τ − t+ 1)(τ − t)}.

Therefore,

(M |x(t)|2)
1
2ψ(t) = (M |x(t)|2)

1
2

∞∫
t

1√
M |x(s)|2

ds

≥
∞∫
t

1√
3

exp

{
−3

2
L(s− t+ 1)(s− t)

}
ds = l.

Here L is a positive constant. Then (22) and (23) give

(M |x(t)|2)
1
2 ≥ l

ψ(t)
≥ l

ψ(t0)
exp

{
1

K
(t− t0)

}
≥ l

K
exp

{
1

K
(t− t0)

}
(M |x(t0)|2)

1
2 .

This estimate is the second inequality, which figures in the definition of the exponential di-
chotomy. The theorem is proved.

In theory of ordinary differential equation one proves a converse result that exponential di-
chotomy of a homogeneous system implies existence of a bounded solution of the nonhomoge-
neous system and that

y(t) =

∞∫
0

G(t, τ)f(τ) dτ, (24)
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where G(t, τ) is Green’s function

G(t, τ) =

{
Φ(0, t)P1(Φ(0, τ))−1, t ≥ τ,

−Φ(0, t)P2(Φ(0, τ))−1, t < τ,
(25)

Φ(0, t) is the matriciant of the homogeneous system. For stochastic nonhomogeneous systems,

dx = (A(t)x+ α(t))dt+ (B(t)x+ β(t))]dW (t), (26)

one can also write the representation

y(t) =

∞∫
0

G(t, τ)α(τ)dτ +

∞∫
0

G(t, τ)β(τ)dW (τ), (27)

however, in such a case, y(t) will not be Ft-measurable any more. Thus, by using Green’s functi-
on, one succeeds in getting a similar result only in the case where the homogeneous system is
exponentially stable and the nonhomogeneous system has the form

dx = [ A(t)x+ α(t)]dt+ β(t)dW (t). (28)

Theorem 2. Let the homogeneous system

dx = A(t)xdt (29)

be exponentially stable on the positive semiaxis. Then, for arbitrary α(t), β(t) ∈ B, system (28)
has a solution bounded in mean square on the positive semiaxis. In addition, all bounded soluti-
ons of system (28) are given by

x = ψ(t) +

t∫
0

Φ(t, τ)α(τ) dτ +

t∫
0

Φ(t, τ)β(τ) dW (τ), (30)

where ψ(t) is an arbitrary solution of system (29), and Φ(t, τ) is the matriciant of system (29),
Φ(τ, τ) = E.

Proof. Since system (29) is exponentially stable, its matriciant satisfies the estimate

||Φ(t, τ)|| ≤ K exp{−γ(t− τ)}, (31)

for t ≥ τ ≥ 0, with some positive K and γ. Let’s show that x(t), defined by (30), is bounded
in mean square for t ≥ 0. To do that, it is sufficient to prove the boundedness of each of
its summands. Indeed ψ(t) is a function bounded on the semiaxis. Let’s estimate the second
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summand. From the Cauchy – Bunyakovskii inequality, we have

M |
t∫
0

Φ(t, τ)α(τ) dτ |2 ≤ M

 t∫
0

||Φ(t, τ)|||α(τ)| dτ |

2

≤ K2M

 t∫
0

exp

{
−γ(t− τ)

2

}
exp

{
−γ(t− τ)

2

}
|α(τ) dτ

2

≤ K2

t∫
0

exp{−γ(t− τ)} dτ
t∫
0

exp{−γ(t− τ)}M |α(τ)|2 dτ) < C,

where C > 0 is a constant, since α(t) ∈ B. Let’s use the properties of the stochastic integral

M |
t∫
0

Φ(t, τ)β(τ) dW (τ)|2 ≤
t∫
0

||Φ(t, τ)||2M |β(τ)|2 dτ

≤ K2

t∫
0

exp{−2γ(t− τ)} dτ sup
t≥0

M |β(t)|2 < C1, C1 > 0.

So, the function x(t) in (30) is bounded in mean square. It is obvious that it is Ft-dimensional,
which follows from [1, p. 234], and gives a solution of system (28). The theorem is proved.
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