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Abstract. An iterative procedure is suggested for obtaining the higher-order approximate 
solutions of a conservative system comprising an oscillator with cubic and quintic restoring 
force function. The proposed method is similar to the traditional harmonic balance methods 
but unlike them the obtained from the previous step errors are considered in the present step to 
increase the accuracy of the solution. A comparison of results with those obtained by exact 
solution and other approximate analytical techniques confirms an accuracy of the method. It is 
shown that the achieved approximate solutions are valid for both small and large amplitudes of 
oscillation and can meet the exact solutions with a high level of accuracy in the lower-order of 
approximations. Furthermore, using the obtained analytical solutions, the effect of cubic and 
quintic terms on the frequency is discussed. 
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1. Introduction. 
A large bunch of the mechanical systems are involved with nonlinear governing equa-

tion of motion which solving these equations is an important issue for the sake of their non-
linear behavior [1-3]. Transverse vibrations of a beam with large amplitude and implementa-
tion of nonlinear springs in a mechanical system are two examples which can be derived as 
a nonlinear ordinary differential equation. Recently, many different methods have been de-
veloped to obtain the approximate solutions of such problems. Some of them are: harmonic 
balance method [4-6], energy balance method [7, 8], Hamiltonian approach [9], He’s ampli-
tude–frequency formulation [10] and variational iteration method [11]. In these methods, 
unlike the classical perturbation method, the presence of small parameter is not required. 

Duffing equation is a well-known nonlinear differential equation which is composed of 
third and fifth orders of nonlinearities. Many applications of this equation can be found in 
some engineering systems such as free vibrations of a restrained uniform beam including a 
lumped mass in its middle region [12], the nonlinear dynamics of slender elastic, and the 
Pochhammer– Chree (PC) equation [13, 14]. 

A combination of homotopy analysis method and Pade technique was employed by 
Pirbodaghi et al. [15] to obtain the analytical approximate solution of the cubic-quintic 
Duffing equation. Ganji et al. [8] considered different parameters and applied energy bal-
ance technique on the approximate frequencies of the mentioned equation. In another re-
search, Newton’s method and harmonic balance technique were coupled by Lai et al. [16] 
for solving higher-order approximations of Duffing oscillators with cubic-quintic nonlinear 
restoring force. They showed that their results are valid for both small and large amplitudes. 
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Also, Khan et al. [14] used coupled homotopy and variational formulation to analyze the 
aforementioned oscillator. They obtained the first four approximate formulas and concluded 
that the proposed method observe a good agreement with the exact solution. Moreover, Zun-
iga [17] employed the Jacobi elliptic functions for the Duffing oscillator and showed that the 
exact frequency of the system is including the complete elliptic integral of the first kind. 

In the current paper, an approach is employed to solve and obtain the analytical ap-
proximate solutions of the cubic-quintic Duffing oscillator. This method has a main differ-
ence with other traditional harmonic balance methods such that all the errors obtained in the 
previous approximation are used in the present one. Moreover, to obtain the unknown con-
stants we are dealing with only a set of linear equations which can be easily solved. The 
comparison that will be done between the presented method, exact solution, coupled ho-
motopy-variational formulation as well as He’s energy balance method, will confirm the 
ability and high precision of this method.  

2. Description of the problem. 
Duffing oscillator with the cubic and quintic terms of nonlinearity is a conservative sys-

tem and can be defined with the following second-order differential equation [8, 12, 17] 

3 5
1 2 3 0,x x xx                                                       (1) 

where, the double dots superscript represents the second differential respect to time (t). The 
coefficients 1 , 2  and 3  are supposed to get different values. For the case with 1 0   

and 2 3 0   , Eq. (1) represents the simple harmonic vibration of an oscillator with the 

frequency of 1 . If 2 0   and 3 0  , Eq. (1) can be related to Duffing equation with 

only cubic term of nonlinearity. On the other hand, the quintic Duffing equation is con-
structed by considering 2 0   and 3 0  . For the other cases, Eq. (1) is named as cubic-

quintic Duffing equation where 2  and 3  are not equal to zero.  

The initial conditions for Eq. (1) are considered as: 

   
˙

0 ; 0 0.
dx

x A x
dt

                                                  (2) 

3. Basic idea of the proposed iterative approach. 
To illustrate how the method works, it is considered that the governing differential 

equation of system is as follows: 

     ;  0 ; 0 0,u f u u A u                                                (3) 

where u  is the second differentiation respects to t. It is assumed that ( )f u is an odd func-
tion. Introducing an independent variable t  , Eq. (3) can be rewritten as below: 

     2 ;  0 ; 0 0,u f u u A u                                             (4) 

where ''u is the second differentiation respect to  . Also,   is the frequency of system in 
which should be determined. The solution of Eq. (4) is assumed to be periodic and the sim-
plest form of it that would satisfy the initial conditions is given by the following: 

2 2
0 0( ) cos( )  .;u A                                                    (5) 

Substituting Eq. (5) into Eq. (4) and then setting up the coefficient of cos( ) as zero, 

the parameter 0 can be determined. Hence, the zero-order approximation of Eq. (3) is as 

follows: 
 0 0( ) cosu A t                                                        (6) 
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Eq. (1) is a nonlinear problem and therefore the above solution is not the exact one. 
Hence, substituting Eq. (6) into Eq. (4), the error for the zero-order approximation derives 
as: 

2
0 0 0 0( ) ( )R u f u    .                                                   (7) 

The above error is kept to be used in the next order of approximation. To obtain the 
first-order approximation, the following assumption is supposed:  

2 2
0 1 0 1( ) ( ) );  .(u u pu p                                              (8)  

1( ) (cos ( ) cos(3 )).u B                                                (9) 

The coefficient p is the order parameter and takes the values in interval [0,1]. In addi-

tion, 1  and B are two unknown constants that will be determined later. In this time, Eq. 

(8) is substituted into Eq. (4) and then from the governing equation, the coefficients of p are 
considered as 1 1( , , )F B  . Now, the following relation is considered: 

1 1 0, , )( ( ) 0.F B R                                             (10) 

Eq. (10) means that in the current method, unlike other traditional harmonic balance 
methods, the error obtained in the previous step is considered in the present step to increase 
the accuracy of solution. Equating the coefficients of cos( )  and cos(3 )  to zero in Eq. 

(10), two linear equations composed of the unknown constants 1  and B can be achieved. 

Once the aforementioned constant parameters are obtained, the first-order approximation is 
written as: 

   
2 2
(1) 0 11 1( ) ( ) cos ( ) cos ( );  ; .u A B B                                 (11) 

Substituting Eq. (11) into Eq. (4), the error for the first-order approximation becomes 
as: 

 
2

1 (1) (1) 1( ) ( ).R u f u                                                    (12) 

Similarly, the above error is kept to be used in the next step. In the following, to obtain 
the second-order approximation, it is assumed as: 

2 2
(1) 2 (1) 2( ) ( ) ( ;);u u pu p                                            (13) 

2 ( ) (cos( ) cos(3 )) ( ) cos(5 ));u C D                                       (14) 

where 2 ,  C and D are three unknown constants which should be determined. Similar to the 

previous step, Eq. (13) is substituted into Eq. (4) and then the coefficients of p are consid-
ered as 2 2( , , , ).F C D   Here, in order to increase the accuracy of the second-order approx-

imation, the error 1( )R   obtained in Eq. (12) is added to 2F  and consequently a new equa-

tion is obtained as follows: 

2 2 1,  , , .( ) ( ) 0F C D R                                                (15) 

Equating the coefficients of cos ( ),  cos (3 )  and cos (5 )  to zero in Eq. (15), three 

linear equations including the unknown constant parameters 2 ,  C and D can be achieved. 

As the aforementioned constants are obtained, the second-order approximation is written as 
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 2 ( ) ( ) cos( ) ( ) cos(3 ) cos(5 ),u A B C D B C D                            (16) 

where, 
2 2

(2) (2) (1) 2; .t                                                 (17) 

Similar to the above steps, the higher-order approximations can also be derived. It 
should be noted that using Eqs. (10) and (15) in the process of solving nonlinear oscillator is 
the main difference between the current method and other classical harmonic balance tech-
niques. Moreover, these equations (i.e. Eqs. (10) and (15)) lead to a system of linear equa-
tions which can be easily solved. The convergence of the proposed method is explained in 
the Appendix. 

4. Implementation of the method to Duffing oscillator. 
In this section, the approach is used to obtain the approximate solution of Eq. (1). Pri-

marily, introducing an independent variable, t  , contributes to transform the mentioned 

equation to the following: 
2 3 5

1 2 3 0,x x x x                                                  (18) 

where x and   are the second differentiation respect to  , and the frequency of system, 
respectively. Also, the initial conditions change towards (0)x A  and 0.(0)x   

4.1. Zero-order approximation. 
The simplest form of equation in which can satisfy the initial conditions of Eq. (18) is as 

follows: 
2 2

0 0( () cos ); .x A                                                  (19) 

Substituting above equation into Eq. (18), yields 

     2 3 5 3 5 5
0 1 2 3 2 3 3

3 5 1 5 1
cos cos 3 cos 5 0.

4 8 4 16 16
A A A A A A A                      

   
 

(20) 

To avoid secular terms in the next step, the coefficient of cos ( )  should be identical to 

zero. Applying this approach, the zero-order approximation (i.e., 0 ) is obtained as follows 

2 4
0 1 2 3

3 5

4 8
A A                                                    (21) 

So, the zero-order analytical approximate solution of Eq. (1) is written as 

0 0cos(  ).x A t                                                       (22) 

The error for the zero-order approximation obtained as Eq. (23) which will be kept to 
be used in the next order of approximation: 

   3 5 5
0 2 3 3

1 5 1
cos 3 cos 5 .

4 16 16
R A A A        

 
                   (23) 

4.2. First-order approximation. 
To obtain the first-order approximation, the following assumption is considered 

2 2
(0) 1 (0) 1( ) ( ) ( ;);x x px p                                            (24) 

 1( ) cos( ) cos(3 ) .x B                                               (25) 

Eq. (24) is substituted into Eq. (18) and then considering the coefficients of the p, we 
obtain a function as 1 1( , , )F B  . According to Eq. (10), we have 

1 1 0,  , )( ( ) 0.F B R                                                   (26) 
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In above equation the coefficients of cos ( ) , cos(3 )  should be vanished. Therefore, 
we have two linear equations as follows 

5 2
3 1 2

15 3
0;

16 4
A B A A B      

5 3 4 2
3 2 1 3 2

5 1 85
8 6 0.

16 4 16
A A B A B A B                                   (27) 

The solutions of above relations results in: 
3 2 4 2 2

3 3 2 2
1 4 2

1 3 2

(25 40 16 )3
;

16 128 85 96

A A A

A A

   
  

 
 

 
                                (28) 

3 2
3 2

4 2
1 3 2

(5 4 )
.

128 85 96

A A
B

A A

 
  


 

 
                                         (29) 

According to Eq. (11), the first-order analytical approximate solution of Eq. (1) is writ-
ten as 

     
3 2 3 2

3 2 3 2
1 4 2 4 2

1 3 2 1 3 2

(5 4 ) (5 4 )
cos cos 3 ,

128 85 96 128 85 96

A A A A
x A t t

A A A A

    
     

  
       

   (30) 

where   is as follows 

2
0 1

4 2 4 2 4 2 2 8
3 2 2 2 1 3 1 1 3

4 2
3 2 1

465 276 768 660 512 193,75
.

340 384 512

A A A A A

A A

  

        
  

  

    


 

       (31) 

Substituting Eq. (30) into Eq. (18), the error is obtained as function 1 )(R  . 

 
4.3. Second-order approximation. 
As in previous steps, for the second-order approximation, it is assumed 

2 2
(1) 2 (1) 2( ) ( ) ( ;);x x px p                                            (32) 

2 ( ) (cos( ) cos (3 )) (cos( ) cos(5 )).x C D                                  (33) 

Eq. (32) is substituted into Eq. (18) and then from the consequent equation, the coeffi-
cients of p are considered as 2 2( , , , ).F C D   Now, the error 1 )(R   is added to 2F  and con-

sequently a new equation is obtained as follow: 

2 2 1, , , .( () ) 0F C D R                                                 (34) 

Equating the coefficients of cos ( ),  cos (3 )  and cos(5 )  to zero in Eq. (34), one can 

obtain three linear equations, consequently. By solving these equations, three unknown con-
stants 2 ,  C and D can be determined. Given the large amount of space of correlations, we 

evaded to cite them here. But, their numerical values are reported in the results section. 
Eventually, the second-order analytical approximation of Eq. (1) is 

       2 2 2 2( ) cos( ) ( ) cos(3 ) cos (5 );x A B C D t B C t D t                      (35) 

2 2
(2) 0 1 2.                                                          (36) 
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5. Results and discussion. 
In this section, to assess the analytical approximate solutions achieved by the presented 

method, the obtained results are compared with the exact solution as well as those of litera-
ture. The exact frequency is given by [13, 16]: 

1
1

2 42 2
2 30

,

2 (1 sin sin )  
Exact

k

k k d



  




 
                                  (37) 

where: 
2 4

1 1 2 3 ;
2 3

A A
k                                                    (38) 

2 4
2 3

2 2 4
1 2 3

3 2
;

6 3 2

A A
k

A A

 
  




 
                                             (39) 

4
3

3 2 4
1 2 3

2
;

6 3 2

A
k

A A


  


 

                                             (40) 

Considering various parameters of system in rank order include as 1 2 3 1;      

1 2 35, 3, 1;     ; and 1 2 31, 10, 100,      the approximate frequencies are ob-

tained and illustrated in Tables 1 – 3. 
Table 1 

A Exact  Zero-order First-order Second-order Khan et al, [14]  Ganji et al, [8] 

0,1 1,0037770 1,003774128 1,003772940 1,003772938 1,0031009 1,00377306 

0,5 1,1065487 1,107502822 1,106575472 1,106545257 1,0877056 1,10635650 

1,0 1,5235914 1,541103501 1,525073610 1,523748195 1,4456576 1,10635650 

5 19,1815720 20,25771458 19,37354774 19,22145533 17,8276787 19,608880 

10 75,1776276 79,53615530 75,97375093 75,34539761 69,8760834 76,889585 

50 1867,5796 1976,898075 1887,694912 1871,836939 1735,9103 1910,33222 

100 7468,8525 7906,168540 7549,340082 7485,889922 6942,2827 7639,85509 

500 186709,59 197642,83 188721,99 187135,59 173546,2 190984,592 

1000 746836,94 790569,89 754886,52 748540,91 694183,44 763936,894 

 
Comparison of the frequencies obtained by current approach with the exact solution and 

the other methods for 1 2 3 1.      

Table 2 

A Exact  Zero-order First-order Second-order Khan et al, [14]  Ganji et al, [8] 

0,1 2,2411156 2,241107427 2,241106482 2,241106482 2,2402105 2,241102478 

0,5 2,3661575 2,366762028 2,366156024 2,366148280 2,3434565 2,366246867 

1,0 2,7962794 2,806243040 2,796695889 2,796295935 2,7566507 2,798963393 

5 20,2164536 21,25735167 20,39110224 20,25141913 18,7895069 20,64011142 

10 76,1700134 80,49844720 76,94867693 76,33263727 70,7962723 77,88483819 

50 1868,5568 1977,847315 1888,654708 1872,808907 1736,8159 1911,314776 

100 7469,8296 7907,117362 7550,299393 7486,861400 6943,1880 7640,837246 

500 186710,58 197643,7768 188722,9500 187136,5622 173547,11 190985,5701 

1000 746837,94 790570,8380 754887,4839 748541,8778 694184,38 763937,8765 
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Comparison of the frequencies obtained by current approach with the exact solution and 
the other methods for 1 2 35, 3, 1.      

Table 3 

A Exact  Zero-order First-order Second-order Khan et al, [14]  Ganji et al, [8] 

0,1 1,0397019 1,039831717 1,039699840 1,039697865 1,0325994 1,039642196 

0,5 2,5247023 2,604083332 2,535046776 2,526416372 2,3542032 2,554014562 

1,0 8,0100698 8,426149772 8,080690531 8,024286085 7,4440041 8,176911017 

5 187,19966 198,1186513 189,2033240 187,6230518 174,00040 191,4770915 

10 747,32526 791,0442465 755,3661805 749,0266516 694,63605 764,4279087 

50 18671,400 19764,70974 18872,63073 18713,99620 17355,027 19098,90111 

100 74684,133 79057,41585 75489,08410 74854,52775 69418,750 76394,13136 

500 1867091,6 1976424,012 1887215,592 1871351,538 1735457,9 1909841,499 

1000 7468365,0 7905694,625 7548860,931 7485404,694 6941830,5 7639364,525 

 
Comparison of the frequencies obtained by current approach with the exact solution and 

the other methods for 1 2 31, 10, 100.      
 
In these tables, the third-order approximate values achieved by coupled homotopy-

variational formulation (CHVF-3) [14] as well as the results of He’s energy balance method 
(HEBM) [8] have been also reported. As can be seen, the values of the second-order meets a 
good agreement with the exact solution. In order to have a better comparison, for example, 
the errors of the current approach as well as two mentioned methods for the system parame-
ters 1 2 35, 3, 1      are depicted in Fig. 1. The correlation of the error is considered as 

follows: 

Error % 100,Exact

Exact

 



                                               (41) 

where Exact  is obtained from Eq. (37). 

 

Figure 1. Relative errors for the approximate frequencies  
respect to amplitude, 1 2 3( 5, 3, 1)     . 
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Fig. 1 shows that the relative error of the current method decreases with increasing the 
approximation order. Moreover, with increasing the amplitude (i.e., A), the error approaches 
to approximately 7% and 2,3% for the CHVF-3 and HEBM, respectively; While it goes to-
ward almost 5,9%, 1.1% and 0,2% for the zero, first and second order approximations, re-
spectively. It is astounding by this figure that merely the first-order approximate solution of 
the current method leads to accurate results with a relative error less than the third-order 
coupled homotopy-variational formulation (CHVF-3) as well as He’s energy balance meth-
od (HEBM). Similar results have been obtained using other system parameters. Hence, it 
can be concluded that the frequencies achieved by the proposed method can meet the exact 
ones in the lower-order approximations. 

The displacement of the oscillator (i.e., x(t)) considering various system parameters for 
large amplitude (here A=10) is depicted in Figs. 2 and 3.  

 
Figure 2. The Displacement of oscillator respect to time  

for 1 2 310, 5, 3, 1A        

 
Figure 3. The Displacement of oscillator respect to time  

for 1 2 310, 1, 10, 100A        



 121 

These figures reveal that the GRHBM is an accurate method especially in the first and 
second orders of approximation and has sufficient ability in solving strong nonlinear prob-
lems such as current cubic-quintic Duffing oscillator.  

The analytical relation obtained in section 4.3, is employed to investigate the effect of 
nonlinear terms of Eq. (1) on the oscillator frequency. To this end, the coefficients of the 
cubic and quintic terms (i.e., 2  and 3  ) are supposed to change from 10 to 50 and 0 to 

100, respectively. The variation of the frequency for various values of amplitude is illustrat-
ed in Figs. 4 – 6. 

 

Figure 4. Variation of frequency respect to 3  for various values of 2   

for 10,1; 1.A    

 

Figure 5. Variation of frequency respect to 3  for various values of 2   

for 1 1.1,A    
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Figure 6. Variation of frequency respect to 3  for various values of 2   

for 1 1.5,A    

 
Fig. 4 shows that for small amplitude (  0,1)A   and a specific value of 2 ,  the fre-

quency is approximately constant and is not influenced by the variation of 3.  Also, this 

figure shows that for a specific value of 3,  increasing the 2  contributes to increment of 

frequency. Figs. 5 and 6 reveal that for large amplitudes and any value of 2 , the frequency 

increases with increasing 3.  Moreover, as can be seen in Fig. 6, for large values of ampli-

tude the frequency is only influenced by the variation of 3.  

6. Conclusion. 
In this paper, an iterative approach was employed for obtaining the analytical approxi-

mate frequencies and displacement of a conservative system comprising an oscillator with 
cubic and quintic nonlinearities. Using the achieved analytical expressions, the effect of 
nonlinear terms on the nonlinear frequency was investigated. The results showed that the 
cubic term is more impressive in the lower amplitudes and its effect gradually vanishes with 
increment of oscillator amplitude. Also, the quintic term plays a significant role in nonlinear 
frequency regarding the higher values of amplitude. Moreover, comparing the results in 
terms of the other methods showed the applicability and accuracy of the proposed method 
such that it can approach to the exact solution in the lower-order approximations. The men-
tioned method is very simple to implement and is not restricted to the presence of small pa-
rameter in system and its results are valid for a wide range of system parameters along with 
both small and large amplitudes. Therefore, it can be easily extended and employed for the 
other strong nonlinear oscillators due to its great potential. 

Appendix. 
The proposed method provides a series solution for the problem as follows 

0 1 2
0

( ) ( ) ( ) ( ) ... ( ).i
i

u t u t u t u t u t




                                      (A1) 

The above solution converges if there is 0 1   such that 
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1 0 0( ) ( ) ; ; .i iu t u t i i i N                                          (A2) 

In order to proof, the sequence  nq is first defined as follows 

0

( ) ( 0,1, 2, ...).
n

n i
i

q u t n


                                            (A3) 

Then 
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0

1
1 1 ... .n i

n n n n iq q u u u   
                                    (A4) 

For every 0, ,j k N j k i    we have 
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Consequently 

0

0

1

, ,

1
0 lim lim 0.

1

j k
k i

j k ij k j k
q q u

 



 
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                            (A6) 

Also, 
,
lim 0j kj k

q q


   due to have 0 1.   Sequence  nq is a Cauchy sequence 

and according to its definition in the Hilbert space, shows that the solution 
0

( )i
i

u t



  is con-

vergent. 
 
 
РЕЗЮМЕ.  Запропонована ітераційна процедура для отримання наближених розв’язків високо-

го порядку консервативної системи, яка містить осцилятор з відновлювальною силою, що описується 
третім і п’ятим порядками нелінійності. Запропонований метод аналогічний до класичних методів 
гармонічного балансу, однак на відміну від них тут похибки, отримані на попередньому кроці, 
розглядаються на наступному кроці з метою підвищення точності розв’язку. Порівняння результатів 
з результатами, отриманими як точний розв’язок і іншими наближеними аналітичними методиками 
підтверджує точність методу. Показано, що отримані наближені розв’язки вірні як для малих, так і 
для великих амплітуд коливань і можуть узгоджуватись з точним розв’язком з високим рівнем точ-
ності при низьких порядках наближень. Далі обговорюється вплив членів третього і п’ятого порядків 
на основі отриманих аналітичних розв’язків. 
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