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Abstract. An iterative procedure is suggested for obtaining the higher-order approximate
solutions of a conservative system comprising an oscillator with cubic and quintic restoring
force function. The proposed method is similar to the traditional harmonic balance methods
but unlike them the obtained from the previous step errors are considered in the present step to
increase the accuracy of the solution. A comparison of results with those obtained by exact
solution and other approximate analytical techniques confirms an accuracy of the method. It is
shown that the achieved approximate solutions are valid for both small and large amplitudes of
oscillation and can meet the exact solutions with a high level of accuracy in the lower-order of
approximations. Furthermore, using the obtained analytical solutions, the effect of cubic and
quintic terms on the frequency is discussed.
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1. Introduction.

A large bunch of the mechanical systems are involved with nonlinear governing equa-
tion of motion which solving these equations is an important issue for the sake of their non-
linear behavior [1-3]. Transverse vibrations of a beam with large amplitude and implementa-
tion of nonlinear springs in a mechanical system are two examples which can be derived as
a nonlinear ordinary differential equation. Recently, many different methods have been de-
veloped to obtain the approximate solutions of such problems. Some of them are: harmonic
balance method [4-6], energy balance method [7, 8], Hamiltonian approach [9], He’s ampli-
tude—frequency formulation [10] and variational iteration method [11]. In these methods,
unlike the classical perturbation method, the presence of small parameter is not required.

Duffing equation is a well-known nonlinear differential equation which is composed of
third and fifth orders of nonlinearities. Many applications of this equation can be found in
some engineering systems such as free vibrations of a restrained uniform beam including a
lumped mass in its middle region [12], the nonlinear dynamics of slender elastic, and the
Pochhammer— Chree (PC) equation [13, 14].

A combination of homotopy analysis method and Pade technique was employed by
Pirbodaghi et al. [15] to obtain the analytical approximate solution of the cubic-quintic
Duffing equation. Ganji et al. [8] considered different parameters and applied energy bal-
ance technique on the approximate frequencies of the mentioned equation. In another re-
search, Newton’s method and harmonic balance technique were coupled by Lai et al. [16]
for solving higher-order approximations of Duffing oscillators with cubic-quintic nonlinear
restoring force. They showed that their results are valid for both small and large amplitudes.
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Also, Khan et al. [14] used coupled homotopy and variational formulation to analyze the
aforementioned oscillator. They obtained the first four approximate formulas and concluded
that the proposed method observe a good agreement with the exact solution. Moreover, Zun-
iga [17] employed the Jacobi elliptic functions for the Duffing oscillator and showed that the
exact frequency of the system is including the complete elliptic integral of the first kind.

In the current paper, an approach is employed to solve and obtain the analytical ap-
proximate solutions of the cubic-quintic Duffing oscillator. This method has a main differ-
ence with other traditional harmonic balance methods such that all the errors obtained in the
previous approximation are used in the present one. Moreover, to obtain the unknown con-
stants we are dealing with only a set of linear equations which can be easily solved. The
comparison that will be done between the presented method, exact solution, coupled ho-
motopy-variational formulation as well as He’s energy balance method, will confirm the
ability and high precision of this method.

2. Description of the problem.
Duffing oscillator with the cubic and quintic terms of nonlinearity is a conservative sys-
tem and can be defined with the following second-order differential equation [8, 12, 17]

it+ax+a,x +ax’ =0, (1)
where, the double dots superscript represents the second differential respect to time (¢). The
coefficients ¢, o, and «; are supposed to get different values. For the case with o, #0
and a, =a, =0, Eq. (1) represents the simple harmonic vibration of an oscillator with the
frequency of \/;1 If a,#0 and a, =0, Eq. (1) can be related to Duffing equation with

only cubic term of nonlinearity. On the other hand, the quintic Duffing equation is con-
structed by considering o, =0 and ¢, #0. For the other cases, Eq. (1) is named as cubic-

quintic Duffing equation where «, and «; are not equal to zero.
The initial conditions for Eq. (1) are considered as:

x(0) = 4; ﬂo):%:o. @)

3. Basic idea of the proposed iterative approach.
To illustrate how the method works, it is considered that the governing differential
equation of system is as follows:

ii=f(u); u(0)=4; 1(0)=0, 3)

where i is the second differentiation respects to . It is assumed that f'(1) is an odd func-
tion. Introducing an independent variable 7 = @t , Eq. (3) can be rewritten as below:

o'u"= f(u); u(0)=4; u'(0)=0, 4)

where # is the second differentiation respect to 7. Also, @ is the frequency of system in
which should be determined. The solution of Eq. (4) is assumed to be periodic and the sim-
plest form of it that would satisfy the initial conditions is given by the following:

uy(7) = Acos(zr); @’ =aj. Q)
Substituting Eq. (5) into Eq. (4) and then setting up the coefficient of cos(7) as zero,

the parameter @), can be determined. Hence, the zero-order approximation of Eq. (3) is as

follows:
uy(7) = Acos(ayt) (6)
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Eq. (1) is a nonlinear problem and therefore the above solution is not the exact one.
Hence, substituting Eq. (6) into Eq. (4), the error for the zero-order approximation derives
as:

Ry(7) = aguy — f (u) - )

The above error is kept to be used in the next order of approximation. To obtain the
first-order approximation, the following assumption is supposed:

u(t) =uy(7) + puy(7); @ =@; + pa,. ®)

u,(7) = B(cos(r)—cos(37)). )

The coefficient p is the order parameter and takes the values in interval [0,1]. In addi-
tion, @, and B are two unknown constants that will be determined later. In this time, Eq.

(8) is substituted into Eq. (4) and then from the governing equation, the coefficients of p are
considered as F|(7, @, B) . Now, the following relation is considered:

F(z, o, B)+R)(r)=0. (10)

Eq. (10) means that in the current method, unlike other traditional harmonic balance
methods, the error obtained in the previous step is considered in the present step to increase

the accuracy of solution. Equating the coefficients of c0S(7) and cos(37) to zero in Eq.
(10), two linear equations composed of the unknown constants @, and B can be achieved.
Once the aforementioned constant parameters are obtained, the first-order approximation is

written as:

U (7) = (A+ B)cos(z)— Beos(1); 7=a,; )y =0 + . (11)

Substituting Eq. (11) into Eq. (4), the error for the first-order approximation becomes
as:

R(7)= a’(zl)”("]) - f(”(l))- (12)

Similarly, the above error is kept to be used in the next step. In the following, to obtain
the second-order approximation, it is assumed as:

u(7) =u,, (7) + puy(7); @ = @)+ pa,; (13)

u,(7) = C(cos(r)—cos(37)) + D(r) —cos (57)); (14)

where @,, C and D are three unknown constants which should be determined. Similar to the

previous step, Eq. (13) is substituted into Eq. (4) and then the coefficients of p are consid-
ered as F, (7, »,, C, D). Here, in order to increase the accuracy of the second-order approx-

imation, the error R,(7) obtained in Eq. (12) is added to F, and consequently a new equa-
tion is obtained as follows:

F,(z, w,,C, D)+ R (z) =0. (15)

Equating the coefficients of cos(z), cos(37) and cos(57) to zero in Eq. (15), three
linear equations including the unknown constant parameters @,, C and D can be achieved.
As the aforementioned constants are obtained, the second-order approximation is written as
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u(z)(r) =(A+B+C+D)cos(r)—(B+C)cos(37)— Dcos(57), (16)

where,

t, @ =

=0 2) = @y

(2) T ,. (17)

Similar to the above steps, the higher-order approximations can also be derived. It
should be noted that using Egs. (10) and (15) in the process of solving nonlinear oscillator is
the main difference between the current method and other classical harmonic balance tech-
niques. Moreover, these equations (i.e. Egs. (10) and (15)) lead to a system of linear equa-
tions which can be easily solved. The convergence of the proposed method is explained in
the Appendix.

4. Implementation of the method to Duffing oscillator.
In this section, the approach is used to obtain the approximate solution of Eq. (1). Pri-
marily, introducing an independent variable, 7 = w¢, contributes to transform the mentioned

equation to the following:

&’ X"+ ax+a,x’ +ax’ =0, (18)
where x"and @ are the second differentiation respect to 7, and the frequency of system,
respectively. Also, the initial conditions change towards x(0) = 4 and x'(0) =0.

4.1. Zero-order approximation.
The simplest form of equation in which can satisfy the initial conditions of Eq. (18) is as
follows:

x,(r) = Acos(7); @ =a. (19)
Substituting above equation into Eq. (18), yields
1 1
—Aw; + oy A+ iasz + éoz,A5 cos(7)+| —a, 4’ + iog/f’ cos(37)+—a, A’ cos(57) =0.
4 8 - 4 16 16
(20)

To avoid secular terms in the next step, the coefficient of cos(z) should be identical to

zero. Applying this approach, the zero-order approximation (i.e., @, ) is obtained as follows

3 5
@, :\/azl+—0:2Az+—oz3A4 (1)
4 8
So, the zero-order analytical approximate solution of Eq. (1) is written as
x, = Acos(w,t). 22)

The error for the zero-order approximation obtained as Eq. (23) which will be kept to
be used in the next order of approximation:

R, = (%azf +%a3A5jcos(3r)+%a3A5 cos(57). (23)
4.2. First-order approximation.
To obtain the first-order approximation, the following assumption is considered
xX(7) = x)(7) + px,(7); @ = @y + pa; 24)
x,(7) = B(cos(r) —cos(37)). (25)

Eq. (24) is substituted into Eq. (18) and then considering the coefficients of the p, we
obtain a function as F(z, @, B) . According to Eq. (10), we have

F(z, @, B)+R,(r)=0. (26)
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In above equation the coefficients of cos(z), cos(37) should be vanished. Therefore,
we have two linear equations as follows

1
£a3A5B— Aw, +%a2A2B =0;

i053A5 +1052A3 +8a,B +8—5a3A4B +60,4°B=0. (27)
16 4 16

The solutions of above relations results in:
3 A (25 A" +40a, A’ +16a7)

o = ; 28
' 16 128a, +85a,4" +96a, A (8)

_ A (Sa A +4a,)
128, +85a,4" +96a, 4>

(29)

According to Eq. (11), the first-order analytical approximate solution of Eq. (1) is writ-
ten as

A (Sa,A” +4a,)
Xy = A~ 4 2
128¢c, +85a,4" +96a, 4

A (S, A’ +4ay)
128a, +85a,4" + 960, 4

cos(3wt), (30)

Jcos(a)t) +
where o is as follows

. -
o=y +o =

_|465a,A'a, +276a; A* +768a,0, A +660c,0, A + 5120 +193,750; 4°
340a,4* +384a,4” +512¢, ‘

€2))

Substituting Eq. (30) into Eq. (18), the error is obtained as function R (7).

4.3. Second-order approximation.
As in previous steps, for the second-order approximation, it is assumed

x(7) = x4, (1) + px, (7); @ = @) + pa; (32)

x,(7) = C(cos(7)—cos(37))+ D(cos(r)—cos(57)). (33)

Eq. (32) is substituted into Eq. (18) and then from the consequent equation, the coeffi-
cients of p are considered as F, (7, w,, C, D). Now, the error R,(7) is added to F, and con-

sequently a new equation is obtained as follow:
F,(z,0,,C,D)+R,(r)=0. 34)

Equating the coefficients of cos(7), cos(37) and cos(57) to zero in Eq. (34), one can

obtain three linear equations, consequently. By solving these equations, three unknown con-
stants @,, C and D can be determined. Given the large amount of space of correlations, we

evaded to cite them here. But, their numerical values are reported in the results section.
Eventually, the second-order analytical approximation of Eq. (1) is

X = (A+B+C+D)cos (a)(z)t) —(B+C)cos (3a)(2)t) —Dcos (Sa)(z)t); 35)

2 2
W) =) + o+, (36)
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5. Results and discussion.

In this section, to assess the analytical approximate solutions achieved by the presented
method, the obtained results are compared with the exact solution as well as those of litera-
ture. The exact frequency is given by [13, 16]:

- 7k : 37)

T L
2 j 2(1+kysin’ 0+ k;sin'd) > dO

wExact

where:
2 4
k, :\/al+a2A7+a3A?; (38)
B A +2a,4" (39)
P 6 +3a, 4+ 204"
2. A*
= (40)

6, +3a, 4+ 20, 4"

Considering various parameters of system in rank order include as o, =a, =a; =1;
o =5a=3,a,=1;; and o =1,a,=10,a, =100, the approximate frequencies are ob-
tained and illustrated in Tables 1 — 3.

Table 1
A Oper Zero-order First-order Second-order | Khan et al, [14] Ganji et al, [8]
0,1 1,0037770 1,003774128 | 1,003772940 | 1,003772938 1,0031009 1,00377306
0,5 1,1065487 1,107502822 1,106575472 1,106545257 1,0877056 1,10635650
1,0 1,5235914 1,541103501 | 1,525073610 | 1,523748195 1,4456576 1,10635650
5 19,1815720 | 20,25771458 | 19,37354774 | 19,22145533 17,8276787 19,608880
10 75,1776276 | 79,53615530 | 7597375093 | 75,34539761 69,8760834 76,889585
50 1867,5796 1976,898075 | 1887,694912 | 1871,836939 1735,9103 1910,33222
100 7468,8525 7906,168540 | 7549,340082 | 7485,889922 6942,2827 7639,85509
500 186709,59 197642,83 188721,99 187135,59 173546,2 190984,592
1000 | 746836,94 790569,89 754886,52 748540,91 694183,44 763936,894

Comparison of the frequencies obtained by current approach with the exact solution and
the other methods for o, =, =, =1.

Table 2

A Opyer Zero-order First-order Second-order | Khan et al, [14] Ganji et al, [8]
0,1 2,2411156 2,241107427 | 2,241106482 | 2,241106482 2,2402105 2,241102478
0,5 2,3661575 2,366762028 | 2,366156024 | 2,366148280 2,3434565 2,366246867
1,0 2,7962794 2,806243040 | 2,796695889 | 2,796295935 2,7566507 2,798963393
5 20,2164536 | 21,25735167 | 20,39110224 | 20,25141913 18,7895069 20,64011142
10 76,1700134 | 80,49844720 | 76,94867693 | 76,33263727 70,7962723 77,88483819
50 1868,5568 1977,847315 | 1888,654708 1872,808907 1736,8159 1911,314776
100 7469,8296 7907,117362 | 7550,299393 | 7486,861400 6943,1880 7640,837246
500 186710,58 197643,7768 | 188722,9500 | 187136,5622 173547,11 190985,5701
1000 746837,94 790570,8380 | 754887,4839 | 748541,8778 694184,38 763937,8765
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Comparison of the frequencies obtained by current approach with the exact solution and
the other methods for o, =5, a, =3, a; = 1.

Table 3
A Dot Zero-order First-order Second-order Khan et al, [14] Ganyji et al, [8]
0,1 1,0397019 | 1,039831717 | 1,039699840 1,039697865 1,0325994 1,039642196
0,5 2,5247023 | 2,604083332 | 2,535046776 | 2,526416372 2,3542032 2,554014562
1,0 8,0100698 | 8,426149772 | 8,080690531 8,024286085 7,4440041 8,176911017
5 187,19966 198,1186513 189,2033240 187,6230518 174,00040 191,4770915
10 747,32526 | 791,0442465 | 755,3661805 | 749,0266516 694,63605 764,4279087
50 18671,400 | 19764,70974 | 18872,63073 18713,99620 17355,027 19098,90111
100 | 74684,133 | 79057,41585 | 75489,08410 | 74854,52775 69418,750 76394,13136
500 1867091,6 | 1976424,012 | 1887215,592 1871351,538 1735457,9 1909841,499
1000 | 7468365,0 | 7905694,625 | 7548860,931 7485404,694 6941830,5 7639364,525

Comparison of the frequencies obtained by current approach with the exact solution and

the other methods for ¢, =1, @, =10, &, =100.

In these tables, the third-order approximate values achieved by coupled homotopy-
variational formulation (CHVF-3) [14] as well as the results of He’s energy balance method
(HEBM) [8] have been also reported. As can be seen, the values of the second-order meets a
good agreement with the exact solution. In order to have a better comparison, for example,
the errors of the current approach as well as two mentioned methods for the system parame-
ters o, =5, a, =3, a; =1 are depicted in Fig. 1. The correlation of the error is considered as

follows:

|a) -
E>
Error % =124 1
a)Exact

where @, is obtained from Eq. (37).

10

Error [%)

ol

x100,

.......... Fero-arder
- First-order
Second-order
—8— [han et al. (CHYF-3).
—P— Ganji et al. (HEBM)

0.1

Arnplitudea)

Figure 1. Relative errors for the approximate frequencies
respect to amplitude, (o, =5, a, =3, ¢, =1).

(41)
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Fig. 1 shows that the relative error of the current method decreases with increasing the
approximation order. Moreover, with increasing the amplitude (i.e., 4), the error approaches
to approximately 7% and 2,3% for the CHVF-3 and HEBM, respectively; While it goes to-
ward almost 5,9%, 1.1% and 0,2% for the zero, first and second order approximations, re-
spectively. It is astounding by this figure that merely the first-order approximate solution of
the current method leads to accurate results with a relative error less than the third-order
coupled homotopy-variational formulation (CHVF-3) as well as He’s energy balance meth-
od (HEBM). Similar results have been obtained using other system parameters. Hence, it
can be concluded that the frequencies achieved by the proposed method can meet the exact
ones in the lower-order approximations.

The displacement of the oscillator (i.e., x(¢)) considering various system parameters for
large amplitude (here A=10) is depicted in Figs. 2 and 3.

e Zero-order
q5| e ‘First-order

10}

Displacement (x)
(B}

10 Pitef o, S 3
] 0.0z 0.04 0.06 .08 01 012 014 0.16
(b) Time (f)

Figure 2. The Displacement of oscillator respect to time
for A=10,,=5a,=3,0,=1

o Zero-order ' ' ' ' '
15 @ First-order |
@ Second-order
—— Exact
10
C)
g 5
1=
)
A0
-5
_10 1 1 1 1 1

] 0002 0004 0006 0.a0g 0m 0mz2 0014 0.016
Time ()

Figure 3. The Displacement of oscillator respect to time
for A=10,¢,=1,a, =10, a; =100
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These figures reveal that the GRHBM is an accurate method especially in the first and
second orders of approximation and has sufficient ability in solving strong nonlinear prob-
lems such as current cubic-quintic Duffing oscillator.

The analytical relation obtained in section 4.3, is employed to investigate the effect of
nonlinear terms of Eq. (1) on the oscillator frequency. To this end, the coefficients of the
cubic and quintic terms (i.e., &, and «, ) are supposed to change from 10 to 50 and 0 to

100, respectively. The variation of the frequency for various values of amplitude is illustrat-
ed in Figs. 4 — 6.

13 T T T T T T T
—8—0.=10

—e— o,=20
1.25 _ B
— 012—30
—p— o,=40
1.2 | —gp— o, =50 B

F 3
F 3
F 3
F 3

il £l
e B

el
; ———
£

v
v
v
v

Figure 4. Variation of frequency respect to ¢, for various values of o,
for 4=0,1; ¢, =1.

o 10 20 30 40 a0 =il 70 =N a0 100

Figure 5. Variation of frequency respect to «, for various values of «,
for A=1,0,=1.
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Figure 6. Variation of frequency respect to «, for various values of «,
for A=5,a,=1.

Fig. 4 shows that for small amplitude (4= 0,1) and a specific value of «,, the fre-
quency is approximately constant and is not influenced by the variation of «,. Also, this
figure shows that for a specific value of ¢, increasing the ¢, contributes to increment of
frequency. Figs. 5 and 6 reveal that for large amplitudes and any value of ¢, , the frequency

increases with increasing «,. Moreover, as can be seen in Fig. 6, for large values of ampli-

tude the frequency is only influenced by the variation of «,.

6. Conclusion.

In this paper, an iterative approach was employed for obtaining the analytical approxi-
mate frequencies and displacement of a conservative system comprising an oscillator with
cubic and quintic nonlinearities. Using the achieved analytical expressions, the effect of
nonlinear terms on the nonlinear frequency was investigated. The results showed that the
cubic term is more impressive in the lower amplitudes and its effect gradually vanishes with
increment of oscillator amplitude. Also, the quintic term plays a significant role in nonlinear
frequency regarding the higher values of amplitude. Moreover, comparing the results in
terms of the other methods showed the applicability and accuracy of the proposed method
such that it can approach to the exact solution in the lower-order approximations. The men-
tioned method is very simple to implement and is not restricted to the presence of small pa-
rameter in system and its results are valid for a wide range of system parameters along with
both small and large amplitudes. Therefore, it can be easily extended and employed for the
other strong nonlinear oscillators due to its great potential.

Appendix.
The proposed method provides a series solution for the problem as follows

u(t):uo(t)+ul(t)+u2(l‘)+...:iui(t). (A1)

The above solution converges if there is 0 < f <1 such that
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et D < Bl @ Vi 2y iy e N. (A2)

In order to proof, the sequence {g, } is first defined as follows

q, = iui(t) (n=0,12,..). (A3)

Then
91— 4, " =t || < Blu, | < < /Bn_ml U (A4)
Forevery j,keN, j=k>i, wehave
||qj - Qk" = ||(6]‘,- —q; )4, =g )+ (G — Qk)" <
< ||qj —9q;. " +||qj—1 94, " +..+ ||qk+l —4; " = "”, " +||uj—l " +o.t "”k+1 < (AS)
< ﬂj—io u, + ﬂj—l—io u, " - ﬂkﬂ—io u = 1;_ﬁ[jgk ﬁkﬂ—io u,[.
Consequently
. . 1- ﬁj_k k+1-i,
0< lim [lg, g, < lim === g |y, | =o0. (A6)
Jk—o

Jok—o ] — ﬂ
Also, _lzm "q =4 ":O due to have 0< f#<1. Sequence {qn}is a Cauchy sequence
Jk—o

and according to its definition in the Hilbert space, shows that the solution Zu,. (¢) is con-
i=0
vergent.

PE3IOME. 3anpornoHoBaHa itepaliiiHa mpoueaypa Uit OTpUMaHHs HaOIMKEHUX PO3B’sI3KiB BUCOKO-
TO MOPSJIKY KOHCEPBATHBHOI CHCTEMH, KA MICTUTh OCHIIIATOP 3 BiHOBIIIOBAIBHOIO CHIIOIO, IO OIUCYETHCS
TPETIM 1 I’SATUM MOPSAKaMH HEJTiHIHHOCTI. 3anpOIOHOBAHMH METOJ aHAJIOTIYHUN [0 KJIACHYHHX METO.IB
rapMoHiuHOro OajaHcy, OJHaK Ha BiMiHYy BiJl HUX TYT MOXMOKM, OTpHMaHi Ha IONEPEJHbLOMY KpOL,
PO3IIIANAIOTECS HAa HACTYIIHOMY KpPOL 3 METOIO IiIBHIICHHS TOYHOCTI Po3B’a3Ky. IIOpiBHAHHS pe3ynbTaTiB
3 pe3y/bTaTaMu, OTPUMaHUMH SIK TOYHUI PO3B’SI30K 1 IHIIMMH HAOIMKEHHUMHU aHAITHYHUMH METOIHUKAMU
MiATBEPIAKYE TOYHICTh MeToay. [loka3aHo, 1110 OTpUMaHi HaOJIMKEHI PO3B’SI3KH BipHI 5K JJIsl MallUX, TaK 1
JUISL BETUKAX aMIULTYZ KOJIMBAaHb i MOXYTh Y3TOMKYBaTHCh 3 TOUHHUM PO3B’SI3KOM 3 BUCOKHM PiBHEM TOY-
HOCTI IIpH HU3BKUX MOPsKaX HaOmmKeHb. Jami 0OroBOproeThCs BIUIMB WICHIB TPETHOTO 1 I1’ATOTO MOPAIKIB
Ha OCHOBI OTPUMAaHHUX aHATITHYHHUX PO3B’SI3KIiB.

1. Semenyuk NP. Nonlinear Deformation of Shells with Finite Angles of Rotation and Low Elastoplastic
Strains. International Applied Mechanics. 2015;51:149 — 58.

2. Kochurov RE, Avramov KV. Parametric vibrations of cylindrical shells subject to geometrically nonlinear
deformation: multimode models. International Applied Mechanics. 2011;46:1010-18.

3. Kirichok IF. Resonant Vibrations and Self-Heating of a Clamped Flexible Thermoviscoelastic Beam with
Piezoactuators. International Applied Mechanics. 2014;50:421-9.

4. Mohammadian M, Shariati M. Approximate analytical solutions to a conservative oscillator using global
residue harmonic balance method. Chinese Journal of Physics. 2017;55:47 — 58.

5. Mohammadian M. Application of the global residue harmonic balance method for obtaining higher-order
approximate solutions of a conservative system. International Journal of Applied and Computational
Mathematics. 2017;3:2519-32.

6. Mohammadian M., Akbarzade M. Higher-order approximate analytical solutions to nonlinear oscillatory
systems arising in engineering problems. Archive of Applied Mechanics. 2017;87:1317-32.

123



7. Khan Y, Mirzabeigy A. Improved accuracy of He’s energy balance method for analysis of conservative
nonlinear oscillator. Neural Computing and Applications. 2014;25:889-95.

8. Ganji D.D., Gorji M., Soleimani S., Esmaeilpour M. Solution of nonlinear cubic-quintic Duffing oscilla-
tors using He’s Energy Balance Method. Journal of Zhejiang University SCIENCE A. 2009;10:1263-8.

9. Hermann M., Saravi M., Ebrahimi Khah H. Analytical study of nonlinear oscillatory systems using the
Hamiltonian approach technique. Journal of Theoretical and Applied Physics. 2014;8:1 — 8.

10. Akbarzade M., Farshidianfar A. Application of the Amplitude-Frequency Formulation to a Nonlinear
Vibration System Typified by a Mass Attached to a Stretched Wire. International Applied Mechanics.
2014;50:476-83.

11. Mohammadian M. Application of the variational iteration method to nonlinear vibrations of nanobeams
induced by the van der Waals force under different boundary conditions. The European Physical
Journal Plus. 2017;132:169.

12. Hamdan M.N., Shabaneh N.H. On the large amplitude free vibrations of a restrained uniform beam car-
rying an intermediate lumped mass. Journal of Sound and Vibration. 1997;199:711-36.

13. Guo Z., Leung AYT, Yang H.X. Iterative homotopy harmonic balancing approach for conservative oscil-
lator with strong odd-nonlinearity. Applied Mathematical Modelling. 2011;35:1717-28.

14. Khan Y., Akbarzade M., Kargar A. Coupling of homotopy and the variational approach for a conserva-
tive oscillator with strong odd-nonlinearity. Scientica Iranica A. 2012;19:417-22.

15. Pirbodaghi T., Hoseini S.H., Ahmadian M.T., Farrahi G.H. Duffing equations with cubic and quintic
nonlinearities. Computers & Mathematics with Applications. 2009;57:500-6.

16. Lai SK, Lim CW, Wu BS, Wang C, Zeng QC, He XF. Newton—harmonic balancing approach for accurate
solutions to nonlinear cubic—quintic Duffing oscillators. Applied Mathematical Modelling.
2009;33:852-66.

17. Elias-Zuiiiga A. Exact solution of the cubic-quintic Duffing oscillator. Applied Mathematical Modelling.
2013;37:2574-9.

From the Editorial Board: The article corresponds completely to submitted manuscript.

IToctynumna 24.10.2017 VYrBepxneHa B nedats 30.01.2018

124



