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Abstract: The geometric nonlinear vibrations of pretensioned orthotropic membrane
with four edges fixed, which is commonly applied in building membrane structure, are stud-
ied. The nonlinear partial differential governing equations are derived by von Karman’s
large deflection theory and D’Alembert’s principle. Because of the strong nonlinearity of
governing equations, the homotopy perturbation method (HPM) to solve them is applied.
The approximate analytical solution of the vibration frequency and displacement function is
obtained. In the computational example, the frequency, vibration mode and displacement as
well as the time curve of each feature point are analyzed. It is proved that HPM is an effec-
tive, simple and high-precision method to solve the geometric nonlinear vibration problem
of membrane structures. These results provide some valuable computational basis for the
vibration control and dynamic design of building and other analogous membrane structures.
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1. Introduction.

The membrane structure is a thin flexible structure, so it is easy to engender vibration
and relaxation deformation under the external load, thus results in engineering accident.
Therefore, it is quite necessary to study the vibration characteristic of membrane structure to
provide some computational basis for the design of membrane element and structure to en-
sure the safety and practicability of membrane element and structure.

There are number of reports about the linear and nonlinear vibration problem of mem-
branes. Wang et al. [1] studied the vibration characteristics of the wrinkled square mem-
brane structure subjected to the asymmetric tension and obtained some important conclu-
sions for the structural design and optimization of membrane space structures. Jenkins and
Korde [2] presented a experimental research on membrane vibration, and the results is valu-
able for the control-structure-interaction community. Li et al. [3] analyzed the wrinkling
characteristics and dynamic mechanical behavior of membrane by eigenvalue method. The
results indicated that the stress in wrinkled area is not uniform and vibration modes of wrin-
kled membrane are strongly correlated with the wrinkling configurations. The free vibration
problems of composite rectangular membranes with oblique and bent interface were studied
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by using an analytical method by Kang and Lee [4, 5]. The results showed that the natural
frequencies and their associated modes obtained by them are very accurate compared with
the results by the FEM or exact solutions. The vibration problems of rectangular membranes
placed in a vertical plane were solved and the exact solutions of the vibration frequencies
were obtained by Wang [6]. Gonalves and Soares [7, 8] presented the mathematical model-
ing for the nonlinear vibration analysis of a prestretched hyperelastic circular and annular
membrane under finite deformations. Zheng et al. [9] studied the dynamic response of rec-
tangular orthotropic membranes under impact loading by analytical and numerical method.
Shin et al.[l10]investigated the geometric nonlinear dynamic characteristics of the out-of-
plane vibration of an axially moving membrane by using Hamilton’s principle and
Galerkin’s method. The results showed that the translating speed, boundary conditions and
aspect ratio of the membrane have effects on the natural frequencies, mode shapes and sta-
bility for the out-of-plane vibration of the moving membrane. Zhang and Shan [11] studied
initial equilibrium shape and free vibration poperties pre-tensioned membrane structures by
applying relaxation method. Example analysis demonstrated that the method is a simple,
practical and accurate geometric nonlinear method to study the tensioned cladding-network
with big span. Li et al. [12] presented NBA-UM (Nonlinear Buckling Analysis-Update Ma-
trix) method to analyze the vibration behaviors of the wrinkled membrane. The results re-
veal that the wrinkles have great effects on the free vibration characteristics of wrinkled
membrane. Pan and Gu [13] studied the effects of membrane's pre-strain, size, elastic ratio,
density, relative amplitude and dead load of square tensioned membrane to the structure's
nonlinearity and deduced the free oscillating system’s equivalent fundamental frequency.
Reutskiy [14] adopted a new numerical method to study nonlinear vibration of arbitrarily
shaped membranes. The method is based on mathematical modeling of physical response of
a system that was excited over a range of frequencies. Formosa [15] presented a work de-
voted to the study of the operation of a miniaturized membrane Stirling engine. The nonlin-
earities of large amplitude vibration of Stirling engine were concerned, and the stability
analysis to predict the starting of the engine and the instability problem that leads to the
steady-state behavior were displayed. Zheng and Liu et al. [16, 17] studied the geometric
nonlinear vibration problem of orthotropic membrane structures by power series expansion
method and L — P (Lindstedt — Poincaré¢ ) method. But the results are only suitable for the
weak nonlinear situation. In many cases, the amplitude of the membrane is much larger than
its thickness in vibration process, so the vibration is a strong geometric nonlinear vibration.
Therefore, it is necessary to pursue an effective method for solving the strong nonlinear vi-
bration of membrane structures.

The homotopy perturbation method (HPM) introduced by He [18 — 21] is an effective
method to solve strong nonlinear problems. It is widely applied to mathematics, mechanics,
economics, and biology and so on. For instance, the nonlinear oscillator with discontinuities
was studied by He [22] by using HPM. Cveticanin [23] studied pure nonlinear differential
equation by HPM. Yildirim [24] applied HPM to solve the Fokker-Planck equation. EI-
Sayed et al. [25] solved partial differential equations of fractional order in finite domains by
HPM. Golbabai and Javidi [26] proposed HPM to solve n"-order integro-differential equa-
tions. Ozturk and Coskun [27] applied HPM to analysis the free vibration of beam on elastic
foundation. Saffari et al. [28] applied HPM to elasto-plastic analysis of steel plane frames.
Ghotbi et al.[29] solved ratio-dependent predator-prey system with constant effort harvest-
ing using HPM. Reck et al. [30] solved the Helmholtz equation in conformal mapped AR-
ROW structures using HPM. Andrianov et al. [31] used HPM to analyze the natural in-plane
vibration of rectangular plates. Domairry and Aziz [32] presented approximate analysis of
MHD squeeze flow between two parallel disks with suction or injection by HPM. In addi-
tion to these researches, there are many other applications of HPM [33, 34].

In this paper, we studied the strong geometrical nonlinear vibration of pretensioned or-
thotropic membrane structure with four edges simply supported or fixed by using HPM, and
obtained the approximate analytical solution of the vibration frequency and displacement
function. The computational example showed HPM is an effective and very simple method
for solving the strong geometrical nonlinear vibration of membrane structures and the re-
sults have a very high precision.
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2. Governing equations and boundary conditions.

The orthotropic membrane is mainly applied in building structure, and it is generally
simplified and considered as a rectangular structure. In Figs.1 and 2, each member of the
building membrane structure roof can be considered as a rectangular orthotropic membrane
structure with four edges simply supported or fixed.

Fig. 2. The membrane roof of one stadium

The orthotropic membrane’s two orthogonal directions are the two principal fiber direc-
tions, and the material characteristics of the two principal fiber directions are different. The
simplified theoretical model for the orthotropic membrane is shown in
Fig. 2, 3. The two principal fiber directions are x and y, respectively. @ and b denote the
length of x and y directions, respectively; Ny, and Ny, denote the initial tension in x and y
directions, respectively.

According to the Von Karmén’s membrane large deflection theory and D’Alembert’s
principle [16, 17], the vibration partial differential equation and consistency equation of
orthotropic membrane are:
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Fig. 3. Rectangle membrane with four edges simply supported
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where p denotes aerial density of membrane; N, and N, denote additional tension in x and y

direction, respectively; Ny, and Ny, denote initial tension in x and y direction, respectively;
N, denotes additional shear force; Np, denote initial shear force; w denotes deflection
w(x, y, t); h denotes membrane’s thickness; £, and £, denote Young’s modulus in x and y
direction, respectively; G' denotes shearing modulus; x4, and x, denote Poisson's ratio in x

and y direction, respectively.
Introduce the stress function, we have
e o’ o’
= h_z s N,=h (f ’ =—h— -
oy Ox Oxoy

and set
N, =h-o,; NO_V=h-0'0y; N,

Oxy =

—h Oy -

Then governing equations (1) can be simplified as follows:
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where ¢ denotes stress function ¢(x, y, f), oo, and oy, denote initial tensile stress inx and y di-

rection, respectively. oy, denotes initial shear stress.
The corresponding boundary conditions are as follows:

0w | w(x,0,0)=0 62—W(xm)—o
W(O,y,t)ZO, axz (O,y,t):O, ) — Y 8)/2 s YU, =Y,
2 2
w(a,y,t)=0, Z?(a,y,t)zo; w(x,b,t) = Z—Zv(x,b,t)=0,
x Wy
Op 0, =0: azw(th):O 62q’(th):O azq’(oy t)=0;
o’ ( > )_ ’ Ox0y Ox0y ’ ’
2 2 2 2
% o) 0@ @
,t)=0; b,t)=0; b,t)=0; ,v,t)=0.
a 2 (a y ) ay ('x ) axay (x ) axay (a y )

3. Simplification of Governing Equations.

Functions that satisfy the boundary conditions (4) and (5) can be written as follows:

'xy’ :Zzumn mn y)

4)

)

(6)
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where W(x, y) is the mode shape function; and4,, (x,y), u,,(¢)and U,,(¢) are the un-
known functions. Substituting Eqgs. (6) and (7) into Eq. (3) ylelds

ZZ[ 1 8 (x.0) 13, (x’y){i_ﬁ_&J@“%(x,y)J_Um ()=

m=1 n=1 ay Ez ax4 G El E2 axzayz

=ZZ[( m,,(xy)j O W,y (%,) OW, y)} 2 (1) v
Ox0Oy ox’ oy’ A

=1 n=1

To equate the two ends of Eq. (8), it must beU,,, (¢) =u_, (¢). Then Eq. (7) can be rewritten
as follows:

o(x,3,8) =2 up, (1) b (%, ). ©9)

In order to simplify the computing process, we can take one item of Egs. (6) and (9) to com-
pute, namely

W(X, 158) = thy, (1) W, (%,2)5 (10)

P(X,p,t)=1p, (1) B, (%, 7), (11)
where

u,, ()=u(t)=u, W, (x.y)=W(xy)=W. o(xr.0)=0. 4, (x.y)=¢(x.y)=¢.

According to the vibration theory of membrane, the mode shape function that satisfy the
boundary condition (4) is

. nmy
sin—-—, 12
5 (12)

W, (x,y)=W(x,y)=W =sin mry
a

where m and n are integers and denote the sine half-wave number in x and y, respectively.
Substituting Egs. (10) and (11) into Eq. (3) yields

1 a4¢+iﬁ+( l lul &J a4¢ :(aszz _azW aZW

E o' E,ox' E_E_Ez ox*oy’ |\ oxoy ot o’

(13)

Substituting Eq. (12) into Eq. (13) yields

\ 4 22 4
16¢ 15¢ ( H &] 0¢ _mnax (coszmﬂx+cos2n;[yj. (14)

E oyt E o’ E_E_Ez ox*oy’ 24’ a

From analysis of the solution structure of Eq. (14) and the boundary conditions, we can as-
sume the solution of (14) is

2
+ f-cos nry +71x3 -1—7/2y3 +7/3x2y +}/4xy2 +7/5x2 + }/6)/2 +y,xy . (15)

#(x,y)=a-cos 2mx

Substituting Eq. (15) into Eq. (14) yields

lom*z'a cos 2mmx N lon'z*p cos 2nmy m*n’ ' [COS 2mmx + cos Znﬂyj 16
a

a'E, a b*E, a 24

E,n*ad’ Em*b*
From Eq.(16), we obtain o = —2 ; f=—1 .
a.(16) 32m’b? p 32n*a?
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Substituting Eq. (15) into boundary condition (5) yields
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. ?(0 yit)=2y,y+2y, —a " =0;

2¢ 272_2
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Substituting a, B, ¥, V2> V3> Ya» Vs» Ve» V7 into Eq. (15), and then substituting Eq.
(15) into Eq. (11) yields

En’a®  2mrxx Em'® _ 2nmy n’E,n’ 5, mEm’
o(x,y,1)= [32 7 COS +3£n2a2 cos— =+ 1622 X+ 16;:2 y? |u? (1) (17)

Substituting Egs. (10), (11) and (17) into Eq. (2) and according to the Galerkin method, we have

0? w 6 o*w 0%\ 0*w 0? o*w
_[j p 2 Ox gzo 2 O-Oy + Z) 2 + O-Oxy + 4 —— |\ Wds =
h ot oy~ ) ox ox” ) Oy Ox0y ) Ox0y
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Obviously, Eq. (18) is a nonlinear differential equation with respect to u(¢) :

£ "2“(’) AU ey e, u (1) =0, (19)

where

&= Lj%Wzds = Lj%sinz m;rx sin’ n;:yds = /Zlb ;

o'W oW wlab( m? n’
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2 2 2 2 2 4 4 4
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Substituting the value of & , &, and &, into (19) and, yields:

d*u(t) hr* [ m? n? 3hat ( Em? E n'
2( ) + 2 Oox + 2 O-O_v u(t) + ! 4 4 us(t) =0.
dt p \a b 16p | a b
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By setting /1=hﬂ {m—200x+2—20'0yj and g=3lh6ﬂ ( ":1 + 2:1 , then we have
p La o\ a
du()

> +A-u)+e-u’(t)=0. (20)
dt

In many cases, ¢ is not a small perimeter in Eq. (20), namely Eq. (20) is a strong non-
linear vibration equation.

4. Solution of Governing Equations.

4.1. Basic idea of homotopy perturbation method. We use the homotopy perturbation
method (HPM) to solve Eq. (20) in this paper. The HPM is a new, effective and concise
method for solving the strong nonlinear problems. It does not depend on the small perimeter
and has high accuracy. In order to illustrate the basic idea of this method, we consider the
following nonlinear differential equation

A(u)—f(r)zO, reQ) (21)
with boundary conditions
B(u,@u/an):o, rel”, (22)

where 4 is a general differential operator, B is a boundary operator, /(1) is a known analytic
function, /" is the boundary of the domain Q.

The operator 4 can, generally speaking, be divided into two parts L and N, where L is
linear, while N is nonlinear, Eq. (21), therefore, can be rewritten as follows

L(u)+N(u)- £ (r)=0. (23)

By the homotopy technique, we construct a homotopy v(r, p) 1 Qx [O, 1] — R, which satisfies

H(v,p)=(1-p)[L(v)-L(uy) |+ p[4(u)= f(r)]=0, pe[0,1], reQ,  (24)

H(v, p)=L(v)-L(uy)+ pL(uy)+ p[ N(v)- f(r)]=0, (25)

where p €[0,1] is an embedding parameter, u, is an initial approximation of Eq. (21), which
satisfies the boundary conditions. Obviously, from Eq. (24) or (25) we have

H(v,0)=L(v)-L(u,)=0; (26)

H(v.1)=A(v)-f(r)=0. 27)
The changing process of p from zero to unity is just that of v(r, p) from uy(r) to u(r). In
topology, this is called deformation, and L(v)—L(u,), A(v)—f(r) are called homotopic.
Because 0 < p <1 , we use the imbedding parameter p as a “small parameter”, and as-
sume that the solution of Eq. (24) or (25) can be written as a power series in p:
V=V, Py PV e (28)
Setting p = 1 result in the approximate solution of Eq. (21):

u:lirl}v=v0+vl+v2+---. (29)
P>

The coupling of the perturbation method and the homotopy method is called the homo-
topy perturbation method, which has eliminated limitations of the traditional perturbation
methods. In the other hand, the proposed technique can take full advantage of the traditional
perturbation techniques [18 — 22].

128



4.2. Homotopy perturbation solution for governing equations. Eq. (20) is a Duffing

equation; it is rewritten with its initial condition:
2

d;+/l-u+£-u320, u(0)=a,, u'(0)=0. (30)

We construct a homotopy which satisfies

L(v)=L(uy)+ pL(uy)+ pev’ =0, (31)
where L(u)=du/dt* +A-u .

One may now try to obtain a solution of Eq. (31) in the form

v(t):vo(t)+p-v](t)+p2-vz(t)+---, (32)
where the v, (t), i=0,1,2--- are functions yet to be determined. The substitution of Eq. (32)
into Eq. (31) yields

L(vy)—=L(uy)=0; v,(0)=ay; vy (0)=0; (33)

L(vl)+L(u0)+£vg=0; VI(O)ZVI’(O):O, (34)

We set v, (t) =u, (t) = a, cos JAat with an unknown constant ¢ as the initial approxima-
tion of Eq. (31). Therefore from Eq. (34), we have
02;1 + Ay, +aq, (/1 Aa’ + i ga, )cos Jaat + 411 £ag cos 3Jhat = (35)

Eq. (35) is a linear differential equation, and it can be solved easily. The solution of Eq.
(35)is

v = (ﬂ -la’ +§ga§jL(cosﬁat —cosﬁt)+
4 /L(az —1)
(36)

£dy )(cos3x/_at cos\/_t)

4/1(9 2

In order to eliminate the secular term which may occur in the next iteration, we set the coef-
ficient of “ cosv/A¢ 7 zero:

3 a ca,
| A-Aa? +—ga2J 0 ____ L ___— (37)
[ 47" ) a(e’-1) 44(9a° -1)
In Eq. (37), A #0, so we have
104+7£a2+,/644° +104 sa +49°a;
a= (38)
184
Eq. (36), therefore, can be re-written as follows
vl—(/i—/iaz +§8a0j cosAat +———2cos3Aar . (39)
47" )2 (a -1) 42 (9a -1)
In most cases, the first-order approximation is sufficient, and then we have
3¢a,
u (1) =v, (2)+v, (1) = cosfat+ cos3v/Aar . (40)

4/1(0( - ) <9a - )
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The frequency of the solution can be expressed as follows

e o \/10/1+7£a§+\/64/121;104/15a02+49£2a3 ’ m

while the exact frequency is '®!

//1 +< a,
= 2 (42)

wex 2 P 2
i 1)1! ca,’
= (2 p)” 24 +¢eay

where p =0,1,2,3--- , and the frequency obtained by the L — P perturbation method is [17]

w :\/z 38610 (43)

pert ‘\/_ 8

Substituting Eqs.(3.7) and (4.20) into Eq.(3.1), we can obtain the displacement function of
nonlinear free vibration of rectangular orthotropic membrane in large amplitude

i Y 3¢a;
w(x, y,1) ;;sm p i {4/1(0[20_ )cos\/_at+4/1(9a - )cos3«/_atJ (44)

It is important to note that the coefficient a, is the single-order amplitude of membrane, a,

is determined by the initial displacement of membrane. Assume the initial displacement of
membrane is

w(x,,0)=w,(x,5). (45)

According to the orthogonality of vibration mode, we have
I I w, (x, y)sm X i n;;y dxdy . (46)

Consequently, only in some simple and special case can we obtain the coefficient a,, name-
ly obtain the complete solution of membrane vibration. Assumming w, (x, y) =W, , and

substituting it into Eq. (46), we have

16w,

m,n=1,3,5--);
a, =4 mnz’ ( ) (47)

0 (m,n=2,4,6-~).

Form Eq. (48), we can see that a, decreases with the increase of vibration orders.

5. Computational Examples and discussions.

Take the membrane material commonly applied in project as an example. The Young’s
modulus in x and y are E, = 1,4x 10° KN/m? and E, = 0,9x10° KN/m?, respectively; the aerial
density of membranes is p = 1,7 kg/m?; the membrane’s thickness is 2= 1,0 mm, a = 1 m,
b =1m, 6y, = 6y, =5,0x10° KN/m’,

5.1. Computation of frequency. According to the initial displacement wy, we can figure
out ag by Eq. (47). Then substitute a, into Egs. (41), (42) and (43) to figure out the freqency
of the first three orders. The results are shown in Table 1, and plot them in Figs. 4 — 6.
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Table 1: Frequency values (rad/s) under different initial displacement

=} = initial displacement wy ()
E|
= 0,10 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 we—0
(41) | 749,32 682,31 616,22 551,38 488,31 427,80 371,13 | 320,38 | 278,82 | 250,88 | 240,95
(42) | 725,63 661,75 598,82 537,18 477,30 419,93 366,21 | 317,97 | 278,09 | 250,82 | 240,95

(43) | 1251,66 1059,62 | 887,80 736,20 604,80 493,63 402,66 | 331,91 | 281,38 | 251,06 | 240,95

(1) | 144747 132323 | 120125 | 108234 | 967,63 | 858,84 | 758,58 | 670,71 | 600,64 | 554,80 | 538,78

(42) | 140522 1286,99 | 1171,08 | 105821 | 949,45 846,33 751,16 | 667,32 | 599,71 | 554,73 | 538,78

(43) | 2161,18 1852,93 | 1577,12 | 1333,76 | 1122,84 | 94438 798,36 | 684,80 | 603,68 | 603,68 | 538,78

(41) | 1752,38 1594,08 | 1437,77 | 1284,18 | 113444 | 990,34 854,77 | 732,60 | 631,70 | 563,27 | 538,78

(42) | 1695,88 1544,89 | 139598 | 124987 | 1107,64 | 970,97 842,48 | 726,44 | 629,80 | 563,10 | 538,78

(43) | 3034,62 2560,41 | 2136,12 | 1761,74 | 1437,28 | 1162,74 | 938,11 | 763,40 | 638,61 | 563,74 | 538,78

The comparison and analysis of Table 1 and Figs. 4 — 6 are as follows.

The first order

1400

1200

1000

- (4.21)
= (4.22)
(4.23)

800
600

400 ——
200 ——

Frequency values(rad/s)

0.10 0.09 0.08 0.07 006 005 004 0.03 0.02 0.01 .00

Initial displacement (m)

Fig. 4. Frequency values of the first order under different initial displacement

The second order

2450.000

2100.000

1750.000

- (4.21)
= (4.22)
(4.23)

1400.000

1050.000

700.000

Frequency values of (rad/s)

350.000

0.000
0.100  0.090 0.080 0.070 0.060 0.050 0.040 0.030 0.020 0.010 0
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Fig. 5. Frequency values of the second order under different initial displacement
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The third order
3500

[8)
1=
=3
=]

2500

2000 —+-(4.21)

1500 - (4.22)

- -»-...,\-\'
_\,‘\""— —

(4.23)

Frequency values of (rad/s)

w
=
=

0.10  0.09 0.08 0.07 006 005 0.04 003 0.02 001 00

Initial displacement (m)

Fig. 6. Frequency values of the second order under different initial displacement

1. All of the frequency values calculated according to Egs. (41), (42) and (43) enlarge
with the increase of initial displacement. This is due to the fact that the inner force, lateral
rigidity and elastic restoring force will increase with the increase of initial displacement of
membrane, and then the membrane will vibrate more quickly. This reflects the geometric
nonlinearity characteristic of the vibration of membrane in large amplitude. Meanwhile, the
frequency values under the same initial displacement enlarge with the increase of orders.
When the initial displacement approaches zero, namely wy—0, the frequency values calcu-
lated according to Egs. (41), (42) and (43) are the same and equal to the small amplitude
vibration frequency values.

2. The frequency values calculated according to Eq. (41) are slightly larger than the cor-
responding ones calculated according to Eq. (42). The relative differences between them
become larger and larger with the increase of initial displacement, and the maximal relative

difference is 3,33% in Table 1 and Figs. 4 — 6.

3. The frequency values calculated according to Eq. (43) are larger than the correspond-
ing ones calculated according to Eq. (42). The relative differences between them increase
dramatically with the increase of initial displacement, and the maximal relative difference is
78,94% in Table 1 and Figs. 4 — 6.

4. When the initial displacement is small and order is low, the frequency values com-
puted by Eq. (41), (42) and (43) are very close. When w, < 0,04, the maximum relative dif-
ference between them is 11,35%. Therefore, we can infer that while wy/a < 0,04, using Egs.
(41) and (43) to compute the frequency of first three orders can satisfy the engineering pre-
cision and is very simple and convenient.

5. Obviously, the precision of Eq. (41) is higher than Eq. (43). Eq. (43) is only suitable
for the situation of weak nonlinear vibration of membrane, namely Eq. (43) is valid only for
small parameters. Eq. (41) is not only suitable for the situation of weak nonlinear vibration
of membrane, but also suitable for the situation of strong nonlinear vibration of membrane,
namely Eq. (43) is valid not only for small parameters, but also for large parameters.

5.2. Further discussions of frequency. In Table 1, the maximum initial displacement is
wo= 0,1m and the maximal relative difference between the two corresponding frequency
values of Eqgs. (41) and (42) is 3,33%. But if wj is larger, even wy—o0 (or ap—w, ca; —0)
how about the precision of (41)? Hence we construct a limit as follows:

lim =—*=
cay —>» %)
1+842
0
- 2 . =0,96065.
\/1024—75(15+\/64/12+104/1£a5+4952a3 $ 1y p-DY( sa’ Y
18 = (2p)t ) \(22+¢a,
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Therefore, for any value of wy (or ao, £a; ), it can be easily proved that the maximal rela-

tive error is less than 3,935%.
5.3. Analysis of vibration modes. Substituting the material and geometric parameters in

computational example and the frequency values calculated by Eq. (41) (while wy =0,05m)
into Eq. (44), we obtain the displacement function of the vibration of the first three orders.

1. The first order vibration mode
w(x, y, 1) =(0,0789866 cos 427,8¢ +0,00207038 cos 1283,4¢ ) sin zxsin 7 y.

2. The second order vibration mode
w(x, ¥, t) = (0,026399 co0s 858,84t +0,000620067 cos 2576, 52t) sinzxsin3ry.

3. The third order vibration mode
w(x, ¥, t) = (0,0263092 c0s 858,84t +0,000709343 cos 2971 ,02t) sin3zxsinzy.

According to these displacement functions, we can draw the vibration mode figures of
the first three orders while ¢ = 0,02s in Figs. 7 to 9. Superposing the vibration mode of the
first four orders, we can obtain the superposed vibration mode figure in Fig. 10.

Warp 0 Wt

Fig. 7. The first order vibration mode Fig. 8. The second order vibration mode
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Fig. 9. The third order vibration mode Fig. 10. The superposed vibration mode of
the first three orders

From the result of the vibration mode analysis, we can conclude that the amplitude de-
crease with orders, namely the contribution of high orders for total mode decrease gradually.

In addition, using the displacement function (44) can compute the vibration mode of each or-
der and obtain the total superposed vibration mode conveniently, and the total mode is axi-

symmetric.
5.4. Analysis of displacement time histories of feature points. Substituting the material

and geometric parameters in computational example and the frequency values calculated
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according to Eq. (41) (while wy = 0,05m) into Eq. (44), we can compute the displacement
time histories of the feature points on membrane surface and draw the displacement and
time curves. The feature points are 4 (x = 0,25 m, y = 0,25m), B (x = 0,25 m, y = 0,75m), C
(x=0,5m, y=0,5m), D (x=0,75S m, y=0,25m) and £ (x = 0,75m, y = 0,75 m), and they are
shown in Fig. 11.

The first three single-order displacement time histories are shown in Figs. 12 — 26 and the

superposed displacement time histories of the first three orders are shown in Figs. 27 — 31.
w(m)
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Fig. 12. Displacement and time curve of 4 point (1st order)
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Fig. 13. Displacement and time curve of 4 point (2nd order)
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Fig. 1 4 Displacement and time curve of 4 point (3rd order)
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Fig. 15. Displacement and time curve of B point (1st order)
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Fig. 16. Displacement and time curve of B point (2nd order)
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Fig. 17. Displacement and time curve of B point (3rd order)

UL
WVTVY

Fig. 18. Displacement and time curve of C point (1st order)
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Fig. 19. Displacement and time curve of C point (2nd order)
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Fig. 20. Displacement and time curve of C point (3rd order)
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Fig. 21. Displacement and time curve of D point (1st order)
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Fig. 22. Displacement and time curve of D point (2nd order)
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Fig. 23.Displacement and time curve of D point (3rd order)
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Fig. 25. Displacement and time curve of D point (2nd order)
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Fig. 26. Displacement and time curve of D point (3rd order)
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Fig. 27. Superposed displacement and time curve of 4 point
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Fig. 28. Superposed displacement and time curve of B point
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Fig. 31. Superposed displacement and time curve of £ point

From the analysis of displacement time histories, we can obtain the following conclusion.

We can obtain the single-order and superposed displacement time history of each fea-
ture point by using Eq. (44) conveniently. The displacement time histories of 4, B, D and E
point are the same. This is because the displacements of 4, B, D and E point are symmetri-
cal. The displacement time history of C is different from the other four points, and the am-
plitude of C point is maximal. This is because C point is the center of the membrane, and the
amplitude is the maximum spontaneously.

6. Conclusions.

1. This paper solved the governing equations of nonlinear free vibration of rectangular
orthotropic membrane structure in large amplitude by homotopy perturbation method
(HPM), and obtained the approximate analytical solution of the frequency and displacement
function of the nonlinear free vibration of rectangular membrane structure with four edges
simply or fixed supported.

2. The precision of Eq. (41) obtained by HPM in this paper is higher than Eq. (43) ob-
tained by L-P perturbation method in paper [17], and (43) is only suitable for the weak non-
linear situation, namely Eq. (43) is valid only for small parameters. But Eq. (41) is not only
suitable for the weak nonlinear situation, but also suitable for the strong nonlinear situation,
namely Eq. (41) is valid not only for small parameters, but also for large parameters. In ad-
dition, for any value of initial displacement w,, the maximal relative error between the
homotopy perturbation solution Eq. (41) in this paper and the accurate solution Eq. (42) in
paper [16] is less than 3,935%.

3. From the displacement function (44), we can conveniently obtain the single-order and
superposed vibration mode and displacement and time curves of the studied membrane
structure. Results obtained from this paper provide some theoretical basis for the computa-
tion and control of nonlinear vibration of membrane structures, and provide some theoretical
references for solving the response of membrane structures under dynamic loads. In addi-
tion, results of this paper provide some theoretical references for the dynamic design and
manufacture of membrane structures.
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PE3IOME. BuBueHO reoOMETpHYHO HENiHIiHI KOJMBAaHHS MOMEPEIHHO HAMPYKEHOI OPTOTPOIMHOT
MeMOpaHH 3 4OTHpMa (HIKCOBAaHMMH KpPasiMH, siKa 3BUYAHO BUKOPHCTOBYEThCS B OY/AiBEIbHIMX MEMOPaHHHUX
KOHCTpyKUisX. HemniHiliHI piBHSAHHS IMHAMIKU B YaCTHHHUX MOXIJHUX OTPUMaHO Ha 0a3i Teopii Gpon Kapma-
Ha PO BENMKi NporuHy i npuHIuy J1°Ansmoepa. 3acTOCOBaHO METOJ TOMOTOIIYHOIO 30ypEeHHS UL PO3-
B’SI3yBaHHS OTPUMAHUX CHIIBHO HEMIHIHHUX PiBHAHb. OTPHUMAHO HAOIMKCHUN aHAIITHYHUN PO3BSI30K IS
YaCTOTU KOJIUBaHb 1 PyHKII] 3MillleHb. Y YHCIOBOMY NPUKJIAJI IPOAHATI30BAHO YaCTOTH, (POPMH KOJIHMBAHb,
3MIIIeHH 1 3aJI€XKHI BiJl 9acy KpHBI y KOXKHiH XapakTepHiil Touni. JloBeneHo, o neit MeTox € e()eKTHBHUM,
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MIPOCTUM 1 BUCOKOTOYHMM JIJIsl PO3BSA3YBAHHI 33[a4 MPO T'EOMETPHUYHO HENMiHIIHI KOJHUBAHHSI MEMOPaHHHUX
KOHCTpyKUid. Lli pe3yapTraTy CTBOPIOIOTH IEBHY KOPUCHY 0a3y AJisi OOYKCIICHHS 3a/1a4 PO YIPaBIiHHS KO-
JIMBaHHSAMU 1 IMHAMIYHE KOHCTPYIOBaHHs OyliBEelIbHUX Ta HIIUX aHAJIOTYHUX MEMOpPAHHHUX KOHCTPYKIIIH.
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