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Abstract: The geometric nonlinear vibrations of pretensioned orthotropic membrane 

with four edges fixed, which is commonly applied in building membrane structure, are stud-
ied. The nonlinear partial differential governing equations are derived by von Kármán’s 
large deflection theory and D’Alembert’s principle. Because of the strong nonlinearity of 
governing equations, the homotopy perturbation method (HPM) to solve them is applied. 
The approximate analytical solution of the vibration frequency and displacement function is 
obtained. In the computational example, the frequency, vibration mode and displacement as 
well as the time curve of each feature point are analyzed.  It is proved that HPM is an effec-
tive, simple and high-precision method to solve the geometric nonlinear vibration problem 
of membrane structures. These results provide some valuable computational basis for the 
vibration control and dynamic design of building and other analogous membrane structures. 
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1. Introduction. 
The membrane structure is a thin flexible structure, so it is easy to engender vibration 

and relaxation deformation under the external load, thus results in engineering accident. 
Therefore, it is quite necessary to study the vibration characteristic of membrane structure to 
provide some computational basis for the design of membrane element and structure to en-
sure the safety and practicability of membrane element and structure.  

There are number of reports about the linear and nonlinear vibration problem of mem-
branes. Wang et al. [1] studied the vibration characteristics of the wrinkled square mem-
brane structure subjected to the asymmetric tension and obtained some important conclu-
sions for the structural design and optimization of membrane space structures. Jenkins and 
Korde [2] presented a experimental research on membrane vibration, and the results is valu-
able for the control-structure-interaction community. Li et al. [3] analyzed the wrinkling 
characteristics and dynamic mechanical behavior of membrane by eigenvalue method. The 
results indicated that the stress in wrinkled area is not uniform and vibration modes of wrin-
kled membrane are strongly correlated with the wrinkling configurations. The free vibration 
problems of composite rectangular membranes with oblique and bent interface were studied 
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by using an analytical method by Kang and Lee [4, 5]. The results showed that the natural 
frequencies and their associated modes obtained by them are very accurate compared with 
the results by the FEM or exact solutions. The vibration problems of rectangular membranes 
placed in a vertical plane were solved and the exact solutions of the vibration frequencies 
were obtained by Wang [6]. Gonalves and Soares [7, 8] presented the mathematical model-
ing for the nonlinear vibration analysis of a prestretched hyperelastic circular and annular 
membrane under finite deformations. Zheng et al. [9] studied the dynamic response of rec-
tangular orthotropic membranes under impact loading by analytical and numerical method. 
Shin et al.[10]investigated the geometric nonlinear dynamic characteristics of the out-of-
plane vibration of an axially moving membrane by using Hamilton’s principle and 
Galerkin’s method. The results showed that the translating speed, boundary conditions and 
aspect ratio of the membrane have effects on the natural frequencies, mode shapes and sta-
bility for the out-of-plane vibration of the moving membrane. Zhang and Shan [11] studied 
initial equilibrium shape and free vibration poperties pre-tensioned membrane structures by 
applying relaxation method. Example analysis demonstrated that the method is a simple, 
practical and accurate geometric nonlinear method to study the tensioned cladding-network 
with big span. Li et al. [12] presented NBA-UM (Nonlinear Buckling Analysis-Update Ma-
trix) method to analyze the vibration behaviors of the wrinkled membrane. The results re-
veal that the wrinkles have great effects on the free vibration characteristics of wrinkled 
membrane. Pan and Gu [13] studied the effects of membrane's pre-strain, size, elastic ratio, 
density, relative amplitude and dead load of square tensioned membrane to the structure's 
nonlinearity and deduced the free oscillating system’s equivalent fundamental frequency. 
Reutskiy [14] adopted a new numerical method to study nonlinear vibration of arbitrarily 
shaped membranes. The method is based on mathematical modeling of physical response of 
a system that was excited over a range of frequencies. Formosa [15] presented a work de-
voted to the study of the operation of a miniaturized membrane Stirling engine. The nonlin-
earities of large amplitude vibration of Stirling engine were concerned, and the stability 
analysis to predict the starting of the engine and the instability problem that leads to the 
steady-state behavior were displayed. Zheng and Liu et al. [16, 17] studied the geometric 
nonlinear vibration problem of orthotropic membrane structures by power series expansion 
method and L – P (Lindstedt – Poincaré ) method. But the results are only suitable for the 
weak nonlinear situation. In many cases, the amplitude of the membrane is much larger than 
its thickness in vibration process, so the vibration is a strong geometric nonlinear vibration. 
Therefore, it is necessary to pursue an effective method for solving the strong nonlinear vi-
bration of membrane structures. 

The homotopy perturbation method (HPM) introduced by He [18 – 21] is an effective 
method to solve strong nonlinear problems. It is widely applied to mathematics, mechanics, 
economics, and biology and so on. For instance, the nonlinear oscillator with discontinuities 
was studied by He [22] by using HPM. Cveticanin [23] studied pure nonlinear differential 
equation by HPM. Yildirim [24] applied HPM to solve the Fokker-Planck equation. EI-
Sayed et al. [25] solved partial differential equations of fractional order in finite domains by 
HPM. Golbabai and Javidi [26] proposed HPM to solve nth-order integro-differential equa-
tions. Ozturk and Coskun [27] applied HPM to analysis the free vibration of beam on elastic 
foundation. Saffari et al. [28] applied HPM to elasto-plastic analysis of steel plane frames. 
Ghotbi et al.[29] solved ratio-dependent predator-prey system with constant effort harvest-
ing using HPM. Reck et al. [30] solved the Helmholtz equation in conformal mapped AR-
ROW structures using HPM. Andrianov et al. [31] used HPM to analyze the natural in-plane 
vibration of rectangular plates. Domairry and Aziz [32] presented approximate analysis of 
MHD squeeze flow between two parallel disks with suction or injection by HPM. In addi-
tion to these researches, there are many other applications of HPM [33, 34].  

In this paper, we studied the strong geometrical nonlinear vibration of pretensioned or-
thotropic membrane structure with four edges simply supported or fixed by using HPM, and 
obtained the approximate analytical solution of the vibration frequency and displacement 
function. The computational example showed HPM is an effective and very simple method 
for solving the strong geometrical nonlinear vibration of membrane structures and the re-
sults have a very high precision.  
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2. Governing equations and boundary conditions. 
The orthotropic membrane is mainly applied in building structure, and it is generally 

simplified and considered as a rectangular structure. In Figs.1 and 2, each member of the 
building membrane structure roof can be considered as a rectangular orthotropic membrane 
structure with four edges simply supported or fixed.  

 

  
 

Fig. 1. The membrane roof of one office building 
 

  
 

Fig. 2. The membrane roof of one stadium 
 
The orthotropic membrane’s two orthogonal directions are the two principal fiber direc-

tions, and the material characteristics of the two principal fiber directions are different. The 
simplified theoretical model for the orthotropic membrane is shown in  
Fig. 2, 3. The two principal fiber directions are x and y, respectively. a and b denote the 
length of x and y directions, respectively; N0x and N0y denote the initial tension in x and y 
directions, respectively. 

According to the Von Kármán’s membrane large deflection theory and D’Alembert’s 
principle [16, 17], the vibration partial differential equation and consistency equation of 
orthotropic membrane are: 

 
 

Fig. 3. Rectangle membrane with four edges simply supported 
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where   denotes aerial density of membrane; Nx and Ny denote additional tension in x and y 

direction, respectively; N0x and N0y denote initial tension in x and y direction, respectively; 
Nxy denotes additional shear force; N0xy denote initial shear force; w denotes deflection  
w(x, y, t); h denotes membrane’s thickness; E1 and E2 denote Young’s modulus in x and y 
direction, respectively; G denotes shearing modulus; μ1 and μ2 denote Poisson's ratio in x 
and y direction, respectively. 

Introduce the stress function, we have 
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and set  

0 0x xN h   ;   0 0y yN h   ;   0 0xy xyN h    . 

Then governing equations (1) can be simplified as follows: 
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,         (3) 

where φ denotes stress function φ(x, y, t), σ0x and σ0y denote initial tensile stress in x and y di-

rection, respectively. σ0xy denotes initial shear stress.  
The corresponding boundary conditions are as follows:  
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3. Simplification of Governing Equations. 
Functions that satisfy the boundary conditions (4) and (5) can be written as follows: 
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where W(x, y) is the mode shape function; and  ,mn x y ,  mnu t and  mnU t  are the un-

known functions. Substituting Eqs. (6) and (7) into Eq. (3) yields 
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To equate the two ends of Eq. (8), it must be    2
mn mnU t u t . Then Eq. (7) can be rewritten 

as follows: 
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In order to simplify the computing process, we can take one item of Eqs. (6) and (9) to com-
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According to the vibration theory of membrane, the mode shape function that satisfy the 
boundary condition (4) is    
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where m and n are integers and denote the sine half-wave number in x and y, respectively. 
Substituting Eqs. (10) and (11) into Eq. (3) yields 

24 4 4 2 2 2
1 2

4 4 2 2 2 2
1 2 1 2

1 1 1
+

W W W

E E G E E x yy x x y x y

           
               

.             (13) 
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From analysis of the solution structure of Eq. (14) and the boundary conditions, we can as-
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Substituting Eq. (15) into boundary condition (5) yields 
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Substituting  ,  , 1 , 2 , 3 , 4 , 5 , 6 , 7  into Eq. (15), and then substituting Eq. 
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Substituting Eqs. (10), (11) and (17) into Eq. (2) and according to the Galerkin method, we have 
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By setting 
2 2 2

0 02 2x y

h m n

a b

  


 
  

 
 and 

4 44
1 2

4 4

3

16

E m E nh

a b



 

  
 

, then we have 

2
3

2

( )
( ) ( ) 0

d u t
u t u t

dt
      .                                          (20) 

In many cases,  is not a small perimeter in Eq. (20), namely Eq. (20) is a strong non-
linear vibration equation.  

4. Solution of Governing Equations. 
4.1. Basic idea of homotopy perturbation method. We use the homotopy perturbation 

method (HPM) to solve Eq. (20) in this paper. The HPM is a new, effective and concise 
method for solving the strong nonlinear problems. It does not depend on the small perimeter 
and has high accuracy. In order to illustrate the basic idea of this method, we consider the 
following nonlinear differential equation 

    0,A u f r  r                                                      (21) 

with boundary conditions 

 , 0,    B u u n    r ,                                                   (22) 

where A is a general differential operator, B is a boundary operator, f (r) is a known analytic 
function, Γ is the boundary of the domain  . 

The operator A can, generally speaking, be divided into two parts L and N, where L is 
linear, while N is nonlinear, Eq. (21), therefore, can be rewritten as follows 

      0L u N u f  r .                                                (23) 

By the homotopy technique, we construct a homotopy    , : 0, 1v r p    , which satisfies 

             0, 1 0,  0,1 ,  v p p L v L u p A u f r p r               ,          (24) 

or  

           0 0, 0v p L v L u pL u p N v f        r ,                         (25) 

where p [0,1] is an embedding parameter, u0 is an initial approximation of Eq. (21), which 

satisfies the boundary conditions. Obviously, from Eq. (24) or (25) we have 

     0,0 0v L v L u    ;                                             (26) 

     ,1 0v A v f   r .                                              (27) 

The changing process of p from zero to unity is just that of v(r, p) from u0(r) to u(r). In 
topology, this is called deformation, and    0L v L u ,    A v f r  are called homotopic. 

Because 0 1p   , we use the imbedding parameter p as a ‘‘small parameter’’, and as-

sume that the solution of Eq. (24) or (25) can be written as a power series in p: 
2

0 1 2v v pv p v     .                                           (28) 

Setting p = 1 result in the approximate solution of Eq. (21): 

0 1 21
lim
p

u v v v v


      .                                        (29) 

The coupling of the perturbation method and the homotopy method is called the homo-
topy perturbation method, which has eliminated limitations of the traditional perturbation 
methods. In the other hand, the proposed technique can take full advantage of the traditional 
perturbation techniques [18 – 22]. 
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4.2. Homotopy perturbation solution for governing equations. Eq. (20) is a Duffing 
equation; it is rewritten with its initial condition: 

2
3

2
0

d u
u u

dt
      ,     ,00 0 0u a u  .                               (30) 

We construct a homotopy which satisfies  

      3
0 0 0,L v L u pL u p v                                         (31) 

where 2 2( )L u d u d t u   . 

One may now try to obtain a solution of Eq. (31) in the form 

       2
0 1 2v t v t p v t p v t      ,                                (32) 

where the   ,  0, 1, 2iv t i    are functions yet to be determined. The substitution of Eq. (32) 

into Eq. (31) yields 

       0 0 0 000;   ;0  0 0;L v L u v a v                                     (33) 

       3
1 0 0 1 10;   0 0 0L v L u v v v     .                               (34) 

We set    0 0 0 cos tv t u t a    with an unknown constant   as the initial approxima-

tion of Eq. (31). Therefore from Eq. (34), we have 

2 2 31
1 0 0 0

3 1
cos cos3 0

4 4

dv
v a a t a t

dt
             

 
.               (35) 

Eq. (35) is a linear differential equation, and it can be solved easily. The solution of Eq. 
(35) is  

 
   

   

2 2 0
1 0 2

3
0

2

3
cos cos

4 1

cos3 cos .
4 9 1

a
v a t t

a
t t

    
 


 

 

        

 


                      (36) 

In order to eliminate the secular term which may occur in the next iteration, we set the coef-

ficient of “ cos t ” zero: 

   
3

2 2 0 0
0 2 2

3
=0

4 1 4 9 1

a a
a


  

   
        

.                              (37) 

In Eq. (37), 0  , so we have  

2 2 2 2 4
0 0 010 +7 + 64 +104 +49

=
18

a a a    



.                              (38) 

Eq. (36), therefore, can be re-written as follows 

   
3

2 2 0 0
1 0 2 2

3
= cos cos3

4 1 4 9 1

a a
v a t t


    

   
       

.             (39) 

In most cases, the first-order approximation is sufficient, and then we have 

         
3 3
0 0

1 0 1 2 2

3
cos cos3

4 1 4 9 1

a a
u t v t v t t t

 
 

   
   

 
.              (40) 
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The frequency of the solution can be expressed as follows 

2 2 2 2 4
0 0 010 +7 + 64 +104 +49

=
18

a a a    
  ,                               (41) 

while the exact frequency is [16] 

   
 

2
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2
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2 1 !!
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
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   
        


,                                   (42) 

where 0,1,2,3p    , and the frequency obtained by the L – P perturbation method is [17]  

2
03

8
pert

a
 


  .                                                         (43) 

Substituting Eqs.(3.7) and (4.20) into Eq.(3.1), we can obtain the displacement function of 
nonlinear free vibration of rectangular orthotropic membrane in large amplitude 

     
3 3
0 0

2 2
1 1

3
, , sin sin cos cos3

4 1 4 9 1m n

a am x n y
w x y t t t

a b

    
   

 

 

 
  
   

 . (44) 

It is important to note that the coefficient 0a  is the single-order amplitude of membrane, 0a  

is determined by the initial displacement of membrane. Assume the initial displacement of 
membrane is  

   0, ,0 ,w x y w x y .                                                 (45) 

According to the orthogonality of vibration mode, we have 

 0 00 0

4
, sin sin

a b m x n y
a w x y dxdy

ab a b

 
   .                               (46) 

Consequently, only in some simple and special case can we obtain the coefficient 0a , name-

ly obtain the complete solution of membrane vibration. Assumming  0 0,w x y w , and 

substituting it into Eq. (46), we have  

 

 

0
2

0

16
  , 1,3,5 ;

 0         , 2,4,6 .

w
m n

mna

m n


  
 




                                      (47) 

Form Eq. (48),  we can see that 0a  decreases with the increase of vibration orders.  

5. Computational Examples and discussions.  
Take the membrane material commonly applied in project as an example. The Young’s 

modulus in x and y are E1 = 1,4×106 KN/m2 and E2 = 0,9×106 KN/m2, respectively; the aerial 

density of membranes is ρ = 1,7 kg/m2; the membrane’s thickness is h = 1,0 mm, a = 1 m,  
b = 1 m, σ0x = σ0y =5,0×103 KN/m2. 

5.1. Computation of frequency. According to the initial displacement w0, we can figure 
out a0 by Eq. (47). Then substitute a0 into Eqs. (41), (42) and (43) to figure out the freqency 
of the first three orders. The results are shown in Table 1, and plot them in Figs. 4 – 6.  
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Table 1: Frequency values (rad/s) under different initial displacement 

initial displacement w0 (m) 

O
rder 

Form
ula 0,10 0,09 0,08 0,07 0,06 0,05 0,04 0,03 0,02 0,01 w0→0 

(41) 749,32 682,31 616,22 551,38 488,31 427,80 371,13 320,38 278,82 250,88 240,95 

(42) 725,63 661,75 598,82 537,18 477,30 419,93 366,21 317,97 278,09 250,82 240,95 1 

(43) 1251,66 1059,62 887,80 736,20 604,80 493,63 402,66 331,91 281,38 251,06 240,95 

(41) 1447,47 1323,23 1201,25 1082,34 967,63 858,84 758,58 670,71 600,64 554,80 538,78 

(42) 1405,22 1286,99 1171,08 1058,21 949,45 846,33 751,16 667,32 599,71 554,73 538,78 2 

(43) 2161,18 1852,93 1577,12 1333,76 1122,84 944,38 798,36 684,80 603,68 603,68 538,78 

(41) 1752,38 1594,08 1437,77 1284,18 1134,44 990,34 854,77 732,60 631,70 563,27 538,78 

(42) 1695,88 1544,89 1395,98 1249,87 1107,64 970,97 842,48 726,44 629,80 563,10 538,78 3 

(43) 3034,62 2560,41 2136,12 1761,74 1437,28 1162,74 938,11 763,40 638,61 563,74 538,78 

 
The comparison and analysis of Table 1 and Figs. 4 – 6 are as follows. 
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Fig. 4.  Frequency values of the first order under different initial displacement 
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Fig. 5. Frequency values of the second order under different initial displacement 



 132 

The third order
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Fig. 6. Frequency values of the second order under different initial displacement  

1. All of the frequency values calculated according to Eqs. (41), (42) and (43) enlarge 
with the increase of initial displacement. This is due to the fact that the inner force, lateral 
rigidity and elastic restoring force will increase with the increase of initial displacement of 
membrane, and then the membrane will vibrate more quickly. This reflects the geometric 
nonlinearity characteristic of the vibration of membrane in large amplitude. Meanwhile, the 
frequency values under the same initial displacement enlarge with the increase of orders. 
When the initial displacement approaches zero, namely w0→0, the frequency values calcu-
lated according to Eqs. (41), (42) and (43) are the same and equal to the small amplitude 
vibration frequency values. 

2. The frequency values calculated according to Eq. (41) are slightly larger than the cor-
responding ones calculated according to Eq. (42). The relative differences between them 
become larger and larger with the increase of initial displacement, and the maximal relative 
difference is 3,33% in Table 1 and Figs. 4 – 6.  

3. The frequency values calculated according to Eq. (43) are larger than the correspond-
ing ones calculated according to Eq. (42). The relative differences between them increase 
dramatically with the increase of initial displacement, and the maximal relative difference is 
78,94% in Table 1 and Figs. 4 – 6.  

4. When the initial displacement is small and order is low, the frequency values com-
puted by Eq. (41), (42) and (43) are very close. When w0 ≤ 0,04, the maximum relative dif-
ference between them is 11,35%. Therefore, we can infer that while w0/a ≤ 0,04, using Eqs. 
(41) and (43) to compute the frequency of first three orders can satisfy the engineering pre-
cision and is very simple and convenient. 

5. Obviously, the precision of Eq. (41) is higher than Eq. (43). Eq. (43) is only suitable 
for the situation of weak nonlinear vibration of membrane, namely Eq. (43) is valid only for 
small parameters. Eq. (41) is not only suitable for the situation of weak nonlinear vibration 
of membrane, but also suitable for the situation of strong nonlinear vibration of membrane, 
namely Eq. (43) is valid not only for small parameters, but also for large parameters.  

5.2. Further discussions of frequency. In Table 1, the maximum initial displacement is 
w0= 0,1m and the maximal relative difference between the two corresponding frequency 
values of Eqs. (41) and (42) is 3,33%. But if w0 is larger, even w0→∞ (or a0→∞, 2

0a →∞) 

how about the precision of (41)? Hence we construct a limit as follows: 
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Therefore, for any value of w0 (or a0,
2

0a ), it can be easily proved that the maximal rela-

tive error is less than 3,935%.  
5.3. Analysis of vibration modes. Substituting the material and geometric parameters in 

computational example and the frequency values calculated by Eq. (41) (while w0 =0,05m) 
into Eq. (44), we obtain the displacement function of the vibration of the first three orders. 

1. The first order vibration mode  

   , , 0,0789866cos 427,8 0,00207038cos1283,4 sin sin .w x y t t t x y    

2. The second order vibration mode  

   , , 0,026399cos858,84 0,000620067cos 2576,52 sin sin 3 .w x y t t t x y    

3. The third order vibration mode 

   , , 0,0263092cos858,84 0,000709343cos 2971,02 sin 3 sinw x y t t t x y   . 

According to these displacement functions, we can draw the vibration mode figures of 
the first three orders while t = 0,02s in Figs. 7 to 9. Superposing the vibration mode of the 
first four orders, we can obtain the superposed vibration mode figure in Fig. 10.  

 
From the result of the vibration mode analysis, we can conclude that the amplitude de-

crease with orders, namely the contribution of high orders for total mode decrease gradually. 
In addition, using the displacement function (44) can compute the vibration mode of each or-
der and obtain the total superposed vibration mode conveniently, and the total mode is axi-
symmetric. 

5.4. Analysis of displacement time histories of feature points. Substituting the material 
and geometric parameters in computational example and the frequency values calculated 

 

Fig. 7. The first order vibration mode 

 

 

Fig. 9. The third order vibration mode 

 

Fig. 8. The second order vibration mode 

 

 

Fig. 10. The superposed vibration mode of 
the first three orders 
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according to Eq. (41) (while w0 = 0,05m) into Eq. (44), we can compute the displacement 
time histories of the feature points on membrane surface and draw the displacement and 
time curves. The feature points are A (x = 0,25 m, y = 0,25m), B (x = 0,25 m, y = 0,75m), C 
(x = 0,5 m, y =0,5 m), D (x = 0,75 m, y = 0,25m) and E (x = 0,75m, y = 0,75 m), and they are 
shown in Fig. 11.  

The first three single-order displacement time histories are shown in Figs. 12 – 26 and the 
superposed displacement time histories of the first three orders are shown in Figs. 27 – 31. 

 
 

Fig. 12. Displacement and time curve of A point (1st order) 

 
Fig. 13. Displacement and time curve of A point (2nd order) 

 

 
Fig. 14. Displacement and time curve of A point (3rd order) 

 
Fig. 11 
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Fig. 15. Displacement and time curve of B point (1st order) 
 

 
 

Fig. 16. Displacement and time curve of B point (2nd order) 

 

 
 

Fig. 17. Displacement and time curve of B point (3rd order) 

 

 
 

Fig. 18. Displacement and time curve of C point (1st order) 
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Fig. 19. Displacement and time curve of C point (2nd order) 
 

 

 

Fig. 20. Displacement and time curve of C point (3rd order) 

 

 
 

Fig. 21. Displacement and time curve of D point (1st order) 
 

 
 

Fig. 22. Displacement and time curve of D point (2nd order) 
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Fig. 23.Displacement and time curve of D point (3rd order) 
 

 
 

Fig. 24. Displacement and time curve of E point (1st order) 
 

 
 

Fig. 25. Displacement and time curve of D point (2nd order) 
 

 
 

Fig. 26. Displacement and time curve of D point (3rd order) 
 



 138 

 
 

Fig. 27. Superposed displacement and time curve of A point 
 

 
 

Fig. 28. Superposed displacement and time curve of B point 
 

 
 

Fig. 29. Superposed displacement and time curve of C point 
 

 
 

Fig. 30. Superposed displacement and time curve of D point  
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Fig. 31. Superposed displacement and time curve of E point 
 
From the analysis of displacement time histories, we can obtain the following conclusion.  
We can obtain the single-order and superposed displacement time history of each fea-

ture point by using Eq. (44) conveniently. The displacement time histories of A, B, D and E 
point are the same. This is because the displacements of A, B, D and E point are symmetri-
cal. The displacement time history of C is different from the other four points, and the am-
plitude of C point is maximal. This is because C point is the center of the membrane, and the 
amplitude is the maximum spontaneously.  

6. Conclusions. 
1. This paper solved the governing equations of nonlinear free vibration of rectangular 

orthotropic membrane structure in large amplitude by homotopy perturbation method 
(HPM), and obtained the approximate analytical solution of the frequency and displacement 
function of the nonlinear free vibration of rectangular membrane structure with four edges 
simply or fixed supported.  

2. The precision of Eq. (41) obtained by HPM in this paper is higher than Eq. (43) ob-
tained by L-P perturbation method in paper [17], and (43) is only suitable for the weak non-
linear situation, namely Eq. (43) is valid only for small parameters. But Eq. (41) is not only 
suitable for the weak nonlinear situation, but also suitable for the strong nonlinear situation, 
namely Eq. (41) is valid not only for small parameters, but also for large parameters. In ad-
dition, for any value of initial displacement w0, the maximal relative error between the 
homotopy perturbation solution Eq. (41) in this paper and the accurate solution Eq. (42) in 
paper [16] is less than 3,935%.  

3. From the displacement function (44), we can conveniently obtain the single-order and 
superposed vibration mode and displacement and time curves of the studied membrane 
structure. Results obtained from this paper provide some theoretical basis for the computa-
tion and control of nonlinear vibration of membrane structures, and provide some theoretical 
references for solving the response of membrane structures under dynamic loads. In addi-
tion, results of this paper provide some theoretical references for the dynamic design and 
manufacture of membrane structures. 
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РЕЗЮМЕ .  Вивчено геометрично нелінійні коливання попередньо напруженої ортотропної 

мембрани з чотирма фіксованими краями, яка звичайно використовується в будівельних мембранних 
конструкціях. Нелінійні рівняння динаміки в частинних похідних отримано на базі теорії фон Карма-
на про великі прогини і принципу Д‘Алямбера. Застосовано метод гомотопічного збурення для роз-
в’язування отриманих сильно нелінійних рівнянь. Отримано наближений аналітичний розвязок для 
частоти коливань і функції зміщень. У числовому прикладі проаналізовано частоти, форми коливань, 
зміщення і залежні від часу криві у кожній характерній точці. Доведено, що цей метод є ефективним, 
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простим і високоточним для розвязування задач про геометрично нелінійні коливання мембранних 
конструкцій. Ці результати створюють певну корисну базу для обчислення задач про управління ко-
ливаннями і динамічне конструювання будівельних та інших аналогічних мембранних конструкцій. 
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