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The extended finite element method with the linear softening law is employed to simulate pore-

induced crack initiation and propagation in heterogeneous plain concrete beams in three-point

bending. A series of numerical simulations was performed and experimentally validated. The crack

was found to always initiate at the beam bottom in the point nearest to the pore, propagating through

it. When the pore has a larger offset from the beam midspan, the beam displays higher fracture

resistance and energy dissipation spent for fracture. With an increase in a distance from the beam

bottom, the ultimate load also increases, but the energy dissipation slightly varies. The pore sizes

have a little effect on the fracture resistance of the concrete beam.
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Introduction. As a complex multiphase inhomogeneous material, concrete consists of
mortar, randomly distributed coarse aggregate, interface and various natural defects such as
pores. To further understand its complicated failure mechanisms like micro-cracking,
crack-branching, and tortuosity of the crack path, many experimental and numerical
investigations were recently carried out [1–6].

In the experimental investigation, some non-destructive techniques such as acoustic
emission (AE) and X-ray Computed Tomography (XCT) are usually used for monitoring
the fracture process of concrete. For example, Goszczyñska [1] identified in which phase a
crack is most likely to occur by comparing the AE signals. By the AE technique, Ohno and
Ohtsu [7] classified the crack modes into three types: tensile, shear and mixed modes,
occurring in the four-point bending concrete beam. Yang et al. [8] studied the failure
evolution process of compressed concrete specimens with the aid of the XCT technique.
These techniques are beneficial in analyzing concrete fracture while they are too expensive
or time-consuming to conduct a mass of researches.

In the numerical investigation, it is essential to create a reasonable model because of
complex and heterogeneous microstructures of concrete. The model should be stochastic
and heterogeneous considering multiple phases and their interactions of concrete. At
presenttime, both the digital image based (DIB) approach and the parameterization
modeling (PM) approach are the most popular. The DIB approach can model multiphase
concrete with real aggregate size, shape and distributions [9–11], but it will be costly or
time consuming when a large number of specimens need to be analyzed. In the PM
approach, indirect and direct algorithms are usually utilized to create concrete models with
randomly distributed aggregates. In the indirect algorithms, spatially-varying random fields
are generated and allocated to conventional finite element (FE) meshes [12], or aggregate
and mortar phases are randomly assigned to lattice elements in lattice models [10, 13], to
model the properties of different phases. It is easy to create a large number of models and
thus fit for statistical analyses. In the direct algorithms, various phases with specific
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material properties, such as aggregates, mortar, interface and so on, are explicitly generated
in a model [14, 15]. Using the direct PM approach, some important parameters including
the volume fractions, distribution, gradation, the shape of aggregates, and strength of
interfaces between aggregate and mortar can be taken into account, and their effects on the
mechanical behaviors can also be evaluated. At present, some direct PM algorithms have
been developed to model different shape aggregates. Among them modeling spherical
aggregates [16] is naturally the simplest. Yang and his coworkers [17–20] proposed a
high-efficiency random aggregate generation and packing (RAGP) algorithm to generate
polygonal or polyhedral aggregates for 2D or 3D modeling.

Numerical methods could be utilized to simulate the fracture process of materials. The
phase field method is successfully used to simulate the fracture of single crystals and
polycrystals in micrometer [21–24]. However, in the fracture simulation of macroscopic
quasi-brittle materials such as concrete, the cohesive zone model (CZM), which provides
an effective way to describe the crack propagation, was widely used in recent years [12,
15]. However, because a crack can only propagate along the element boundaries, refined
meshes are required to get an accurate crack path. From the partition of unity approach, the
extended finite element method (XFEM) was firstly proposed by Belytschko and Black
[25]. Compared to the conventional finite element method, some enrichment functions are
introduced in the XFEM so that the fracture could step across continuous finite elements.
The XFEM was frequently used to efficiently simulate the crack growth in homogeneous
materials [26, 27]. Recently, the XFEM was used to solve some fracture problems of
infrastructure materials [28, 29].

Pores are a type of common defects in concrete structures. They can weaken the
material locally and induce crack initiation. A large number of pores could be found in
mesoscale concrete XCT scanned images [10, 30]. In general, the tensile strength of
concrete decreases as the pore fraction increases [11, 31]. Accordingly, it is worth noting
that the pore effect on concrete fracture cannot be neglected. In this paper, a series of
numerical concrete beam models with a single pore and randomly distributed coarse
aggregate are created by using the RAGP algorithm [17–20], and the XFEM is employed to
simulate the fracture behavior of concrete. The influences of pore location and size on
fracture are evaluated.

1. Basic Method.
1.1. Governing Equations. In a two-dimensional (2D) problem, the equilibrium

differential equation in a domain � shown in Fig. 1 can be expressed as follows [32, 33]:

�� � �� b 0, (1)

where � is the gradient operator, � is the Cauchy stress tensor, and b is the unit body
force vector. In the displacement boundary �u , the traction boundary �t , and the crack
boundary �c , the following conditions should be satisfied:

u u� on �u , (2a)

�� �
� �
n t on �t , (2b)

�� �
�
n 0 on �c , (2c)

where u is the displacement vector, u is the displacement vector on �u ,
�
n is the external

normal unit vector, and t is the traction vector on �t .
In small strain and displacement conditions, the relation between strain and

displacement can be written as
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	� � su, (3)

where � s is the symmetric part of the gradient operator and 	 is the linear strain tensor.
For a linear elastic material, the constitutive relation can be given by

� 	�C: , (4)

where C is the elastic tensor.
The equilibrium equation in weak form can be given by [34]:

� 	: .d d d

t

� � �

� � �


 
 
� � � �b u t u (5)

1.2. XFEM Approximation for Cracks. The enriched trial and test displacement
function for the XFEM is described in the matrix as follows [32]:

u X X u X X X a( ) ( ) ( )( ( ) ( ))� � � �

��



 N N H Hi i j j j

j Ni N cuts

� �

��



 N k k k

k N
tip

( ) ( ( ) ( )) ,X X X b� �
� �

�

� 1

4

(6)

where X is the arbitrary position matrix in the domain �, while X j and X k are the
position matrices at nodes j and k. N s is the set of nodes in the discrete domain, N cut is

the set of nodes, which belongs to these elements entirely cut by the crack, namely the split
nodes marked as hollow squares in Fig. 1, and N tip is the set of nodes which belongs to

the crack-tip elements, namely the tip nodes marked as solid circles in Fig. 1. N i ( )X ,
N j ( ),X and N k ( )X are the shape functions at nodes i, j, and k , respectively. u i is the
displacement matrix of node i, while a j and bk

� are the accessional displacement

matrices related to the crack face and crack-tip, respectively. H ( )X is the discontinuous
enrichment function and can be expressed as
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Fig. 1. Boundary conditions of a 2D domain with an internal crack and its typical discretization.
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(7)

The enrichment function of the crack-tip is usually determined by the displacement
field near the crack-tip. For a homogeneous elastomer, �

�
( )X is given as follows:

[ ] sin , cos , sin sin , cos sin� � � �1 2 2 2 2
� � �

� � �
�

�
�

� � �
�
�

r r r r
�
�

�

�
�

, (8)

where r and � are the local polar coordinates near the crack tip.
For a discretized model, the global equilibrium equation can be obtained by

substituting Eq. (6) into Eq. (5)

Kd f� , (9)

where K is the global stiffness matrix, d is the nodal displacement matrix, and f is the
external force matrix. They can be given by assembling the element stiffness matrix K

e ,

the nodal displacement matrix of the element d
e , and the nodal force matrix of the element

f
e , respectively.

The element stiffness matrix with four nodes can be expressed as

K
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where
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In the above three equations, we have
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34 ISSN 0556-171X. Ïðîáëåìè ì³öíîñò³, 2018, ¹ 5

C. C. Zhang, X. H. Yang, and H. Gao



B B B B B
b b b b b� � � � �
� [ ],1 2 3 4 ��1, 2, 3, 4, (17)

with

B X X Bi
b

i i
u�

� �
� �( ( ) ( )) .� � (18)

The nodal force matrix of the element can be expressed as

f f f f f f f
e u a b b b b T
�{ } ,1 2 3 4 (19)

where
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In the above three equations, we have
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1.3. Level Set Method for Crack Propagation. In the XFEM, the level set method
[35] is used to describe geometry evolution of crack surface and tip during crack growth
iteration. The level set functions include the normal level set � and the tangent one  . � is
a function of distance from the crack surface, while  is a function of distance from the
crack tip, as shown in Fig. 2. As the crack grows at each iterative step, both � and  are
updated step by step. In this way, the crack growth is modeled.
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Fig. 2. Schematic of normal and tangent level set functions.



2. Experiments.
2.1. Aggregate Size Distribution. A fuller grading curve suggests an ideal gradation

of aggregates for concrete design. It can be written as a simple equation as follow [36]:

P d
d

d

n

( ) ,
max

�

!

"

#
#

$

%

&
&100 (26)

where P d( ) is the cumulative percentage that aggregates pass a sieve with diameter d,
d max is the diameter of maximum coarse aggregate, and n is a constant ranging between
0.45 and 0.70.

Regarding the aperture diameter of a standard sieve, Eq. (20) can be discretized into
several segments, then the volume of aggregates within the size range of [ , ]d di i�1 can be
obtained by [31]

V d d
P d P d

P d P d
R Vagg i i

i i
agg[ , ]

( ) ( )

( ) ( )
,

max min
�

�
�

�

�
1

1
(27)

where d min is the minimum size of coarse aggregates, Ragg is the volume fraction of
coarse aggregates, and V is the volume of concrete.

Before casting concrete, the coarse aggregates used in this paper are sieved. The
passing percentages with the sieve size are listed in Table 1. The aggregates less than
4.75 mm are very few, and they are usually combined with the cement matrix as mortar [2].
Accordingly, only the coarse aggregates with sizes greater than 4.75 mm are modeled in
this paper. The coarse aggregates are discretized into five segments, and the corresponding
five-segment gradation curve is shown in Fig. 3.
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T a b l e 1
Continuous Coarse Aggregate Gradation

Sieve size (mm) Total percentage passing (%)

31.5 100.00

26.5 92.36

19.0 50.79

16.0 34.01

9.50 6.01

4.75 0.32

Fig. 3. Size distribution curve of aggregates with five grading segments.



2.2. Three-Point Bending Test. Some concrete beam specimens with dimensions of
400 100 100' ' mm were prepared. Table 2 lists their ingredient contents in per cubic meter.
In the present study, Ordinary Portland cement P�O 42.5 (meeting the requirements of
ASTM Type I) was used in all the specimens. The gradation of coarse aggregates is shown
in Table 1. They were cured for seven days in a standard curing room. A 10 mm
prefabricated through pore was located in the midspan or 30 mm off the midspan so that
two groups of specimens labeled as L00U20D10 and L30U20D10 were prepared. The two
values following L in the labels mean the offset of the pore from the beam midspan, the
values following U represents the distance of the pore from the beam bottom, and the
values following D indicates the pore diameter. A sketch in Fig. 4 shows the boundary
conditions of the beam and the pore location.

The WDW-100E electronic universal testing machine was employed as shown in
Fig. 5a and the corresponding data collection system is shown in Fig. 5b. There are two
simple supports and a loading head in the three-point bending setup. The distance between
the two supports is 300 mm, and the loading head is located at the midspan of the beam.
The YSS-C acoustic emission (AE) meter was employed to monitor the AE signal from the
fractured concrete beams by a sensor attached to the center of the beam back. The
experiments were performed at room temperature (about 20(C), and displacement with a
loading rate of 0.5 mm/min was loaded. The fracture process was shot by the digital
camera. Both the reactive force and the corresponding vertical displacement at the loading
head were captured, and the AE event counts were also collected.

All the experiments were replicated three times. Their results are averaged to reduce
the data randomness. The averaged load and AE event count vs. displacement curves are
plotted in Fig. 6 for L00U20D10. The curves could be divided into three stages. In stage I,
as the displacement increases from 0 to 0.356 mm, the load nearly linearly increases to the
ultimate load and the cumulative AE event count increases slowly. This indicates that the
material behaves linearly elastic in stage I. In stage II, the cumulative AE event count
increases sharply with increasing displacement, while the load decreases rapidly. When the
displacement is greater than about 0.9 mm, stage III comes, and the beam is completely
fractured. In this stage, the load decreases gently, but the cumulative AE event count
increases slowly.
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T a b l e 2
Concrete Ingredients

Ingredients Weight in per cubic meter of concrete (kg)

Cement 454.2

Fine aggregate 518.2

Coarse aggregate 1079.4

Water 241.5

Fig. 4. Boundary conditions and pore location (unit: mm).



3. Numerical Simulations.
3.1. Modeling Heterogeneous Concrete Beam. By using the RAGP algorithm

[17–19], randomly distributed coarse aggregates with the gradation shown in Fig. 3 are
generated and packed in the prescribed packing region of 400 100' mm. In the packing
region, the part not occupied with the aggregates is treated as a homogeneous mortar
matrix. A circular pore with a variable size and location is created. The whole model is
assigned as the enriched region and discretized with the 4-node quadrilateral plane strain
element. The element size is 2 mm. The enriched function is added to the traditional finite
element displacement function.

In this study, it is assumed that aggregates and cement paste are linear elastic before
crack. The maximum principal stress criterion is used to judge if a crack will propagate
when reaches the critical stress and the simplified linear softening law is employed herein.
It is assumed that the shear parameters are the same as the normal ones because they are
difficult to obtain by experiments. The material parameters used in this model, including
the Young modulus E, Poisson’s ratio ), the fracture energy G f , and the critical fracture
stress t 0 are listed in Table 3. These parameters are obtained from the experiments by the

trial and error method.
Using the XFEM combined with Abaqus/CAE 6.14 commercial software, numerical

three-point-bending tests were performed on the above heterogeneous concrete beam
models. A displacement increasing from 0 to 2.4 mm was loaded at the top of beam
midspan. Abaqus/Standard is utilized to solve the highly nonlinear equation systems. For
convergence of solution, the computational time step is kept to be less than 0.0001 s.
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a b

Fig. 5. Three-point bending setup (a) and data collection system (b).

Fig. 6. The load and AE event count vs. displacement curves of L00U20D10.



3.2. Model Validation. To validate the numerical method, both the experimental and
numerical load–displacement curves of L00U20D10 and L30U20D10, are plotted in Fig. 7.
It is clear that there is a good correlation between the experimental and numerical curves
although their slopes are slightly different before the ultimate load. Especially, both the
experimental and numerical ultimate loads nearly correspond to the same displacement of
about 0.35 mm. This reflects that the XFEM method can well describe brittle failure and
softening behaviors of concrete.

The simulated dissipated fracture energy is also qualitatively compared with the
experimental AE event count. Both of them are plotted in Fig. 8. It can be found that they
have a similar rising tendency and curve shape. When the displacement is less than 0.35 mm,
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T a b l e 3
Constitutive Model Parameters

Material E, GPa ) G f , N/m t0 , MPa

Aggregate 40 0.15 2000 8

Mortar matrix 3 0.25 600 2

Fig. 7. Experimental and numerical load–displacement curves for different pore location beam.

Fig. 8. Simulated dissipated fracture energies and experimental AE event counts for different pore
location beams.



the dissipated fracture energy is 0, and the AE event count increases slowly. However,
when the displacement is greater than 0.35 mm, they both begin to rise sharply with
increasing the movement. When the displacement is greater than about 0.8 mm, they both
become gentle. Their good match further indicates that the present numerical method is
viable.

4. Analysis and Discussion.
4.1. Crack Propagation and Field Evolution. As an example, Fig. 9 exhibits the

numerical and triplicate experimental crack paths in L00U20D10 and L30U20D10. For
easy identification, the tails of numerical crack paths are painted yellow. It is found that the
numerical and experimental crack paths are very similar. Due to stress concentration
induced by the pore, both the numerical and experimental crack paths pass through the pore
and then walk toward the load point at the beam midspan. It indicates that the pore can
intensively induce the beam to crack around it. This is possibly because the pore can locally
weaken the fracture resistance of the beam. Besides, due to the uneven distribution of
aggregates, all the predicted crack paths are tortuous. They are different from the cracks
occurring in the homogeneous materials [26], but they are similar to the experimental paths
in tortuosity. This reveals the considerable effect of internal microstructures on the crack
propagation path.

The transverse tensile stress distribution in different stages of the crack growth
process of L00U20D10 is shown in Fig. 10. As the crack propagates, the stress concentration
area ceaselessly moves forward. In stage I, the stress highly concentrates in the ligament
between the crack tip and the pore before the crack is connected with the pore, as shown in
Fig. 10a. When the crack exactly contacts the pore, in stage II, high stress concentration
occurs at the top of the pore, as shown in Fig. 10b. After the crack leaves the pore behind,
in stage III, the stress highly concentrates around the crack tip, as shown in Fig. 10c.

4.2. Pore Location Effect. The load–displacement and dissipated fracture energy–
displacement curves of L00U20D10, L15U20D10 and L30U20D10 are plotted in Fig. 11a
and 11b, respectively. Their offset from the midspan increases from 0, 15 to 30 mm but
both the distance from the bottom and the pore size remain unchanged, so the pore offset
influence on fracture can be evaluated. It can be seen from Fig. 11 that both the ultimate
load and failure dissipated fracture energy increases as the offset increases. It indicates that
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Fig. 9. Numerical and triplicate experimental crack paths of L00U20D10 (a) and L30U20D10 (b).



the beam with a pore of greater offset has a higher fracture resistance and consumes more
energy in the fracture process. This is easy to understand because an increasing pore offset
would result in a reduced bending stress near the pore and a longer crack path.

To evaluate the effect of the pore distance from the beam bottom on the ultimate load,
the fracture process of L00U10D10, L00U20D10, and L00U30D10 are simulated. Their
ultimate load and failure dissipated fracture energy are plotted in Fig. 12a and b, respectively.
It is seen that as the pore distance increases, the ultimate load increases. This indicates that
the pore closer to the bottom could weaken the beam more badly. However, because they
have almost the same crack path length, as shown in Fig. 9a, their failure dissipated fracture
energy slightly varies.

4.3. Pore Size Effect. In general, the pore size has a significant impact on the fracture
properties of the concrete beam. To evaluate this effect, the concrete beams of L00U20D8
and L00U20D12 are built. The ultimate load and failure dissipated fracture energy of
L00U20D8, L00U20D10 and L00U20D12 are listed in Fig. 13. Apparently, as the pore size
increases, both the fracture resistance and failure dissipated fracture energy slightly
decreases. This is qualitatively consistent with the existing conclusion that the tensile
strength of concrete decreases as the pore fraction increases [11, 31]. Accordingly, the pore
size has a little effect on the fracture resistance of the concrete beam.
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a b c

Fig. 10. The transverse tensile stress distribution in different stages of the crack growth process of
L00U20D10: (a) stage I; (b) stage II; (c) stage III.

a b

Fig. 11. Load and dissipated fracture energy vs. displacement curves for different pore offsets from
the beam midspan.



Conclusions. A series of 2D mesoscale heterogeneous concrete beam models are
created by using the RAGP algorithm, and the XFEM is used to simulate the complicated
pore-induced fracture processes under three-point bending. The following conclusions are
obtained.

1. Due to stress concentration, the pore can locally weaken the fracture resistance of
the beam. As a result, it is observed that the crack always initiates in the beam bottom the
nearest to the pore and propagates through it.

2. Both the ultimate load and failure dissipated fracture energy increases as the pore
offset from the beam midspan increases, so when the pore has a higher offset, the beam has
a higher fracture resistance and dissipates more energy in the fracture process.

3. As the pore distance from the beam bottom increases, the ultimate load increases,
so the pore closer to the bottom could weaken the beam more badly. But the failure
dissipated fracture energy slightly varies with increasing pore distance.

4. As the pore size increases, both the fracture resistance and failure dissipated
fracture energy slightly decreases, so the pore size has a little effect on the fracture
resistance of the concrete beam.
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