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The dynamic response of pavement plates to a localized Friedlander load based on the three-

parameter foundation model with the account of soil inertia is analyzed. The pavement plate is

represented by a thin orthotropic plate of finite dimensions, which can rotate and transfer

deformation along the contour. The subgrade is simulated with the Pasternak foundation model,

including the inertia soil factor, the localized dynamic load is simulated with the Friedlander decay

function allowing for the positive and negative phases; with the time distribution described by the

Dirac function. The governing equation of the problem is solved with the modified Bolotin method for

determining the natural frequencies and mode numbers of the system. The Mathematica program is

used to define the natural frequencies of the system from the transcendental equations. Analysis

results for several parameters related to the dynamic response of plates to a localized dynamic load,

which includes both positive and negative phases, are presented. The impact of the Friedlander load

with the negative phase added on the response of the pavement plate is numerically simulated.

Keywords: pavement plate, Friedlander load, Pasternak foundation, positive and negative

phases, modified Bolotin method.

Introduction. Dynamic response of a thin orthotropic plate subjected to a dynamic

load is important, not only for pavement design but also for many other applications [1].

For instance, Uzan and Lytton [2] used measured pavement dynamic response information

to investigate pavement non-destructive evaluation. Another application can be found in

military countermine detection, where an unmanned automatic vehicle equipped with

landmine detection sensors transverses minefield to identify locations of potential landmine

[3]. A significant difference between static theory and its dynamic counterpart is that

inertial effect, ignored in the former, is taken into account in the latter [4]. To better

understand the dynamic response of a thin orthotropic plate subjected to a dynamic load, it

is necessary to analyze the dynamic effects of a dynamic load on a concrete pavement. In

1954, Kenney [5] studied the steady-state response of a moving load on a beam on elastic

foundation. Some studies using the finite element method to solve the response of a thin

plate subjected to dynamic loads with applications in pavement design and non-destructive

evaluation have been developed earlier [6–8]. More recently, finite element procedures

have been developed to carry out the response of continuous pavements of finite

dimensions to moving vehicle loads [6, 9]. In the studies mentioned above, the rigid

pavements are modeled as orthotropic plates sitting on Winkler soil type. However, in

engineering practice, the effect of foundation inertia on the central deflection of the plate

has significant effects on the dynamic response of the plate modeling the pavement [10].

For this reason, Gibigaye et al. [11] take into account the inertia of the foundation soil on

the dynamic response of civil engineering structures.
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This work investigates the dynamic analytical response of pavement plate subjected

to localized Friedlander dynamic loads sitting on an inertial soil. The rigid pavement is

modeled as a thin plate, allowing the rotations and the vertical deformations along its

edges. To take into account its inertia, the soil is modeled as a three-parameter type of soil

[11]. The free vibration solution of the problem is solved by the method of separation of

variables so that the superposition gives a solution satisfying the boundary conditions. The

pavement plate deflection is expressed as eigenfunction products, that is obtained based on

the orthogonality properties of eigenfunctions [12]. The localized Friedlander dynamic load

is expressed as the Dirac delta function [13]. Particular emphasis is focused on the

evaluation of midpoint displacements of the concrete pavement plates subjected to the

Friedlander decaying function which includes both positive and negative phase of loading

with different thickness and the varied position of the localized load.

1. Description of the Pavement Plates. Consider a rectangular pavement plate of

thickness h sitting on the three-parameter type foundation model (k , Gs , and m0) within

the linear elastic region. The origin of the Cartesian coordinate system is located in the

mid-plane with the z-axis perpendicular to the plane as shown in Fig. 1. The a and b are

dimensions along the x- and y-axes, respectively.

According to the classic theory of thin plates and taking into account the reduced

mass of soil, the deflection of the concrete pavement plate is governed by the following

partial differential equation [11]:
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Fig. 1. The geometry of the pavement concrete plate supported by a three-parameter type foundation

model.
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where w x y t( , , ) is the vertical deflection of the orthotropic plate at point (x y, ) and time t,

Dx is the flexural rigidity of plate in the x-direction, B is the torsional rigidity, Dy is the

flexural rigidity of the plate in the y-direction, k is the stiffness coefficient of the elastic

foundation, Gs is the shear modulus of the shear layer of the elastic foundation, � is the

mass density of the plate, m0 is a linear reduced mass of the foundation stiffness

coefficient, h is the thickness of the plate, and � is the critical damping ratio of the plate.

2. Localized Friedlander Loading. Figure 2 shows a localized Friedlander decaying

loading function which includes the positive and the negative phases, P t( ), that can be

expressed by the following equations [14, 15]:
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Here, pr, max is the peak pressure, t d is positive phase duration, � is a waveform

parameter, pr, min is the negative peak pressure, and t d�
is negative phase duration.

The localized dynamic loading is a function of position and time, p x y t( , , ), that can

be expressed by using the Dirac delta function, �[ ],� as follows:

p x y t P t x x t y y t P t x x y y( , , ) ( ) [ ( )] [ ( )] ( ) [ ] [ ]� � � � � �� � � �0 0 , (4)

where P t( ) is the localized dynamic loading, which can be expressed by Eqs. (2) and (3),

x t( ) is the position of the localized dynamic loading in the x-direction, y t( ) is the position

of the localized dynamic loading in the y-direction, x0 is the initial position of the dynamic

loading in the x-direction, and y0 is the initial position of the localized dynamic loading in

the y-direction.
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Fig. 2. The localized Friedlander decaying load.



3. Vibration Analysis. In the first part of this paper, the free vibration of pavement

concrete plate on a Pasternak foundation, including the m0 factor as a soil parameter, is

studied using Levy’s solution. The free vibration solution of the system is set as

w x y t W x y t X x Y y t( , , ) ( , )sin ( ) ( )sin ,� �� � (5)

where W x y( , ) is only a function of the position coordinates and � is the circular

frequency of the system.

The eigenfrequencies of the systems can be solved from the undamped free vibration

of Eq. (1) by postulating that the eigenfrequencies are analogous to the case of a plate with

simple support at all edges, which can be expressed as
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where p and q are real numbers to be solved from a system of two transcendental

equations, obtained from the solution of two auxiliary Levy’s type problems, also known as

the modified Bolotin method [16].

3.1. First and Second Auxiliary Levy-Type Problems. The solution of the free

vibration problem in Eq. (6) can be obtained from
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which satisfies the elastic vertical translation (ksx1, ksx2) and rotational (krx1, krx2)

boundary conditions [12]. The solutions of the characteristic equation become
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Equation (8) gives the general form of the eigenmode of the pavement plate in the

x-direction. Substituting the eigenmode according to Eq. (8) into the boundary conditions

along x� 0 and x a� , results in the linear algebra equation in terms of Ai , as follows:

[ ]{ } { } ,a A 0
T T

� (9)

where aij are the coefficients of [ ].a

To obtain a non-trivial solution, it is necessary to propose that the determinant of

Eq. (9) is zero. The determinant of Eq. (9) is called the transcendental equation of the first

auxiliary Levy’s type problem. The second auxiliary Levy-type problem in the y-axis can

be determined analogously to the above formulations.

3.2. Determination of Mode Numbers. The mode numbers p and q, respectively, in

the x- and y-directions of the system can be solved by solving the transcendental equations

simultaneously. The solutions cannot be determined analytically. Hence the Mathematica
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software is used to obtain solutions numerically. The eigenfunction of the orthotropic plate

is therefore given by
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3.3. Determination of the Time Function T tmn ( ). The general solution in the time

domain is given by
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where p x y t( , , ) is the localized Friedlander decaying function dynamic loading,

respectively, for positive phase according to Eq. (3) and for negative phase according to

Eq. (4). Finally, the dynamic deflection of the pavement plate on Pasternak foundation

models with the inclusive of the inertial soil factor is found by multiplying Eqs. (10) and

(11).

4. Numerical Results and Discussion. Numerical calculations are carried out for

different parameters of the problem. The number of modes in the x- and y-directions is

taken as m� 1 2 5, , ... , and n� 1 2 5, , ... , by considering the convergence of the

eigenvalues. In this work, a finite rectangular pavement plate sitting on the three-type

parameter foundation model is considered as shown in Fig. 1. The size of the pavement

plate is 5 3 5� . m. For comparison sake, two values of the plate thicknesses are considered:

h� 0.18 and 0.20 m. The physical characteristics of the pavement plate are: density

�� 2500 kg/m3, Poisson’s ratios �x � 0.2 and � y � 0.3, the elastic moduli (Ex and E y )

of the concrete plate is 27 8 106. � and 30 106
� Pa, respectively. The boundary conditions

properties of the pavement plate are: ks ks ks ksx x y y1 2 1 2 250� � � � MN/m and krx1 �

� � � �kr kr krx y y2 1 2 1.0 N m� /rad [17]. It is also assumed that the damping ratio of the

system equals � � 5%. Two values of soil parameters are considered: Case 1, Hs � 0.5 m,

k � 166.2 MN/m, Gs � 2.596 MN/m2, m0 � 252.326 kg m� and Case 2, Hs � 2.5 m,

k � 33 25. MN/m, Gs � 12.98 MN/m2, m0 � 1261.63 kg m� [11]. The localized

Friedlander dynamic load parameters which include the positive and the negative phase

according to Eqs. (2) and (3) are: pr, max � 28.906 kN/m2, t d � 0.0018 s, �� 0.35,

pr, min .��7 2265 kN/m2 [14]. Four different locations of the localized Friedlander

dynamic loading are studied in detail to determine the mid-point deflection of the rigid

pavement subjected to localized Friedlander with the emphasis in the effect of the

negative phase of the load.

4.1. Variation of Deflection during the Negative Phase of the Load. Figure 3 shows

the variation of deflection under load as a function of time for three different values of plate

thickness for Case 1. It is found that the dynamic deflection of the plate decreases as the

thickness of the plate increases. Increasing the thickness of the pavement plates, from 0.18

to 0.2 m for a damped system (5%) result in a decrease of the mid-point displacement by

7.9%. It can be seen from Fig. 3, the maximum dynamic deflection of the pavement plate

occurs just after the negative phase occurs of the Friedlander load, t t td d� �
�

, for all

different values of thickness considered in this work. In conclusion, the negative phase of

the load contributes to increasing the maximum dynamic deflection of the system.
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4.2. Influence of the Soil Parameters on the Dynamic Response. Figure 4 shows the

dynamic response of the system subjected to a Friedlander decaying dynamic loading for

three types of soil conditions. At h� 0.18 m and t � 0.004 s, in Case 1, the maximum

dynamic deflection of the pavement plate is 6 48092 10 5. �
� m, while Case 2 it is

6 60447 10 5. �
� m. It is noticed that the maximum dynamic deflection increases linearly with

the increase in dynamically activated depth parameter, Hs . This result agrees very well

with the previous work done by Gibigaye et al. [11].

4.3. Influence of the Inertia of the Soil Parameters on the Dynamic Response. To

study the influence of the inertia of the soil factor, m0, on the dynamic response of the

pavement plate, the dynamic deflection of pavement plate during the period of
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Fig. 3. Variation of the deflection directly under the localized dynamic loading versus time for

different values of pavement’s thickness.

Fig. 4. Variation of the deflection directly under the localized dynamic loading versus time for

different values of soil parameters.



t t t td d d� � � is computed as shown in Fig. 5. It is noticed that the mid-point deflection

of the pavement plate on Pasternak foundation is 25.7% higher compared to the deflection

values for the three-parameter soil. In conclusion, inertial soil dramatically reduces the

dynamic response of the pavement plate when the dynamic load is at the center of the plate.

Figure 6 shows the influence of the internal bending moment during the negative

phase of the load for two different type of soil conditions. It is shown that the inertial soil

factor (m0) is an essential factor in reducing the maximum value of the internal moment in

the x-direction for as much as 29.3%.

4.4. Effect of the Location of the Dynamic Load along the x-Axis. Figure 7 shows

the time history of the mid-point deflection of the pavement plate subjected to localized

Friedlander loading for different values of x0 (x a0 0 125� . , 0 25. ,a 0 375. ,a and 0 5. a). The

results show that the dynamic deflection at mid-point increases as the position of the load

closes to the middle of the pavement plate.
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Fig. 5. The influence of the dynamic deflection of the pavement plate over the plate region due to the

Friedlander decaying for two type of soil parameters conditions.

Fig. 6. Variation of the internal bending moment (Mx) as a function of x position computed during

the negative phase of the load.



Conclusions. This paper dealt with some significant results from an analytical study

of pavement concrete plate sitting on a three-type soil parameter foundation subjected to

localized Friedlander loading which includes positive and negative phases. The pavement

model consists of discrete orthotropic plates joined at the discontinuities by vertical springs

representing the load transfer devices. The foundation model used in this work is the

well-known Pasternak model which takes into account the interaction between soil layers,

and the inertial factor of soil. The main conclusions of this study are the following:

1. The negative phase of the localized dynamic load plays an important factor in

increasing the maximum dynamic deflection as well as the internal bending moment of the

system.

2. The soil inertia factor (m0) influences the maximum dynamic deflection of the

pavement plate. By including the m0 factor into the analysis, the maximum dynamic

deviation of the pavement plate was reduced by as much as 25.7%.

3. The effect of the plate thickness is significant because it affects the overall behavior

of the concrete plate.

4. The mid-span dynamic deflection depends on the position of the blast loading. The

mid-span dynamic deflection increases as the load near the middle of the plate.

5. This study covers the pavement plates interconnected by the conditions that allow

rotational and translational deformation along the boundaries. These conditions can be

extended to another type of boundary conditions.

While this paper deals mainly with computational results, Yuen and Nurick [18] and

Gibigaye et al. [11] reported that the dynamic response of the pavement plates is influenced

significantly by the thickness of the plate and the soil parameters. That approach provides a

satisfactory correlation and creates a better understanding of dynamic responses of the

pavement plate on three-type of soil parameters.
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Fig. 7. Dynamic deflection time history of pavement plate subjected to localized Friedlander load for

different value of x0 (Case 2).
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