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AHani3 pyiiHyBaHHSl TPMBHMIPHOI (PYHKIiOHAJILHO-TPATIEHTHOI 0araromapoBoi
oanKkn

B. 1. Pizos

@akynapTeT TEXHIYHOI MEXaHIKM, YHIBEPCHTET apXiTeKTypH, IMBUIBHOTO OyIIBHHITBA Ta reojesii,
Codis, bomrapis

Ananimuuno 6usueHo pesicum pPYUHYBAHHA NpU SiOWAPYEAHHI 018 MPUBUMIDHOI (DYHKYIOHATLHO-
epadicnmuoi 6azamowapoeoi 6anku npu GUSHAYEHHI 3CY8Y HA HANYCMKY 3 MPIWUHOIO HA OCHOBI
PO3PAXYHKY WSUOKOCME GUOLIEHHs eHepeii depopmayii 3 6UKOPUCIAHHAM MemOOi8 TIHIUHO-NPYI’CHOT
MexaHiku pyunysanus. banika moowce sxnouamu 6 cebe 008iNbHY KiTbKICIb WAPIB, KONMCEH 3 AKUX MAE
Pi3Hi moswuny i énracmusocmi Komnonenmis. Mamepian KodICHO20 wapy GYHKYIOHANbHO-PAJIiEHM-
HUll NO wupuni, moswuni i 0osdcuni. Tpiwuna 6i0wapyeants po3maulo8ana 00LIbHO NO GUCOMI
banku. Llleuoxicms eudinents enepeii depopmayii OmpumMaHo WIAXoM aHAI3y il eycmuHu y nonepey-
Homy nepepizi 6anku nepeo i 3a ppornmom mpiwunu. s eepugixayii it 000amrkoo npoananizoeano
3a 0onomozow enepeii depopmayii 6anku. OyineHo 6naue epadichma Mamepiany i po3mauty8anHs
MpIWUHY 1O 8UCOMI OATKU HA PedCUM PYUHYBAHHA NPU GIOULAPYEAHHI.

Kntouoei cnosa: GyHKIioHATBLHO-TPAIIEHTHI MaTepiaiy, JiHIHHO-TIPY)KHA MEXaHiKa pyHHY-
BaHHS, 0araTonrapoBi KOHCTPYKIIii.

Introduction. Since their introduction in the mid 1980s, functionally graded materials
have become a promising alternative to laminated composites [1-8]. This is due to the fact
that by gradual variation of material constituents composition in functionally graded
materials, the interface stress concentrations are avoided, in contrast to laminated
composites [9-11]. In this way, failure performances are improved. At the same time the
variation of material properties in one or more spatial coordinates can be designed so as to
achieve the optimum performance of members and components made of functionally
graded materials to the external loads and influences. An important consideration in safety
design of functionally graded materials is their fracture behavior. That is why fracture
mechanics of these novel materials has received significant attention from the academic
circles [12—17]. In spite of that, there are crack problems which have not been researched
sufficiently. One of these problems is delamination in three-dimensional functionally
graded multilayered beams.

Therefore, the main purpose of present paper was to perform an analytical study of
delamination fracture in the multilayered crack lap shear (CLS) beam configuration
assuming that in each layer the material is functionally graded along the width, thickness
and length of layer. The fracture was studied in terms the strain energy release rate by
analyzing the strain energy densities in the beam cross sections ahead and behind the crack
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front. The solution derived was applied to perform the parametric analysis, in order to
evaluate the influences of material gradient and crack location on the delamination fracture.

1. Delamination Analysis in Terms of the Strain Energy Release Rate. The
multilayered functionally graded CLS beam configuration analyzed in the present paper is
shown schematically in Fig. 1. The beam is built up by an arbitrary number of horizontal
layers. A perfect adhesion was assumed between layers. The beam cross section is a
rectangle of width b and height 2A. The beam length is /. A delamination crack of length a
is located arbitrary along the beam height. The lower and upper crack arm thicknesses are
hy and h,, respectively. The loading consists of a horizontal force F applied at the free
end of lower crack arm (Fig. 1). Thus, the upper crack arm is free of stresses. The beam is
clamped in section B. The material in each layer is functionally graded along the width,
thickness and length of layer.
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Fig. 1. Geometry and loading of the multilayered CLS beam.

The delamination fracture analysis was carried-out assuming that in each layer the
modulus of elasticity E; varies linearly along the width, thickness and length of layer. It

was also assumed that in the ith layer £, , £, ,and E,, are the values of modulus of
elasticity in points K;, H;, and D;, respectively, in a cross section located at distance x
from the beam free end (Fig. 2). The distribution of modulus of elasticity in the ith layer
was expressed in a function of y and z through E, , E, , and E, by using the

following equation [18] of a plane that passes via three points of coordinates
(Eg,» Yk,» 2k, )» (B, Yu,> Zu, ), and (Ep.» ¥p,» Zp, ):

i

E; y z 1
Ex —yg. zg, 1

! ! ! =0, i=12,..,n, 1
EHI- YH, ZH, 1 1
Ep, yp, zp, 1

i
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Fig. 2. Notations in the ith layer of CLS beam.

where (see Fig. 2)
YK, =-b/2, ZK;, T Zis ;T b/2, ZH, T Zi» VD, = b/2, Zp; T Zi+1- ()
In (2), n is the number of layers.

By substituting (2) into (1), the distribution of modulus of elasticity in the ith layer
was obtained as

E;i=qiy*+qyz+t4q3;, (3)
where

Bk (zim 2z )Y Ey (24— 2) A
i b(zip1—2z;) ’ @
G2 = —— - ®)

l Zi+1 T Zi
_Ex, (i — 2 Ey (2 +2,)= 2Ep, 2, ¢
T 2zi41—2;) , ©
i=1,2, ..., n )

In each layer, the moduli of elasticity £, , E,, , and E, vary continuously along the

beam length, according to the following quadratic equations:

EKli EKOi 2

EKi =EKOI_+172X ’ (8)
—F

Ey =Ey, + Hy; ; Ho; X2, ©)

Ep, = Ep, +—" - Dot 12, (10)

where
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i=1,2,...,n, (11)
0<x<lI (12)

In Egs. (8), (9), and (10), £ Koi® E Ho? and E Dy A€ the moduli of elasticity in points K,

H,;,and D, respectively (Fig. 2). The moduli of elasticity in points Ky;, Hy;,and Dy;
are EK1- , EHl- , and EDI» , respectively. It can be summarized that Egs. (3), (8), (9), and

(10) describe the distribution of modulus of elasticity in the layers of functionally graded
CLS beam configuration shown in Fig. 1.

The delamination was studied in terms of the strain energy release rate assuming
linear-clastic behavior of the material in each layer. The strain energy release rate G can be
expressed through the changes of external work AW,,, and strain energy AU as

G= AW, — AU 3
- AA > ( )
where
AA = bAa. (14)

In (14), Aa is a small increase of the crack length. Due to the fact that linear-elastic
material behavior was assumed, the change of external work can be written as

AW

ex

, = 2AU. (15)
The change of strain energy can be expressed as
AU=U,-U,, (16)

where U, and U, are the strain energies before and after the increase of crack,
respectively. By substitution of (14), (15), and (16) in (13), the formula for strain energy
release rate can be reduced to

_ Ua B Ub

G
bAa

(17)

Equation (17) was applied to calculate the strain energy release rate in the
multilayered functionally graded CLS beam configuration (Fig. 1).

The strain energy before the increase of crack was derived by integrating of the strain
energy density in the uncracked beam ahead of the crack front (Fig. 3)

i=nzygy ( b2
U, =AGZ f fu0uidy2 dz;, (18)
i=l z

2% \~b/2

where z,; and z,;,; are the coordinates of upper and lower edges of the ith layer. The
strain energy density u,; in the ith layer was written as

|
Uy =§Ei8 , (19)

where E; was determined by (3). In (19), ¢ is the distribution of strains.
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Fig. 3. The uncracked beam portion (ahead of the crack front).

An analysis of strains was carried out, in order to determine the strain energy density.
The validity of the Bernoulli hypothesis for plane sections was assumed, since the span to
height ratio of the beam considered is large. It should be mentioned that the Bernoulli
hypothesis has been widely applied in fracture studies of functionally graded materials [15,
16]. Concerning the application of Bernoulli hypothesis in the present paper, it can also be
noted that due to the fact that the multilayered functionally graded beam is loaded in
eccentric tension (Fig. 1), the only non-zero strain is the longitudinal strain &. Thus,
according to the small strain compatibility equations, ¢ is distributed linearly in beam cross
section. In the cross section ;S35 ahead of the crack front (Fig. 3) the strain & was

expressed in a function of y, and z, by using the strains ¢ s;0 €5y and ¢ S, in points
S, S3,and §,. For this purpose, the following equation of a plane that passes though

points (8S4, Vs, 2284)’ (853, Yasys Zas, ), and (ssl, Vag,» ZZSI) was applied:

€ V2 %)
€s, Yas, Zas,

1

1
=0, 20
€s, Yas, Zas, | (20)

1

€5, Yas, Zas,
where (see Fig. 3)
Vas, == b2, zag, ==h, yas, =b[2, zyg ==h, yi5 =b/2, z5 =h  (2])
By substituting (21) into (20), we get

eE=ny,tnz +n, (22)
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where
1
= (Es, —Es,), (23)
_ 1
n = E(Esl —&g,), (24)
1
7"3 =§(851 +8S4 ) (25)

The quantities 7, 1,and r; were determined from the following equations for equilibrium
of the beam cross section ahead of the crack tip:

i=nzy41 [ b/2

N = foidyz de, (26)
i=1 zy; \=b/2
i=nzyyq ( b/2

My2 = fOiZZdyz de, (27)
i=1 i —b/2
i=nzy41 [ b/2

M. =Y [ o vydy, |dz,, (28)
i=1 zp; \—b/2

where N, M vy and M ., are the axial force and the bending moments for the y,- and

z,-axis, respectively (Fig. 3). It is obvious that (Figs. 1 and 3)

hy
N=F, My2=F(h—2), and M_ =0 (29)

&)

The stress distribution o; in the ith layer was calculated by the Hooke law

In order to perform the integration in (26), (27), and (28), the modulus of elasticity
(3) was transformed as (Fig. 3)

E; =q;y2tq225+q3;. (D)
By substituting of (30) and (31) in (26), (27), and (28), we derived
i=n 3
b b s 3 b 2
N= 2 q1in E(ZZHI =23 )t 431 E(ZZHI =23 )t q3in 5(22i+1 —z; )+
i=1
é 2,2 b —
+qy73 2(Zzi+1 221 ) ¥ q3i13b(22141 = 22441 | (32)
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i=n

b
2 4 4
{%”1 (221+1 Z); )+q2ir22(22i+1 -z )t

i=1
+ 3. bos 3. L
q3in (221+1 z3: )+ quns 3(22i+1 z3)+ g3 2(Zzi+1 25 )|s (33)

. I
2
2{6]214 (241 — 23 )+ a0 E(ZZI'+1_22[ )+

+4q1,1 a(ZZHI =z )tq;n E(sz —Zy )| (34)

Equations (32), (33), and (34) should be solved with respect to 7, 5, and 3 by
using the MatLab computer program. Then the strain distribution in the beam cross section
ahead of the crack front can be obtained by substituting of #, 5, and 73 in (31).

It should be noted that at EKl- = EHl_ = ED,- = E from (22), (32), (33), and (34), we

-3)
3F|h——
2

= + 22 N
2bhE 2bh3E

get

(35)

which exacted matches the formula for strain distribution [19] in a homogeneous beam of
rectangular cross section bX2h loaded by the eccentric tension by a force F at
eccentricity h—hy /2.

The strain energy after the increase of crack U, was obtained by integration of the
strain energy density in the lower crack arm only (the upper crack arm is free of stresses)

i=ny 2y ( )2
U,=Aa Z f f”ozid)ﬁ dzy, (36)
i=1 z;; \=b/2

where z;; and z;;,; are the coordinates of upper and lower edges of the ith layer (Fig. 4),
ny is the number of layers in the lower crack arm, u;; is the strain energy density in the
ith layer which was written as

2
o = S Ee”. (37

In (37), E; and ¢ are the distributions of modulus of elasticity and strains, respectively.
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Fig. 4. The lower crack arm cross section behind the crack front.
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Equation (3) was used to describe the distribution of modulus of elasticity in the lower
crack arm cross section. For this purpose, (3) was re-written as

Ei=qy1+9221+q3, (38)

where the axes y; and z; are shown in Fig. 4.
In order to express the distribution of strains, Eq. (22) was reduced to

E=Hyy tryzytry, (39)

where the quantities 7;, 5, and r;; were determined from Eqgs. (32), (33), and (34). For
this purpose, n, 1, B, 13, z5;,and z,;,; were replaced with n; , 1;, »;, 15, z;;, and
241, Tespectively. Besides, M, =0 was substituted in (29).

Finally, by substituting of (18), (19), (22), (30), (31), (36), (37), (38), and (39) in (17),
we derived

i=n 2 2
2 b 2 b7 2
E rl/’”2/¢11z (le+1 zi; )H R4 E(ZIHI =21 )T Hi92 T8(Zli+l —zj; )+

L, 4 4,13 2 2., 1 3 3
+§rZIQZi(Zli+1 —Zy; )+Zr3lq2i(zli+l —Zi; )+§r11’”31(J2i (zij41 — 2z )+
2

b
2
+ 71193

1, 3 3., 12
2 (z1j41— 21 )+g P93 (Zij41 — Zi; )+EVSIQ31' (141 — 213+

1 2 2
+ PRRELEY (zij41— 21 )]—

< b* 2 b’
_E 11141 ﬂ(zziﬂ —z3; )*+nnqy; E(ZZHI —Zy )t

i=1

b2 1 1
2 2 2 2 4 4 2 2 2
+1qy R(z2i+l -z )+§rz 92 (2241 = 22 )+Z”3 42 (2341 — 23 )+

1 3 3 , b7 1, 3 3
+§V1F3in(22i+1 —z3 )+t g3 E(sz —Zy )+grz q3i (2241 — 22 )+

1, 2 2
+5”3 q3i (2214122 )F 1173193 (221401 = 237 ) |- (40)

Equation (40) calculates the strain energy release rate in the multilayered functionally
graded CLS beam configuration.
At Ex =Ey =Ep =E and h; = h, Eq. (40) transforms in

F2
16EbR

(41)
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which coincides with the expression for strain energy release rate in homogeneous CLS
when the crack is in the beam mid-plane [20].

In order to verify (40), an additional analysis of the strain energy release rate was
developed by using the fact that for linear-elastic materials the strain energy release rate can
be written as

dUu
G=—-1,
A (42)
where U is the beam strain energy. In view of the fact that
dA = bda, (43)
Eq. (42) was re-written as
G= v 44
bda’ (44)

Since the upper crack arm is stress-free, the beam strain energy was calculated by
integrating the strain energy density in the lower crack arm and in the uncracked beam
portion

i=ny zy01| b/2 {a i=nzy1| b2 (1
U= Z f (f uoﬁdx)dyl dzl+2 f f (f uomdx]dyz dz,. (45)

i=1 z;; |=b/2\0 i=1 zy |=b/2\a

By substituting of (19), (30), (31), (37), (38), (39), and (45) in (44), we obtained
expression for the strain energy release rate that matches exactly (40). This fact verifies the
fracture analysis developed in the present paper.

The effects of material gradient and crack location along the beam height on the
delamination fracture behavior were evaluated. For this purpose, calculations of the strain
energy release rate were performed by using Eq. (40). The results obtained were presented

in nondimensional form by using the formula Gy = G/ (E Do b). Two three-layered CLS

beam configurations were considered (Fig. 5).

In the first configuration, the delamination crack is located between layers 2 and 3
(Fig. 5a). In the configuration in Fig. 5b the delamination is between layers / and 2. It was
assumed that 7, = 0.0025 m, 6= 0.025 m, and F =70 N.
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4 layer 1

2 4 layer 2 | B # c layer 2
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oy / layer 3 1 /F
L 34 4 F
b b b b

a b

layer 3

Fig. 5. Two three-layered CLS beam configurations.
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The material gradient along the vertical edge H3D(; of layer 3 was characterized by
E Hos / E Dos ratio. It should be mentioned that £ Doy WS kept constant in the calculations.

Thus, E Hy W3S varied in order to generate various £ Hos / E Dy; TAti0s. The strain energy
release rate in nondimensional form was plotted against £ Hos / E Dos ratio for the two

three-layered CLS beam configurations at a/l= 0.5, ED03 /EDm = 1.5, EKO3 /ED03 =0.5,
EDls/EDos =2 EHls/EHoz =2 EK13 /EK03 =2 EH01 /ED01 =1, EKOI EDm =2

EDn /EDm =05, EHn /EHm =05, EKI] /EKm =05, EDoz /EDm =1 EHoz /EDoz =

=05, Ey, [Ep =1 Ep [E, =1, E, [E, =1and Ey [Ey =1inFig 6
The curves in Fig. 6 indicate that the strain energy release rate decreases with increasing of
E Hos / E Dos ratio. This finding was attributed to the increase of beam stiffness. One can
observe in Fig. 6 that the strain energy release rate is higher when the crack is located
between layers 2 and 3 in comparison with the case when the crack is between layers / and
2. This is due to the increase of lower crack arm stiffness (the upper crack arm is free of

stresses) and to the decrease of eccentricity of force F in the uncracked beam portion
ahead of the crack front when the crack is between layers / and 2.

a
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Fig. 6. The strain energy release rate in nondimensional form plotted against £}, o / ED03 ratio: (7),

(2) for the beam configuration in Fig. 5a and Fig. 5b, respectively.
Fig. 7. The strain energy release rate in nondimensional form presented as a function of Eg,, / Ey.,

ratio at three af// ratios.

The effect of crack length was analyzed too. The crack length was characterized by
a/l ratio. Calculations of the strain energy release rate were performed for the crack in
Fig. 5a. The strain energy release rate in nondimensional form was presented as function of

EKm /EHm ratio for three a/l ratios at EHm /EDm =1, ED” /EDO] =2, EH”/EHO] =
=2 EK11 /EK01 =2 EDoz /EDm =1, EHoz /EDoz =05, EKoz /EDoz =2 ED12 /EDoz =2
Ele /EHoz =2 EKIZ /EKoz =2 EH03 /ED03 =05, EDOS /ED01 =15, EK03 /ED03 =
=0.5, ED13 /ED03 =2, EH13 /EH03 =2, and EK13 /EK03 = 2 in Fig. 7. It can be observed

in Fig. 7 that the strain energy release rate decreases with increasing of «// ratio (this can
be explained with the increase of modulus of elasticity in the beam cross section, in which
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the crack front is located, since the modulus of elasticity in the clamped end of beam is
higher than in the free end of beam). Besides, the strain energy release rate decreases with

EKm /EHm ratio (Fig. 7).

Conclusions. An analytical study of the delamination fracture in the functionally
graded multilayered CLS beam configuration was carried out. A perfect adhesion was
assumed between layers. The beam can have any number of layers. Besides, each layer can
have different thickness and material properties. Also, in each layer the material is
functionally graded along the width, thickness and length of layer. The delamination crack
can be located arbitrary along the beam height. It was assumed that in each layer the
modulus of elasticity varies linearly along the width and thickness of layer. Along the layer
length, the modulus of elasticity varies in a quadratic law. The fracture was studied in terms
of the strain energy release rate assuming linear-elastic material behavior. A closed form
analytical solution for the strain energy release rate was derived by analysing the strain
energy densities in the beam cross sections ahead and behind the crack front. In order to
verify the solution, an additional analysis of the strain energy release rate was performed by
using the beam strain energy. The influence of material gradient and crack location along
the beam height on the delamination fracture behavior was analyzed. It was found that the

strain energy release rate decreases with £ Hos /E Dos and F Koy /E H,, ratios. The analysis

revealed also that the strain energy release rate decreases with crack length when the
modulus of elasticity in the clamped end of beam is higher than in the free one. The
analytical solution derived in the present paper is useful for parametric studies since the
simple formulas obtained capture the essentials of delamination fracture behavior of the
three-dimensional functionally graded multilayered SCL beam.
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Pe3zwome

AHAJIMTHYCCKU M3YYCH PEXKHM DPa3pyLICHUS TPU OTCIOCHUHU JUIsI TPEXMEPHOW (DYHKIHU-
OHAJBHO-TPAIMEHTHON MHOTOCIOMHOW OaNKw [UIS ONpEeAeTICHHs CIBHTa Ha HAXIJIECTKE C
TPEUIMHON Ha OCHOBE pacyera CKOPOCTH BBIJACICHHS SHEPIHH Ie(POPMALUU C HCIIOJb-
30BaHMEM METOMOB JIMHCHHO-YIPYro MEXaHWKH pa3pylieHus. PaccMaTpuBaemasi KOH-
¢buryparusi 0ajJKd MOXET COCTOSTh W3 MPOU3BOJILHOIO KOJMYECTBA CJIOEB, HMECHOIINX
pa3IMYHbBIC TOJIIMHY W CBOWCTBA KOMITOHEHTOB. Martepuai KaKIoro ciios (QyHKIIHOHATBEHO
TrpaJueHTeH MO0 IIUPUHE, TOJIIUHE W JIuHE. TpeuuHa OTCIOCHUS PAaCIOIOKEeHa TMPo-
M3BOJIBHO 110 BeICOTE Oaiku. CKOPOCTh BBIICICHUS SHEPTHH JIeOopMAaIiU TOTyICHA TYTEM
aHaJM3a ¢e IJIOTHOCTH B MOMEPEYHOM CEUCHHMHU OalIKy mepe v 3a PPOHTOM TPEHIuHbI. J{iist
BepH(HKALMK OHA OMOJHUTEIHHO MPOAHATU3UPOBAHA C TIOMOIIBIO SHEPTHU JIehOopMaIun
Oanku. BeirmomHeHa OIleHKa BIMSHUS TPaieHTa MaTepralia i PacioloKEeHHs TPEIIUHBI 10
BBICOTE OQJIKM Ha PEKUM Pa3PYIICHUS MPU OTCIOCHUH.
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